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Current modeling of response times on test items has been strongly influenced by the paradigm of
experimental reaction-time research in psychology. For instance, some of the models have a parameter
structure that was chosen to represent a speed-accuracy tradeoff, while others equate speed directly with
response time. Also, several response-time models seem to be unclear as to the level of parametrization
they represent. A hierarchical framework for modeling speed and accuracy on test items is presented as an
alternative to these models. The framework allows a “plug-and-play approach” with alternative choices of
models for the response and response-time distributions as well as the distributions of their parameters.
Bayesian treatment of the framework with Markov chain Monte Carlo (MCMC) computation facilitates
the approach. Use of the framework is illustrated for the choice of a normal-ogive response model, a
lognormal model for the response times, and multivariate normal models for their parameters with Gibbs
sampling from the joint posterior distribution.

Key words: hierarchical modeling, item-response theory, Gibbs sampler, Markov chain Monte Carlo
estimation, speed-accuracy tradeoff, response times.

In addition to the responses on test items, the times needed to produce them are an important
source of information on the test takers and the items. Their information may help us to improve
such operational activities as item calibration, test design, item selection in adaptive testing, diag-
nosis of response behavior for possible aberrances, and the allowance of testing accommodations.
These applications have become within our reach now that computerized testing with automatic
recording of response times is replacing paper-and-pencil testing.

An important prerequisite for the use of response times is an appropriate statistical model
for their distribution. Over the last two decades, different models for response times have been
presented; a selection of them will be reviewed below. Several of these models appear to be
influenced by the paradigm of experimental reaction-time research in psychology (see, e.g.,
Luce, 1986). Key features of the paradigm are: (1) the use of standardized tasks; (2) the equating
of the subjects’ speed on these task with their reaction times; and (3) experimental manipulation
of the conditions under which the subjects operate. The paradigm is used, for instance, to tests
hypotheses about underlying psychological processes or to decompose reaction times into the
times needed for different processes or operations.

An important notion from reaction-time research with a special impact on the current
modeling of response times on test items is that of a speed-accuracy tradeoff. The notion is based
on the observation that when working on a task, a subject has the choice between working faster
with lower accuracy or more slowly with higher accuracy. A typical form of this tradeoff is
presented in Figure 1, where each of the hypothetical observations is for a different combination
of speed and accuracy. Observe that speed has been presented as the independent variable but

This study received funding from the Law School Admission Council (LSAC). The opinions and conclusions
contained in this paper are those of the author and do not necessarily reflect the policy and position of LSAC. The author
is indebted to the American Institute of Certified Public Accountants for the data set in the empirical example and to
Rinke H. Klein Entink for his computational assistance.

Requests for reprints should be sent to W. J. van der Linden, Department of Research Methodology, Mea-
surement, and Data Analysis, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. E-mail:
w.j.vanderlinden@utwente.nl

287
c© 2007 The Psychometric Society



288 PSYCHOMETRIKA

x

x
x

x
x

x
x x

Experimental Conditions

Speed

A
cc

ur
ac

y

FIGURE 1.
Hypothetical example of a speed-accuracy tradeoff.

accuracy as the dependent variable; this choice is motivated by the fact that, when working on
test items, a subject has control of his or her speed over a range of possible levels and has to
accept the accuracy that is the result of the choice of speed (van der Linden, 2007a).

Generally, a speed-accuracy tradeoff can be described as a negative (nonlinear) correlation
between the speed and accuracy levels at which a person is able to operate. These combinations
can be observed, for instance, when a subject is instructed to repeat a task at different levels
of speed. For the sequel of this paper, it is important to note that a speed-accuracy tradeoff
is a within-person phenomenon. As will be shown later, some of the current models confound
this level of observation with that of a single observation of a fixed person or a population of
persons. This is incorrect; for example, it is perfectly possible for a population of persons to show
a positive correlation between speed and accuracy while for each individual person the choice
between speed and accuracy is constrained by the negative correlation in Figure 1.

In our review in the next section, we show how the parameter structure of some response-time
models in the test-theory literature are the result of an attempt to incorporate a speed-accuracy
tradeoff in the model. Other ideas from experimental reaction-time research with an impact on
response-time modeling in test theory are the direct equating of time with the speed at which
a person operates and the assumption of identically distributed times for a given person across
tasks. We will argue that these ideas are inappropriate for response times on test items and then
present a hierarchical framework for the analysis of speed and accuracy that is expected to better
suit their specific nature. The framework also disentangles the levels of modeling that seem to
be confounded in the current literature. Basically, it consists of an item-response theory (IRT)
model, a model for the response-time distribution, and a higher-level structure to account for the
dependences between the item and person parameters in these models. The framework is flexible
in that we can substitute any IRT or response-time model that fits the format of the test items
best. The same holds for the higher-level models for their parameters.

The “plug-and-play approach” allowed by this framework is greatly facilitated by a Bayesian
treatment of their parameters with Gibbs sampling from their joint posterior distribution. The
replacement of a model in the framework by a different plug-in leads only to the replacement of
the corresponding steps in the Gibbs sampler. We will illustrate the treatment for the choice of a
normal-ogive response model, a lognormal model for the response times, and multivariate normal
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models for their parameters. For an appropriate choice of prior distributions, all distributions in
the sampler are known and its application becomes straightforward.

Current Models

Verhelst, Verstralen, and Jansen (1997) present a model for time-limit tests that is based on
the assumption of a generalized extreme-value distribution of a latent response variable given
the time spent on the item and a gamma distribution for the time. Capitalizing on the fact that
the compound of these two distributions is a generalized logistic (Dubey, 1969), they arrive at the
following model for the probability of a correct response on item i by person j ,

pi(θj ) = [1 + exp(θj − ln τj − bi)]
−πi , (1)

where bi is the difficulty parameter for item i, θj the ability parameters for person j , τj is
interpreted as a speed parameter for person j , and πi is an item-dependent shape parameter.
For πi = 1, the model reduces to a Rasch (1980) type model with ξj = θj − ln τj replacing the
traditional ability parameter. Observe that θj − ln τj is person dependent only and governs the
probability of a correct response; the accuracy at which a test taker operates is thus controlled
by this composite parameter instead of the ability parameter θj in a regular IRT model. The
authors of the model highlight the fact that it incorporates a speed-accuracy tradeoff. If a person
decides to increase the speed τj , for fixed θj parameter ξj decreases and the effect is lower
accuracy.

A similar model was derived by Roskam (1987; see also Roskam, 1997). His model is a
Rasch model with its additive parameter structure extended with the logtime on the item as a
regressor

pi(θj ) = [1 + exp(θj + ln tij − bi)]
−1. (2)

This model assumes a similar type of speed-accuracy tradeoff but now directly between the ability
of the test taker and the actual time spent on a test item. Less time on the item indicates a higher
speed and results in lower accuracy. Unlike the preceding model, (2) measures speed by the actual
time spent on the item.

An entirely different type of model was introduced in Thissen (1983). This model assumes
the following parameter structure for the logtime on an item:

ln Tij = µ + τj + βi − ρ(aiθj − bi) + εij , (3)

with

εij ∼ N (0, σ ). (4)

Parameters τj and βi can be interpreted as the slowness of the test taker and the amount of time
required by the item, respectively, whereas µ is a general level parameter, and ai , θj , and bi

are the usual item-discrimination, ability, and item-difficulty parameters. The term ρ(aiθj − bi)
represents a regression of the traditional parameter structure of a two-parameter (unidimensional)
response model on the logtime with ρ as the regression parameter. The normally distributed
random term εij in (3) indicates that the model belongs to a lognormal family. Although they
model the distribution response time instead of responses, for ρ < 0, (3)–(4) imply a similar
tradeoff between speed (here: slowness) and accuracy as (1) and (2). But for ρ > 0 the relation
reverses.

A model based on a Weibull distribution with a shift or location parameter was proposed in
Rouder, Sun, Speckman, Lu, and Zhou (2003) and Tatsuoka and Tatsuoka (1980). The choice of
a Weibull distribution is a classical one in industrial statistics, where it is used to model waiting
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times for a system failure as a function of the probabilities of a failure of its components. Rouder
et al. posit a reaction-time distribution for person j on task i with density

f (tij ) = πj (tij − ψj )πj −1

σ
πj

j

exp

{
−
(

tij − ψj

σj

)πj
}
, tij > ψj , (5)

where ψj is a shift, σj a scale, and πj a shape parameter. This choice of parametrization
is motivated by the nature of the psychological processes typically studied in reaction-time
experiments as well as its statistical tractability. For example, at reasonable values for the shape
parameter, the left tail of the distribution in (5) falls off rapidly leading to better identifiability of
all three parameters in reasonably sized samples. Tatsuoka and Tatsuoka drop the restriction on
ψj and treat it as a location parameter, for which they substitute the average response time on the
set of test items, t j .

Unlike the preceding three models, the two versions of the Weibull model are pure response-
time models. They do not assume anything about an ability of the person or the features of the
items. In fact, they do not even adopt any item parameters at all but treat the response times for
a fixed person as identically distributed across items. This assumption seems reasonable for the
experimental paradigm, for which Rouder et al. (2003) presented their model, but certainly does
not hold for the case of response times on test items addressed in Tatsuoka and Tatsuoka (1980).

A response-time model that does account for differences between test items is that by
Oosterloo (1975) and Scheiblechner (1979, 1985). They model response times as an exponential
distribution with density

f (tij ) = (τj + βi) exp[−(τj + βi)tij ], (6)

with τj and βi as person and item parameter. Since it holds for the exponential distribution that

E(Tij ) = 1

τj + βi

, (7)

the parameters are interpreted by these authors as the speed of the person and the item, respectively.
The model in (6) is also derived from the waiting-time literature. It is known to represent the

time for a Poisson process to produce its first success. Though behavior on some elementary tasks
may be modeled as a Poisson process, we do not believe the model to be generally adequate for
response times on test items. For instance, exponential distributions have their mode at tij = 0,
which simply is not realistic for times on test items that typically run into tens of seconds or even
minutes.

This review is not complete; for example, it does not include the Poisson model for reading
speed by Rasch (1980), which has been studied extensively by Jansen (e.g., 1986, 1997a, 1997b;
Jansen & Duijn, 1992), the additive and multiplicative gamma models by Maris (1993), the mixed
and conditional logistic models for responses and response times in van Breukelen (2005), and the
model for multivariate survival times with latent covariates by Douglas, Kosorok, and Chewning
(1999). The models above have only been chosen to prepare our discussion in the next section.
For a more complete review of response-time models for test items, see Schnipke and Scrams
(2002).

Discussion

The first two models were motivated by the idea of a speed-accuracy tradeoff. The existence
of such a tradeoff is supported by overwhelming evidence in reaction-time research. In testing,
the tradeoff explains the typical behavior at the end of an unfortunately speeded test in the form
of relatively large numbers of omitted responses and/or random guesses. But on a test with a
reasonable time limit, unless the test taker changes his or her speed during the test, there is no



WIM J. VAN DER LINDEN 291

necessity whatsoever to incorporate a tradeoff in a response-time model for a fixed person and
a fixed set of test items. The only thing that counts is the actual level of speed at which the test
taker has chosen to operate on the items. As Figure 1 illustrates, once the speed is fixed, accuracy
is also fixed. For the typical hybrid type of test considered in this paper (see below), all we need
is two free parameters to represent the test taker’s speed and accuracy. Any attempt to constrain
these parameters easily leads to a misspecification and, consequently, a less satisfactory empirical
fit of the model.

Second, some of the models above can be viewed as the results of a confounding of the level
of modeling. Three different levels should be distinguished:

(1) the within-person level, at which the value of the person parameters is allowed to change
over time (e.g., due to a change of strategy or external conditions);

(2) the fixed-person level, at which the parameters remain constant; and
(3) the level of a population of fixed persons, for which we have a distribution of parameter

values across persons.

The idea of incorporating a speed-accuracy tradeoff in the first two models seems to confound
the within-person and fixed-person levels. The tradeoff can only become manifest as the result of
a change of strategy or condition. But the two models are for a person with fixed levels of ability
and speed. Another example of confounding occurs in Tatsuoka and Tatsuoka (1980), where the
same Weibull model in (5) is used for the response times of a fixed person and a random person
from a population. The same happens for a lognormal model in Schnipke and Scrams (1997,
1999).

In (2), speed is directly equated with the actual response time. Intuitively, speed on a test is
a measure of the amount of labor accomplished in a time interval. Therefore, measuring speed as
the time needed to answer a fixed set of items (or, conversely, the number of items completed in
a fixed interval) is only appropriate if each item involves the same amount of labor—a condition
that is approximated for the standardized tasks in experimental reaction-time research. But for
test items, which may differ considerably in the amount of information processing and problem
solving they involve, the only way to measure speed is with explicit time parameters that help us
to disentangle the effects of the test taker’s speed and the time consumingness of the items on the
response time distributions. The models in (3)–(4) and (6)–(7) do contain such time parameters
for the items. But they are absent in (1), (2), and (5).

The first two models above imply that a regular IRT model cannot be true unless it has a
speed parameter for the test taker or uses the actual time spent on the item as a covariate. The
third model has an analogous implication; it excludes the pure response-time models in (5) and
(6)–(7) from being true because they have no response parameters. These implications do not
need to have serious practical consequences. Models are never perfectly true, and a wrong model
can approximate empirical data closely enough to yield valuable conclusions. But it is important
to observe that, for the hierarchical framework below, no such direct implications exist. It has
level-one models for the response and time distributions with separate sets of parameters. The
only constraint on them is through second-level assumptions about the shape of their distributions
in the population of test takers and the domain of items.

General Hierarchical Framework

The type of test modeled in this section is neither a pure speed nor a pure power test but
the hybrid type of test typically administered in a computer-based testing program. Such tests do
have items varying in difficulty; some of them will be difficult for a test taker and are likely to
be answered incorrectly, whereas others typically result in correct answers. The items also differ
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enough in the amount of cognitive processing that they involve to yield different response-time
distributions. Typically, the tests have a generous time limit; unless something special happens,
the test takers are able to finish the test in time.

Key Assumptions

The first assumption is that of a test taker operating at a fixed level of speed. This assumption
of stationarity excludes changes in behavior during the test due to learning, fatigue, strategy shifts,
and the like. As already indicated, the assumption implies a fixed level of accuracy as well, which
is a standard assumption underlying IRT modeling. This assumption of stationarity does not make
the result less useful for test takers with small fluctuations in speed or even a minor trend; such
violations can be detected by a residual analysis (van der Linden, Breithaupt, Chuah, & Zhang,
2007). Without a model based on the assumption of stationarity, possible changes and trends in
the behavior of test takers are even likely to remain unnoticed.

Second, for a fixed test taker, both the response and the time on an item are assumed to
be random variables. This assumption of randomness pervades test theory but, due to reten-
tion and/or learning, does not lend itself to direct experimental verification for test items with
mental tasks. However, it is supported by empirical observations of variations in performance
for persons repeating more physical tasks under identical conditions (e.g., Townsend & Ashby,
1983).

Third, we assume separate item and person parameters both for the distributions of the
responses on the items and the time required to produce them. For a response model, it would be
unusual to omit item parameters. As already indicated, we need item parameters in response-time
models to account for the different amount of work (i.e., information processing and problem
solving) they involve. We therefore follow the examples set in the models in (3)–(4) and (6)–(7),
and adopt such parameters. An extremely practical consequence of this choice is that it allows us
to compare the speed of test takers across tests with different items—a feature that is necessary,
for instance, to control the level speededness of tests with an adaptive format (van der Linden
et al., 2007; van der Linden, Scrams, & Schnipke, 1999).

The next assumption is that of conditional independence between the responses and the
response times given the levels of ability and speed at which the test taker operates. This assump-
tion may seem counterintuitive because both are nested within the same combination of test taker
and test item. However, it follows from a heuristic argument analogous to that in IRT for the
assumption of conditional independence between responses given θ (“ local independence”): For
a fixed item, if a response model fits and the same holds for a response-time model, their person
parameters capture all person effects on the response and response-time distributions. If these
parameters are held constant, no potential sources of covariation are left and the response and
the response time on an item become independent. It is important to distinguish the assumption
from the traditional assumption of conditional independence between the responses of a fixed
person across items. (This assumption is also made below; as well as an analogous assumption
for the response times. But if the stationarity assumption is violated and a test taker changes his
or her speed, e.g., when there is a threat of running out of time, these traditional assumptions will
be violated but it is still possible for the responses and times on the individual items to remain
independent.)

Finally, we model the relations between speed and accuracy for a population of test takers
separately from the impact of these parameters on the responses and times of the individual test
takers. The same will be done for the relations between the time and response parameters of the
items. This approach allows us to capture such relations between the response and time parameters
as the regression structure in (3) but at a higher level of modeling than the response-time
model.
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Levels of Modeling

The items are indexed by i = 1, . . . , I , and the test takers by j = 1, . . . , J . For test taker
j , we have a response vector Uj = (U1j , . . . , UIj ) and response-time vector Tj = (T1j , . . . , TIj )
with realizations uj = (u1j , . . . , uIj ) and tj = (t1j , . . . , tIj ), respectively. On the first level, we
specify both a response model and a response-time model for each combination of person and
item. The relations between the parameters in these models are represented by two different
second-level models. Together, these two levels constitute the empirical part of the framework.
In the statistical treatment of the empirical model later in this paper, we add a third level with
prior distributions for the second-level parameters or hyperparameters.

First-Level Models. We illustrate this level of modeling by choosing two specific models
for the responses and times on the items; alternative choices are discussed below.

As an response model, the three-parameter normal-ogive (3PNO) model is adopted. That is,
each response variable is assumed to be distributed as

Uij ∼ f (uij ; θj , ai, bi, ci), (8)

where f (uij ; θj , ai, bi, ci) denotes a Bernoulli probability function with success parameter

pi(θj ) ≡ ci + (1 − ci)
(ai(θj − bi)), (9)

where θj ∈ � is the ability parameter for the test taker j , ai ∈ �+, bi ∈ �, and ci ∈ [0, 1] are the
discrimination, difficulty, and guessing parameters for item i, respectively, and 
(·) denotes the
normal distribution function.

For the response times, a lognormal model is chosen:

Tij ∼ f (tij ; τj , αi, βi), (10)

with

f (tij ; τj , αi, βi) = αi

tij
√

2π
exp

{− 1
2 [αi(ln tij − (βi − τj ))]2

}
, (11)

where τj ∈ � is the speed parameter of test taker j and βi ∈ � and αi ∈ �+ represent the time
intensity and the discriminating power of item i, respectively. The lognormal family seems an
appropriate choice because it has the positive support and a skew required for response-time
distributions. The parametrization in (11) resembles that of the usual (unidimensional) models
for dichotomous responses, such as in (9), except for a guessing parameter, which is not needed
because time has a natural lower bound at t = 0. The model does not have the regression structure
of the lognormal model in (3). In addition, because αi is item dependent, it is more flexible than
(3) in that it allows for differences between the variances of the logtimes on different items. The
model showed excellent behavior in earlier studies; for reports on fit analyses as well as several
other aspects of the model, see van der Linden (2006; in press), van der Linden and Guo (2006)
and van der Linden et al. (2007b).

The vector with the parameters for person j is denoted as ξ j = (θj , τj ), the vector with the
parameters for item i as ψ i = (ai, bi, ci, αi, βi), and we use ψ = (ψ i). Because of the conditional
independence of Uij and Tij given (θ, τ ), the sampling distribution of (Uj , Tj ), j = 1, . . . , J ,
follows from (8) and (10) as

f (uj , tj ; ξ j ,ψ) =
I∏

i=1

f (uij ; θj , ai, bi, ci)f (tij ; τj , αi, βi). (12)
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Second-Level Models. One model describes the joint distribution of the person parameters
in a population, P , from which the test takers can be assumed to be sampled. We refer to this
model as the population model.

The values of ξ j are assumed to be randomly drawn from a multivariate normal distribution
over P; that is,

ξ j∼f (ξ j ; µP ,�P ), (13)

where the density function is

f (ξ j ; µP ,�P ) =
∣∣�−1

P
∣∣1/2

2π
exp

[− 1
2 (ξ j − µP )T �−1

P (ξ j − µP )
]

(14)

with mean vector

µP = (µθ, µτ ), (15)

and covariance matrix

�P =
(

σ 2
θ σθτ

σθτ σ 2
τ

)
. (16)

A second model captures the relations between the item parameters. It does so by specifying
a joint distribution for the item parameters in the domain of items, I, that the test represents. We
refer to this model as the item-domain model. Analogous to (13)–(16), parameter vector ψ i has
a multivariate normal distribution

ψ i∼f (ψ i ; µI,�I) (17)

with density function

f (ψ i ; µI,�I) =
∣∣�−1

I

∣∣1/2

(2π )5/2
exp

[− 1
2 (ψ i − µI)T �−1

I
(ψ i − µI)

]
, (18)

mean vector

µI = (µa,µb, µc, µα, µβ ), (19)

and covariance matrix

�I =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
a σab σac σaα σaβ

σba σ 2
b σbc σbα σbβ

σca σcb σ 2
c σcα σcβ

σαa σαb σαc σ 2
α σaβ

σβa σβb σβc σβα σ 2
β

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

For the full model, the sampling distribution in (12) has to be extended to

f (u, t; ξ ,ψ) =
J∏

j=1

I∏
i=1

f (uj , tj ; ξ j ,ψ i)f (ξ j ; µP ,�P )f (ψ i ; µI,�I). (21)

Identifiability

To establish identifiability, we suggest the constraints

µθ = 0, σ 2
θ = 1, µτ = 0. (22)
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FIGURE 2.
A hierarchical framework for modeling speed and accuracy on test items.

The first two constraints are usual in IRT parameter estimation. The third constraint fixes
the zero of τ and, hence, helps us to remove the tradeoff between βi and τj from (11). Unlike θ ,
we do not need a constraint to fix the scale of τ or any other of the time parameters. Their scales
are automatically fixed by the time unit in which ln tij is measured.

The last constraint allows us to equate µβ to the average expected response time over
the population and item domain and to interpret τj as a deviation from this average (van der
Linden, 2006). Also, the full set of constraints allow us to keep all covariances between the
item and person parameters, which typically are the second-level quantities of interest, as free
parameters.

Alternative Models

A graphical representation of the hierarchical framework in the preceding section is given
in Figure 2. The same framework can be specified with other plug-ins for the component models;
the only condition is that the lower-level models have both person and item parameters.

As a response model, we can choose any current IRT model that would fit the items best.
For instance, if the items are polytomous, a graded response model or (generalized) partial credit
could be chosen. If the items appear to measure more than one ability dimension, a choice of a
multidimensional response model becomes necessary. For a review of these and other options,
see van der Linden and Hambleton (1997).

We do not necessarily expect the response format or dimensionality of the items to have an
impact on their time distributions; the nature of the problems formulated is expected to be their
main determinant. Besides, the two lower-level models fit independently; it is possible to replace
the response model but keep the response-time model (or conversely).

Our choice of the lognormal model was mainly motivated by a “distribution-fitting approach.”
The lognormal density has the right support and skew for response-time distributions whereas the
basic parameters in (11) give it enough flexibility to capture the main differences in time between
persons and items. Nevertheless, if more becomes known about the processes underlying the
responses, a different model may become attractive.

For example, if the items are simple and the problem solving has the features of a Poisson
process, the exponential model in (6)–(7) could be fitted. This model already has the type of
parametrization required by the framework. Rouder et al. (2003) explain why psychological
processes with a sensory and problem-solving component may fit a Weibull distribution. To make
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their model appropriate for the framework, the following reparametrization might be helpful:

f (tij ) = παπ
i (tij − (βi − τj ))π−1 exp{−[αi(tij − (βi − τj ))]π }, tij > βi − τj , (23)

with τj , αi, and βi parameters with the same interpretation as in (11) and π a general shape
parameter. (If necessary, the shape parameter can be chosen to be item dependent.) Other choices
with a more psychological motivation can be derived from the gamma models in Maris (1993).

The choice of a multivariate normal as a second-level model has the advantage of means
and covariances as descriptive parameters of the population and item-domain distributions we
are interested in. Besides, they give us closed-form expressions for the regression of the re-
sponse and time parameters on one another—a feature that allows us to use response times
as valuable collateral information in a response problem, and the other way around (van der
Linden, 2007a; van der Linden, Klein Entink, & Fox, 2006; van der Linden & Guo, 2006).
Because of these advantages, if their fit is unsatisfactory, rather than fitting members of dif-
ferent families of models, we recommend transforming some of their parameters. In fact, the
transformations

a∗ = ln a, (24)

c∗ = logit c, (25)

can be used to improve the ranges of these and account for the skewness of typical empirical
distributions of the guessing and discrimination parameters.

For the choice of some first-level models, the total number of parameters may involve a
complexity too great to deal with by the second-level models. If so, a simple strategy is just to
ignore some of the less interesting relations between these first-level parameters at the second
level. For example, we may neither be interested in the variance of c nor in its covariances with any
of the other item parameters. Removal of them would reduce the number of free hyperparameters
in (19)–(20) by five. The framework should then be treated statistically by choosing a prior
distribution directly for the first-level parameter for which the hyperparameters have been omitted.
If a low informative prior is chosen, the impact of the removal of these hyperparameters on the
remaining portion of the second-level model is negligible. We will illustrate the procedure when
choosing a prior distribution for guessing parameter ci in (30) below.

Dependence between Observed Scores and Times

The assumption of conditional independence between responses and times in this hierarchical
framework does not imply anything for the relations between the scores and times on test items
that can be observed in samples of test takers. As shown in Figure 2, covariation between
observed scores and times can have two different origins: (1) the entries in the covariance
matrix �P of the person parameters; and (2) the entries in the covariance matrix �I of the item
parameters.

Depending on these entries, almost any pattern of correlation between observed responses
and time can be produced. For example, if ability and speed correlate positively but all correlations
between the item parameters are negligible, we will observe a positive correlation between
observed scores and times in a sample of persons. But if some of the item parameters are
negatively related, the correlation may vanish or even become negative if it is calculated between
number-correct scores and total time on sets of items. The differences between conditional
independence and possible patterns of dependence between observed scores and times illustrate
what is more generally known in statistics as Simpson’s paradox.

The dependence between observed scores and times becomes particularly unpredictable if
different persons take different sets of items. An interesting example arose in an earlier study of
differential speededness in computerized adaptive testing (van der Linden, Scrams, & Schnipke,
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1999; see also the report in van der Linden, 2005, Sect. 9.5). In this study, there was no correlation
between θ and τ but we nevertheless found a substantial positive correlation between the ability
of the test takers and the actual amount of time spent they spent on the test. The reason was a
positive correlation between the difficulty and time intensity of the items (ρbβ = .65). Because an
adaptive item-selection algorithm tends to give more difficult items to the more able students, a
positive correlation between the observed times and ability levels arose. Thus, in order to predict
the dependencies between test scores and times, in addition to the two covariance matrices,
we also need to account for the sampling design for the persons and items. An advantage of
the hierarchical framework above is that it does so automatically as long as the missing item
administrations are missing at random (MAR).

Because of the unpredictability of observed correlations between test scores and times in
samples of test takers, it may be misleading to take these correlations as descriptive and relate
them to the features of the items or the scores of the test takers (Swanson, Featherman, Case,
Luecht, & Nungester, 1999; Swanson, Case, Ripkey, Clauser, & Holtman, 2001). Instead, we
should use the descriptive correlation between the test takers’ abilities and speed provided by the
framework.

Priors Distributions

To illustrate the treatment of less interesting first-level parameters that was discussed in the
section on Alternative Models, we leave ci out of the item-domain model in (17)–(19) and specify
priors directly for these parameters.

As priors for the population and item-domain models, we choose (independent)
normal/inverse-Wishart prior distributions; that is,

�P ∼ Inverse-Wishart
(
�−1

P0, νP0
)
, (26)

µP | �P ∼ MVN (µP0,�P/κP0), (27)

�I ∼ Inverse-Wishart
(
�−1

I0, νI0
)
, (28)

µI | �I ∼ MVN (µI0,�I/κI0), (29)

where νP0 ≥ 2 is a scalar degrees-of-freedom parameter, �P0 is a 2 × 2 (positive definite sym-
metric) scale matrix for the prior on �P , and µP0 and κP0 are the vector with the means of the
posterior distribution and the strength of prior information about these means, respectively. The
parameters for the prior distributions of �I and µI are defined analogously.

We assume a common prior distribution for the guessing parameters in the first-level model
in (9):

ci ∼ beta(γ, δ), i = 1, . . . , I. (30)

Because of this separate treatment, we will use the notation ψ i = (ai, bi, αi, βi), and c = (ci).
For this choice of prior distributions, the joint posterior distribution of the parameters factors

as

f (ξ ,ψ, c, µP , µI , �P , �I | u, t) ∝
J∏

j=1

I∏
i=1

f (uij ; θj , ai, bi, ci)f (tij ; τj , αi, βi)

×f (ξ j ; µP , �P )f (ψ i , ci ; µI , �I )f (µP , �P )f (µI , �I )f (c).

(31)
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Parameter Estimation

Given the specifications in (8)–(20) and (26)–(30), Bayesian estimation of the model pa-
rameters with the Gibbs sampler is attractive. The sampler iterates through draws from the
full conditional distributions of one block of parameters given all remaining parameters. The
conditional distributions of the blocks of parameters can be derived from (31).

For the version of the 3PNO model in (9) without guessing parameter ci and independent
priors for the other parameters, Albert (1992) introduced Gibbs sampling with data augmentation.
An extension of the full model 3PNO model was suggested in Johnson and Albert (1999,
Sect. 6.9). The suggestion was further developed in Béguin and Glas (2001) and Fox and Glas
(2001). Bayesian estimation with Gibbs sampling of the lognormal model in (11) was used in
van der Linden (2006). Gibbs sampling for a version for the 3PNO model for item families with
normal distributions of the ability parameters and multivariate normal distributions of the item
parameters is given in Glas and van der Linden (2006).

The proposed implementation of the Gibbs sampler uses several elements from these refer-
ences. For a summary of its steps, see the Appendix.

Empirical Example

The hierarchical model was applied to a test from the computerized CPA Examination,
which is administered by the American Institute of Certified Public Accountants (AICPA) as part
of its certification program. The test had a multistage format with a first stage with one subtest of
moderate difficulty and two subsequent stages with a subtest of moderate and high difficulty. We
received a data set from the AICPA with the responses and response times for a sample of 1104
test takers on 96 items. The items were operational items that had been shown to have a good
fit to the three-parameter logistic (3PL) model in (9). In an earlier study, we found an excellent
fit of the same items to the lognormal model in (11) (van der Linden et al., 2007). Although we
estimated all parameters in (8)–(20) simultaneously, this time our interest was in the estimation
of the covariance matrices �P and �I for the person and item parameters. How to diagnose the
fit of these second models will be the topic of a future study.

The parameters were estimated using the proposed Gibbs sampler. The prior distributions
for the population and item-domain model were those in (26)–(29) for �−1

P0 and �−1
I0 matrices

with diagonal elements equal to 1 and 10 and off-diagonal elements equal to 0 and 1, respectively.
Also, νP0 = 2, κP0 = 1, νI0 = 4, and κI0 = 1. From (22), µP0 = (0, 0). In addition, µI0 was set
equal to (1, 0, 1, 0). As noted by Patz and Junker (1999), an MCMC method may have difficulty
dealing with the weak identifiability of the 3PL model. One of the reasons is a tradeoff between
the ai and ci parameters. We therefore fixed the ci parameter at .20, which was a value close to
their Bilog estimates. Finally, the proposal density for the Metropolis–Hastings (MH) step was a
normal centered at the previous draw with variance equal to .05.

As demonstrated by the traceplots in Figure 3, the sampler converged almost immedi-
ately. The speed of convergence may seem high for a hierarchical IRT model but has been
observed in numerous runs with other data sets. Our explanation is the presence of the re-
sponse time as a manifest variable in the component in (9). Unlike the fitting of a hierarchical
IRT model, which typically involves dealing with a delicate tradeoff between all latent pa-
rameters, the response-time variable with its fixed physical units brings stability to the entire
framework.

The elements of the covariance matrices were estimated from the output of the last 10,000
iterations. The correlations between the parameters calculated from the estimates are given in
Table 1. They show that, for this data set, the more able test takers tended to work faster (ρθτ = .30)
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and the more difficult items tended to be more time intensive (ρbβ = .30). Besides, there was
some correlation between the difficulty and discrimination parameters in the response model
(ρbα = .23) and the time intensity and discrimination parameters in the response-time model
(ραβ = .18). All other correlations were negligible.

FIGURE 3.
Traceplots of the draws from the posterior distibutions of the covariance matrices of the item and person parameters.
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FIGURE 3.
Continued

Discussion

The presence of both a response model and a response-time model gives the hierarchical
framework large applicability in educational and psychological testing. In particular, the second-
level link between their item and person parameters allows us to borrow information from the
response times to improve testing routines that are traditionally based on the responses only,
and conversely. Several studies that exploit this principle have already been completed or are in
progress.
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FIGURE 3.
Continued

For example, IRT parameter estimation is typically done separately from the estimation of
any other item or person parameters. In one study, we showed that the simultaneous estimation
of IRT parameters along with the other parameters in the framework in (8)–(20) may lead to a
substantial increase in the accuracy of the estimated parameters (van der Linden et al., 2006).
The best way to explain the increase is that, whereas traditional IRT parameter estimation is
typically based on common priors for all item and person parameters, this estimation involves
the simultaneous fitting of individual empirical priors for each parameter (= distribution of the
parameter given the response times and the hyperparameters) while estimating them.
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FIGURE 3.
Continued

The same principle can be used to improve the design of adaptive tests by selecting the
items using the test taker’s response times on the previous items in addition to the responses. The
test then begins with a standard prior distribution for θ but after each next item we are able to
retrofit the prior using a new response time. This retrofitting leads to a quick improvement of its
location and spread, which in some cases may involve a reduction of the test length by some 50%
(van der Linden, 2007b).

Response-time modeling is also necessary to deal with issues of speededness in testing. For
example, it allows us to formulate constraints on item selection that guarantee multiple forms of
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FIGURE 3.
Continued

TABLE 1.
Posterior means and 95% posterior highest posterior den-
sity intervals of correlations between model parameters.

Parameter Posterior mean 95% HPD interval

ρθτ .30 (.24, .35)
ρab .03 (−.19, .23)
ρaα −.04 (−.24, .15)
ρaβ −.11 (−.32, .09)
ρbα .23 (−.03, .41)
ρbβ .30 (.01, .47)
ραβ .18 (−4.03, .37)

a test to be equally speeded. A special problem of speededness arises in adaptive testing, where
different test takers get different items. Because items do vary in their time intensity (in empirical
studies we have found them to differ easily by a factor of 5–8 across the item pool), these tests may
suffer from differential speededness. Response-time modeling helps us to diagnose differential
speededness (van der Linden et al., 2007) and to adjust an adaptive testing algorithm for it (van
der Linden, 2005, Chap. 9; van der Linden et al., 1999).

As a final example, the detection of aberrant behavior on tests is mentioned. It is more
advantageous to base the analysis of such behavior on response times than on the responses
themselves, mainly because response times are continuous instead of binary, the procedure does
not loose its power if the test and ability level of the test taker match (i.e., the probability of a
correct response goes to a point close to .50), and it is hard for test takers to fake realistic response
times on a typical test (van der Linden & Guo, 2006).

The hierarchical framework can also be used for analyzing reaction time data in psycholog-
ical experiments. Unlike the traditional experimental paradigm, use of the model frees us from
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the necessity to use the same standardized tasks in one experiment. It also allows us to equate
results from different experiments, even if they are obtained under different conditions of speed.
In principle, when different conditions of speed exist in different experiments but all tasks have
been calibrated, it is possible to replace the population model by a model for the within-person
distribution of θ and τ and analyze the multiple data sets for a person from the experiments.
The estimate of σθτ then allows us to study the tradeoff between speed and accuracy in these
experiments.

Appendix: Gibbs Sampler

To enable the implementation of the Gibbs samples, the model in (9) is reformulated to have
parameter structure aiθj − bi . The data augmentation involved the definition of a latent variable
Zij underlying the response of test taker j on item i, with

Zij ∼ φ(zij ; aiθj − bi) (32)

and φ(·) the standard normal density. In addition, we assume indicator variables Wij defined as
Wij = 1 if j knows the answer to item i and Wij = 0 if (s)he does not know the answer. It thus
holds that

Zij < 0 if Wij = 0,

Zij ≥ 0 if Wij = 1. (33)

Step 1. The values zij , i = 1, . . . , I , j = 1, . . . , J , are drawn from their posterior distribu-
tions given w = (wij ), θ = (θj ), and ψ . From (32)–(33),

zij | w, θ ,ψ ∼ {φ(zij ; aiθj − bi)}/{
(aiθj − bi)
1−wij [1 − 
(aiθj − bi)]

wij }, (34)

which is a normal density truncated at the left at zij = 0 when wij = 0 and at the right when
wij = 1.

Step 2. The values wij , i = 1, . . . , I , j = 1, . . . , J , are drawn from their posterior distri-
butions given u, θ , ψ , and c.

Rewriting (8)–(9) as

pi(Uij = 1) ≡ 
(aiθj − bi) + ci[1 − 
(aiθj − bi)] (35)

shows that Pr{Wij = 1 | Uij = 1} ∝ 
(aiθj − bi) and Pr{Wij = 1 | Uij = 0} = 0. Therefore, the
conditional posterior distribution of wij has density

f (wij ; u, θ ,ψ, c) =
{

1 − wij , if uij = 0,

K
(aiθj − bi)wij [ci(1 − 
(aiθj − bi))]1−wij , if uij = 1,
(36)

with K a normalizing constant equal to the right-hand side of (35).

Step 3. The person parameters θj , j = 1, . . . , J , are drawn from their posterior distributions
given z = (zij ), τ = (τj ), µP , and �P .

From (32), zij + βi = aiθj + εij with εij ∼ N (0, 1). Therefore, θj is a parameter in the
regression of zij + βi on ai with a normal error term. Because θj is normally distributed with
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mean µθ |τj
and variance σ 2

θ |τj
, the conditional posterior distribution of θj is also normal:

θj | z, τ ,µP ,�P ∼ N

⎛
⎝σ−2

θ |τj
µθ |τj

+∑I
i=1 ai(zij + bi)

σ−2
θ |τj

+∑I
i=1 a2

i

,

(
σ−2

θ |τj
+

I∑
i=1

a2
i

)−1
⎞
⎠ , (37)

where the conditional means and variances µθ |τj
and σ 2

θ |τj
follow directly from µP , and �P in

(15)–(16) as

µθ |τj
= µθ + (

σθτ /σ
2
τ

)
(τj − µτ ) (38)

and

σ 2
θ |τj

= σ 2
θ − σ 2

θτ /σ
2
τ . (39)

The two expressions simplify because of (22).

Step 4. The item parameters (ai , bi), i = 1, . . . , I , are drawn from their posterior distribu-
tions given zi = (zi1, . . . , ziJ ), θ , α =(αi), β = (βi), µI , and �I

(ai, bi) is a random parameter in the regression of zj on X = (θ,−1), with 1 a unit vector
of length J . Because (ai, bi) has a bivariate normal conditional distribution given (αi, βi) with a
mean µa,b|αi ,βi

and covariance matrix �a,b|αi ,βi
, its posterior distribution is also bivariate normal:

ai, bi | zi , θ ,α,β, µI,�I ∼ N

(
µa,b|αi ,βi

�−1
a,b|αi ,βi

+ XT zi

�−1
a,b|αi ,βi

+ XT X
,
(
�−1

a,b|αi ,βi
+ XT X

)−1
)

, (40)

where the mean µa,b|αi ,βi
and covariance matrix �a,b|αi ,βi

follow directly from µP , and �P in
(19)–(20).

Step 5. The guessing parameters ci, i = 1, . . . , I , are drawn from their posterior distribu-
tions given ui and wi = (wi).

The number of test takers guessing on item i is ni = J −∑J
j=1 wij , whereas the number

of correct guesses is xi = ∑J
j=1(uij | wij = 0). Since ci is the probability of a correct guess, it

follows that xi is binomially distributed with parameters ni and ci . From (30),

ci | ui , wi ∼ beta(γ + xi, δ + ni − xi). (41)

Step 6. The person parameters τj , j = 1, . . . , J , are drawn from their posterior distributions
given tj , θ , α,β, µP , and �P .

The density in (11) implies a normal distribution of ln tij with mean βi − τj and variance
α−2

i . Hence, βi − ln tij is normally distributed with mean τj and variance α−2
i . Because τj is

normally distributed with mean µτ |θj
and variance σ 2

τ |θj
, the posterior distribution of τj is also

normal:

τj | tj , θ ,α,β, µP ,�P ∼ N

⎛
⎝σ−2

τ |θj
µτ |θj

+∑I
i=1 α2

i (βi − ln tij )

σ−2
τ |θj

+∑I
i=1 α2

i

,

(
σ−2

τ |θj
+

I∑
i=1

α2
i

)−1
⎞
⎠ . (42)

The conditional means µτ |θj
and variances σ 2

τ |θj
follow directly from µP , and �P in (15)–(16).
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Step 7. The item parameters βi, i = 1, . . . , I , are drawn from their posterior distributions
given tj , τ , a, b, α, µI , and �I .

Analogous to the preceding step, ln tij + τj is normally distributed with mean βi and variance
α−2

i . Because βi is normally distributed with mean µβ|ai ,bi ,ci ,αi
and variance σ 2

β|ai ,bi ,ci ,αi
, the

posterior distribution of βi is also normal:

βi | tj , τ , a, b,α, µI,�I ∼ N

(
σ−2

β|ai ,bi ,ci ,αi
µβ|ai ,bi ,ci ,αi

+ α2
i

∑J
j=1(ln tij + τj )

σ−2
β|ai ,bi ,ci ,αi

+ Jα2
i

,

(
σ−2

β|ai ,bi ,ci ,αi
+ Jα2

i

)−1

)
. (43)

The conditional means µβ|ai ,bi ,ci ,αi
and variances σ 2

β|ai ,bi ,ci ,αi
follow directly from µI , and �I in

(19)–(20).

Step 8. The item parameters αi, i = 1, . . . , I , are drawn from their posterior distributions
given tj , τ , β, µI , and �I .

From (17)–(18),

f (αi | µI,�I) = φ
(
αi ; µα|ai ,bi ,ci ,βi

, σ 2
α|ai ,bi ,ci ,βi

)
. (44)

Hence, for the posterior distributions of αi given tj , τ , β, µI , and �I ,

f (αi | tij , τj , βi) ∝
J∏

j=1

f (tij ; τj , αi, βi)φ
(
αi ; µa|ai ,bi ,ci ,βi

, σ 2
a|ai ,bi ,ci ,βi

)
, (45)

where the first factor is given in (10). Since the density has no closed form, we suggest an
MH step: At iteration t , a value α∗

it is sampled from a proposal density ϕ(αit , αi(t−1)), which is
accepted with probability

min

{
1,

f (α∗
it | tij , τj , βi)

f
(
αi(t−1) | tij , τj , βi

) × ϕ
(
αi(t−1), α

∗
it ,
)

ϕ
(
α∗

it , αi(t−1)
)
}

; (46)

otherwise the value at the preceding iteration is retained, that is, αit = αi(t−1). The ratio of the
posterior densities in (46) simplifies to

(
α∗

it

αi(t−1)

)J

exp

⎧⎨
⎩−1

2

⎡
⎣(α∗2

it − α2
i(t−1)

) J∑
j−1

(
ln tij − (βi − τj )

)2

+
(
α∗

it − µα|ai ,bi ,ci ,βi

)2 − (
αi(t−1) − µα|ai ,bi ,ci ,βi

)2

σ 2
α|ai ,bi ,ci ,βi

]}
. (47)

Step 9. Population parameters µP and �P are sampled from their posterior distribution given
ξ . Since the normal/inverse-Wishart prior is conjugate with the multivariate normal population
model, the posterior distribution is also normal/inverse-Wishart family:

�P | ξ ∼ Inverse-Wishart
(
�−1

P∗, νP∗
)
, (48)

µP | ξ , �P ∼ MVN(µP∗,�P/κP∗), (49)

where

�P∗ = �P0 + Sξ + κP0I

κP0+I
(ξ − µP0)(ξ − µP0)T , (50)



WIM J. VAN DER LINDEN 307

νP∗ = νP0 + I, (51)

κP∗ = κP0 + I, (52)

µP∗ = κP0
κP0+I

µP0 + I
κP0+I

ξ , (53)

and Sξ is defined as

Sξ =
I∑

i=1

(ξ−ξ )(ξ−ξ )T . (54)

Step 10. The sampling of the item-domain parameters µI and �I from their posterior
distributions given ψ is similar to (47)–(53) with µP , �P , ξ , and J replaced by µI , �I , ψ ,
and I .

Comment

In spite of the complexity of the framework, for the current choice of component models,
Gibbs sampling is straightforward due to conjugacy between the model and prior distributions
at each stage in the hierarchy. The only exception is Step 8 for the discrimination parameter in
the response-time model. When carefully implemented, the proposed MH step for this parameter
need not involve a substantial loss of efficiency of the sampler. An obvious strategy is to repeat
Step 8 within each cycle until a new draw is accepted. For this and other issues related to the use
of an MH step in a Gibbs sampler, see, for instance, Carlin and Louis (2000, Sect. 5.4).
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