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A PERSON FIT TEST FOR IRT MODELS FOR POLYTOMOUS ITEMS
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A person fit test based on the Lagrange multiplier test is presented for three item response theory
models for polytomous items: the generalized partial credit model, the sequential model, and the graded
response model. The test can also be used in the framework of multidimensional ability parameters. It is
shown that the Lagrange multiplier statistic can take both the effects of estimation of the item parameters and
the estimation of the person parameters into account. The Lagrange multiplier statistic has an asymptotic
χ2-distribution. The Type I error rate and power are investigated using simulation studies. Results show
that test statistics that ignore the effects of estimation of the persons’ ability parameters have decreased
Type I error rates and power. Incorporating a correction to account for the effects of the estimation of the
persons’ ability parameters results in acceptable Type I error rates and power characteristics; incorporating
a correction for the estimation of the item parameters has very little additional effect. It is investigated to
what extent the three models give comparable results, both in the simulation studies and in an example
using data from the NEO Personality Inventory-Revised.

Key words: item response theory, person fit, model fit, multidimensional item response theory, polytomous
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1. Introduction

Applications of item response theory (IRT) models to the analysis of test items, tests, and item
score patterns are only valid if the IRT model used holds. Fit of items can be investigated across
persons and fit of persons can be investigated across items. In psychological and educational
measurement, instruments are developed that are used in a population of persons and item fit
is used to evaluate to what extent an IRT model fits an instrument in a particular population
(see, for instance, Andersen, 1973; Yen, 1981, 1984; Molenaar, 1983; Glas, 1988, 1999; Glas &
Suárez-Falcón, 2003; Orlando & Thissen, 2000).

But although the IRT model may generally fit the data, specific persons may still produce
patterns that are highly unlikely given the model. For instance, some persons may give random
responses because they are unmotivated to take the test. Using person fit statistics, the fit of a
score pattern can be determined under the null-hypothesis that the IRT model holds. Meijer and
Sijtsma (1995, 2001) give an overview of person fit statistics proposed for various IRT models.
Most person fit statistics were developed for IRT models for dichotomous items (Levine &
Rubin, 1979; Wright & Stone, 1979; Tatsuoka, 1984; Smith, 1985, 1986; Klauer & Rettig, 1990;
Drasgow, Levine, & McLaughlin, 1991; Sijtsma & Meijer, 2001). Person fit tests for polytomous
items are far less numerous (such tests were developed by Drasgow, Levine, & Williams, 1985;
Wright & Masters, 1982; van Krimpen-Stoop & Meijer, 2002).

One of the problems of person fit statistics is that the derivation of the distribution of the
statistics has to account for the fact that item and person parameters are estimated. These estimates
usually decrease the asymptotic variance of most statistics proposed in the literature. Therefore,
their asymptotic distribution is usually unknown (see, for instance, Nering, 1995; Reise, 1995).
There are several solutions to this problem. The first one is to avoid the estimation of the person

Requests for reprints should be sent to Cees A.W. Glas, Department of Research Methodology, Measurement
and Data Analysis, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands. E-mail: c.a.w.glas@
gw.utwente.nl

159
c© 2007 The Psychometric Society



160 PSYCHOMETRIKA

parameter by applying the nonparametric IRT. Sijtsma and Meijer (2001) show that a count of
Guttman errors is a good person fit index. In the present paper, however, we focus on applications
that call for explicit parametric IRT models, such as computerized adaptive testing. A second
solution pertains to the Rasch model (Rasch, 1960) and other parametric IRT models that belong
to the class of exponential family models, such as the partial credit model (PCM) (Masters, 1982).
These models have a sufficient statistic for the person parameter and conditioning on the observed
value of the sufficient statistic can correct for the effect of estimation (Molenaar & Hoijtink, 1990;
von Davier & Molenaar, 2003).

Further, for the Rasch model, Klauer (1995) presents a number of uniformly most-powerful
tests that also do not require estimation of the ability parameter. In the present paper, however,
the focus is on models outside the exponential family. Finally, Snijders (2001) proposed a method
for standardization of a specific class of person fit statistics for dichotomous items, such that
their asymptotic distribution can be properly derived. However, generalizations to polytomously
scored items are not available. The relation between the test statistics presented below and the
test statistics considered by Snijders (2001) will be returned to in the Discussion section of this
paper.

This paper is organized as follows. First, three models for polytomously scored items will
be introduced: the generalized partial credit model (GPCM) (Muraki, 1992), the sequential
model (SM) (Tutz, 1990), and the graded response model (GRM) (Samejima, 1969, 1973). Also
multidimensional generalizations of these models will be considered. Second, a person fit statistic
for testing the constancy of the person ability parameter will be introduced. The test is based on
the Lagrange multiplier (LM) test. In Appendix A it will be shown how the LM test can be used
to test other model violations. Third, the Type I error rate and power of the test will be assessed
using simulation studies. In most studies of person fit, the influence of the estimates of the item
parameters is not considered. A study of the effect of uncertainty of item parameter-estimation
on ability estimates by Tsutakawa and Johnson (1990) showed only minor effects. This will
probably also hold for person fit statistics, but this point has not been systematically investigated.
Therefore, three types of tests will be addressed:

(1) tests that do not take estimation effects into account;
(2) tests that take the effects of ability estimation into account; and
(3) tests that take both the effects of estimation of the item and person parameters into account.

Next, the robustness of the testing procedure will be assessed. This part of the study is
related to reports that, although the rationales underlying the GPCM, SM, and GRM are very
different, the models are hard to distinguish because their response functions are very close
(Verhelst, Glas, & de Vries, 1997). It will be investigated whether the exchangeability of the
three models in practical situations also extends to person fit tests, or, put another way, whether
the three models can be distinguished using person fit tests. Finally, the performance of the
person fit tests will be evaluated using data sets from the NEO Personality Inventory-Revised
test.

2. IRT Models for Polytomous Items

Consider a test with polytomously scored items labeled i = 1, . . . , K. Every item has
response categories labeled j = 0, . . . , mi . Item responses will be coded by stochastic variables
Xij (i = 1, . . . , K; j = 0, . . . , mi ; in the sequel the index i of m is dropped for convenience)
with realizations xij . xij = 1 if a response was given in category j , and zero otherwise. It will be
assumed that the response categories are ordered, and that there exists a latent ability variable θ

such that a response in a higher category reflects a higher ability level than a response in a lower
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category. The probability of scoring in a response category j on item i is given by a response
function Pij (θ ) = P (Xij = 1 | θ ). In many measurement situations, such as in measurement of
abilities, it is reasonable to assume that the response function of the category j = 0 decreases
as a function of ability, the response function for j = m increases as a function of ability and
the response functions of the intermediate categories are single peaked. Mellenbergh (1995)
showed that IRT models with such response functions can be divided into three classes. Though
the rationales underlying the models in these classes are very different, their response functions
appear to be very close (Verhelst et al., 1997), so the models might be hard to distinguished on the
basis of empirical data. One of the topics addressed in this paper is whether this also holds when
using person fit tests. We will now introduce three models from the three classes distinguished
by Mellenbergh (1995).

2.1. The Graded Response Model

Using the abbreviation for the logistic function given by

�(x) = exp(x)

1 + exp(x)
, (1)

the probability of a response in category j of item i, P (Xij = 1 | θ ), is given by

Pij (θ ) =

⎧
⎪⎨

⎪⎩

1 − �(αiθ − βi1) if j = 0,

�(αiθ − βij ) − �(αiθ − βi(j+1)) if 0 < j < m,

�(αiθ − βim) if j = m,

(2)

(Samejima, 1969). To ensure that the probabilities Pij (θ ) are positive, the restriction βi(j+1) > βij

for 0 < j < m is imposed.

2.2. The Sequential Model

In the SM (Tutz, 1990) the probability of a response in category j of item i is given by

Pij (θ ) =

⎧
⎪⎨

⎪⎩

1 − �(αiθ − βi1) if j = 0,
∏j

h=1 �(αiθ − βih)[1 − (�(αiθ − βi(j+1)))] if 0 < j < m,
∏m

h=1 �(αiθ − βih) if j = m.

(3)

Verhelst et al. (1997) note that in the SM every polytomous item can be viewed as a sequence
of virtual dichotomous items. These dichotomous items are considered to be presented as long
as a correct response is given, and the presentation stops when an incorrect response is given.
An important consequence of this conceptualization of the response process is that estimation
and testing procedures for the two-parameter logistic (2PL) model with incomplete data can be
directly applied to the SM.

2.3. The Generalized Partial Credit Model

In the GPCM (Muraki, 1992) the probability of a response in category j of item i is given
by

Pij (θ ) = exp(jαiθ − βij )

1 + ∑m
h=1 exp(hαiθ − βih)

. (4)

The PCM (Masters, 1982) is the special case where αi = 1 for all items i. The item parameters
are usually reparametrized as βij = ∑j

h=1 ηih. In that case, ηij can be interpreted as so-called
boundary parameters: ηij is the position on the latent θ -scale where Pi(j−1)(θ ) = Pij (θ ).
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2.4. Multidimensional Generalizations

In many situations the assumption that an individual’s response behavior can be explained
by a unidimensional person parameter θ does not hold. In that case the assumption of a unidi-
mensional person parameter can be replaced by the assumption of a multidimensional person
parameter θ1, . . . , θq, . . . , θQ. The multidimensional versions of the models given by (2), (3), and
(4) are defined by replacing αiθ by

∑Q
q=1 αiqθq . Further, it is usually assumed that the parameters

θ1, . . . , θq, . . . , θQ have a joint Q-variate normal distribution (McDonald, 1997; Reckase, 1997).

3. The LM Test

Recently, LM tests for IRT models have been proposed by Glas (1998, 1999), Glas and
Suárez-Falcón (2003), and Jansen and Glas (2005). The LM test (Aitchison & Silvey, 1958) is
equivalent with the efficient score test (Rao, 1947) and the modification index that is commonly
used in structural equation modeling (Sörbom, 1989). The purpose of the LM test is to compare
two models, a model under the null-hypothesis and a more general model that is derived from the
model under the null-hypothesis by adding parameters. Only the model under the null-hypothesis
needs to be estimated.

The LM test is developed as follows. Consider some general parametrized model, and a
special case of the general model, called the restricted model. The restricted model is derived
from the general model by imposing constraints on the parameter space. In many instances, this
is accomplished by fixing one or more parameters of the general model to constants. The LM
test is based on the evaluation of the first-order partial derivatives of the log-likelihood function
of the general model, evaluated using the maximum likelihood estimates of the restricted model.
Because the parameters of the restricted model are estimated by maximum likelihood, their first-
order derivatives are equal to zero at the solution of the likelihood equations. The magnitudes of
the first-order partial derivatives corresponding to the other parameters determine the value of
the statistic: the closer they are to zero, the better the model fit. Note that the likelihood function
of the model under the null-hypothesis can be viewed as a special case of the general model where
the parameters are constrained. Such constraints can be introduced to the likelihood function via
the well-known LM method, which motivates the naming of the test.

More formally, the principle of the LM test can be described as follows. Consider a general
model with parameters η. In the applications presented below, the restricted model is derived from
the general model by fixing one or more parameters to zero. So, if the vector of the parameters of
the general model, say η, is partitioned η = (η1, η2), the null-hypothesis entails η2 = c, where c
is a vector of constants. In the present application, c will be zero. Let h(η) be the first-order partial
derivatives of the log-likelihood of the general model, that is, h(η) = ∂ log L(η)/∂η. This vector
of partial derivatives gauges the change of the log-likelihood as a function of local changes in η.
Let the vector of partial derivatives h(η) be partitioned as (h(η1), h(η2)). Then the test is based
on the statistic

LM = h(η2)′�−1h(η2), (5)

where

� = �22 − �21�
−1
11 �12 (6)

and

�pq = −∂2 log L(η)

∂ηp∂η′
q

, (7)
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for p = 1, 2 and q = 1, 2. The LM statistic is evaluated using the maximum likelihood estimates
of the parameters of the restricted model. Therefore, at the maximum likelihood estimate of η1,
it holds that h(η1) = 0. In the applications presented below, the model under the null-hypothesis
will be an IRT model. The LM statistic has an asymptotic χ2-distribution with degrees of freedom
equal to the number of parameters in η2 (Aitchison & Silvey, 1958).

The variance of the parameter estimates plays an explicit role in the distribution of the
LM statistics. Glas (1999) shows that the matrices � and �22 in (6) can be viewed as the
asymptotic covariance matrices of h(η2) with η1 estimated and known, respectively. Further, �−1

11
is the asymptotic covariance matrix of the estimate of η1, so the term �21�

−1
11 �12 accounts for

the influence of the estimation of η1 on the covariance matrix of h(η2). Therefore, in the LM test,
the variance of the estimates of the parameters is explicitly taken into account.

4. An LM Test for Constancy of Theta

To illustrate the application of the LM test as a test of person fit and to illustrate its relation
to some existing tests, an LM test for the constancy of θ over partial response patterns for the
GPCM will be presented. For the Rasch model, Smith (1985, 1986) introduced the UB test,
which is a Pearson-type test for evaluating the constancy of the ability parameter across subtests.
For the UB test, the complete response pattern is split up into a number of parts, say the parts
g = 0, . . . ,G, and it is evaluated whether the same ability parameter θ can account for all partial
response patterns. In this section, this approach will be generalized to polytomously scored items.

Let Ag be the set of the indices of the items in part g. Consider a model that is an alternative
to the GPCM given by (4). In the alternative model it is assumed that the response pattern cannot
be described by one ability parameter, that is, for g > 0, define

P (Xij = 1 | θ, zig = 1) = exp(jαi(θ + δg) − βij )

1 + ∑m
h=1 exp(hαi(θ + δg) − βih)

, (8)

where zig (g = 1, . . . ,G) is an indicator assuming a value one if i ∈ Ag and zero otherwise. For
items where zig = 0 for g = 1, . . . ,G, the GPCM holds, so this partial response pattern on these
items is used as a reference. For the remainder of the response pattern, it is hypothesized that
additional ability parameters δg (g = 1, . . . , G) are necessary to describe the response behavior.

In this section, an LM test accounting for the effects of estimation of the person parameter θ

will be derived. An LM test that also accounts for the effects of estimation of the item parameters
will be treated in a following section. To define the statistic, an expression for the derivatives with
respect to the ability parameters is needed. Note that the first-order derivatives with respect to θ

of (4) and (8), under the null-hypothesis that δg = 0 for all g, are the same. In Appendix A it is
shown that the first-order derivative of the log-likelihood is given by

∂ log L

∂θ
=

k∑

i=1

m∑

j=0

[

xij

(

jαi −
m∑

h=1

hαiPih(θ )

)]

=
k∑

i=1

[yi − Eθ (Yi)] ,

where yi = ∑m
j=0 xij jαi , that is, it is the weighted score on item i, and Eθ (Yi) is its expectation.

In Appendix A it is also shown that

∂ log L

∂δg

=
∑

i

zig [yi − Eθ (Yi)] , (9)
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and that the second-order derivatives are

∂2 log L

∂θ2
= −

k∑

i=1

m∑

j=0

jαiPij (θ ) [jαi − Eθ (Yi)] ,

∂2 log L

∂δ2
g

= −
k∑

i=1

zig

m∑

j=0

jαiPij (θ ) [jαi − Eθ (Yi)] ,

∂2 log L

∂θ∂δg

= −
k∑

i=1

zig

m∑

j=0

jαiPij (θ ) [jαi − Eθ (Yi)] ,

∂2 log L

∂δg∂δg′
= 0,

where g �= g′. Inserting these expressions into (5) and (6) gives an expression for the LM statistic
for testing the constancy of the ability parameter over the partial response patterns.

Now consider the case G = 1 where the test is split into two subtests: say the first part of
the test and the second part of the test. Alternative partitionings of the test into two nonempty
subtests are also possible. In this case, the null-hypothesis becomes δ = 0. The matrices �11,
�22, and �12 in (6) become scalars and the LM statistic specializes to

LM = h2
2

σ22 − σ 2
12σ

−1
11

, (10)

where h2 is given by (9). From the theory outlined in the previous section, it follows that this
statistic has an asymptotic χ2-distribution with one degree of freedom. Note that h2 turns out to be
a difference between observed and expected values. In Appendix A, where a general formulation
of the test statistic is given, it can be verified that this also holds for the SM, so in these two cases
h2 can be viewed as a residual.

Note that σ 2
12/σ11 takes into account the loss of variation due to the estimation of θ . In the

simulation studies reported below, we shall also consider a version of the statistic where the term
σ 2

12/σ11 is deleted. Disregarding the effects of estimation of θ results in a statistic,

UB =
G∑

g=1

[ ∑
i∈Ag

[yi − Eθ (Yi)]
]2

∑k
i∈Ag

∑m
j=0 jαiPij (θ ) [jαi − Eθ (Yi)]

. (11)

For the case of dichotomously scored items, the formulation of this statistic is similar to the
formulation of the UB statistic by Smith (1985, 1986). The statistics given by (10) and (11) will
be compared in the simulation studies reported below.

4.1. Incorporating Item Parameter Estimates

In marginal maximum likelihood (MML) (Bock & Aitkin, 1981; Bock, Gibbons, & Muraki,
1988), it is assumed that the ability parameters are independent and normally distributed. The
approach derives its name from maximizing a log-likelihood that is marginalized with respect
to θ , rather than maximizing the joint log-likelihood of all abilities parameters θ and all item
parameters. The essential feature of MML estimation is that the number of parameters is constant,
i.e., it does not grow with the number of observations. Therefore, for the present application, we
consider a model where we marginalize over all ability parameters (because their number grows
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with the number of respondents) except the ability parameter of the person we are interested
in. Further, we now consider all available data. The log-likelihood is split into two parts, one
pertaining to the marginal likelihood of N respondents (denoted by Lm) and one pertaining to
the respondent that is the focus of attention (say, observation N + 1; this likelihood is denoted
by Lp). So we have

log L = log Lm + log Lp

=
N∑

n=1

log
∫ k∏

i=1

m∏

j=0

Pij (θ )xnij G(θ ) dθ +
k∑

i=1

m∑

j=0

xij log Pij (θ ), (12)

where xnij are the responses of N persons, and G(θ ) is a, usually normal, ability distribution.
The log-likelihood in (12) is concurrently maximized with respect to the item parameters, the
parameters of G(θ ), and the ability parameter of the focal person. Mislevy (1986) shows that
maximization of Lm can be further enhanced by introducing fixed and empirical priors.

In the section on the LM test, the parameter vector was partitioned η = (η1, η2), where,
under the restricted model, η1 are the free parameters and η2 are the fixed parameters. In the
present case, the item parameters, the parameters of G(θ ), and the ability parameter of the focal
person are stacked in η1 and the parameters representing model violations (δg , g = 1, . . . ,G)
are stacked in η2. The parameters in η1 are partitioned into the θ of the focal person and all the
other parameter which are denoted by ξ . To perform the test we proceed in two steps: first we
estimate ξ , and then we compute the LM statistic defined by (5). The first step boils down to
solving the simultaneous system ∂[log Lm + log Lp] /∂ξ = 0 and ∂ log Lp /∂θ = 0. (It should
be noted that it is assumed that the parameter estimates converge in the open parameter space,
that is, there are no boundary values so that the gradient can be assumed to be arbitrarily close
to zero at the final estimate.) First- and second-order derivatives of log Lm with respect to item
and population parameters ξ can be found in Glas (1999), the derivatives of log Lp with respect
to θ were given above, and the derivatives of log Lp with respect to the item parameters can
be found in papers on joint maximum likelihood estimation for IRT, say, Wright and Linacre
(1992). In practice, the estimates of the item and population parameters ξ will not change
much when one person is singled out as a target; in practice, only a few iteration steps are
needed.

With the parameter estimates available, the LM statistic (5) can be computed with h(η2) =
∂ log Lp/∂η2, where η2 is δg (g = 1, . . . ,G) and a matrix of weights

∑
= ∂2 log Lp

∂η2
2

−
[
∂2 log Lp

∂η2∂ξ t

∂2 log Lp

∂η2∂θ

]

⎡

⎢
⎢
⎢
⎣

∂2[log Lm + log Lp]

∂ξ∂ξ t

∂2 log Lp

∂ξ∂θ

∂2 log Lp

∂θ∂ξ t

∂2 log Lp

∂θ2

⎤

⎥
⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎢
⎣

∂2 log Lp

∂ξ∂η2

∂2 log Lp

∂θ∂η2

⎤

⎥
⎥
⎥
⎦

.

Also, for this expression, derivatives of log Lm with respect to ξ can be found in Glas (1999),
derivatives of log Lp with respect to ξ can be found in papers on joint maximum likelihood
estimation, and derivatives of log Lp with respect to η2 and θ can be found above.

5. Simulation Studies

Three sets of simulation studies will be reported. In the first set, a comparison is made
between the Type I error rate and the power of tests that do and do not take the ability estimates
into account, and tests that take both the estimates of the item and person parameters into account.
In the second set of simulations, the robustness of the tests with respect to the choice of the specific
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model for polytomous responses (the GRM, the SM, or the GPCM) is studied. In the third set of
simulations, the multidimensional versions of the test statistics are studied. These versions will
also be used in the real data example.

In all simulation studies reported below, all statistics were computed using a partition of the
items into two subtests of equal size, that is, the first and second parts of the test. All tests were
computed using a 5% significance level, and 100 replications were made for each branch of the
study.

5.1. Simulation Study I: Influence of Estimation on Type I Error Rate and Power

5.1.1. Type I Error. The aim of this study is to assess whether the theoretical advantage of
taking the effects of estimation into account pays off in practice. To keep the presentation simple,
the 2PL model for dichotomous items (which is the common special case of the GRM, the SM,
and the GPCM for m = 1) will be used for this first set of simulations. As can be seen in the
report on the second set of simulations, the results generalize to polytomous items.

Sample sizes of N = 100, N = 1000, and N = 4000 were crossed with test lengths of
K = 20, K = 40, and K = 60. For the test length K = 20, the item parameters were equal to
βi = −2.00 + 0.20(i − 1), i = 1, . . . , 20. For the test lengths K = 40 and K = 60 these values
were repeated two and three times, respectively.

The UB statistic was computed in three conditions:

(1) using the true item and person parameters;
(2) using true item parameters and estimated ability parameters; and
(3) using both estimated item and ability parameters.

The LM statistic that takes the effects of the ability parameter estimates into account will
be labeled LM1, the statistic that also takes the effect of estimation of the item parameters into
account will be labeled LM2. LM2 was computed in two conditions:

(1) using true item parameters and estimated ability parameters; and
(2) using both estimated item and ability parameters.

Finally, LM2 was computed using estimates of the item and person parameters obtained as
outlined in the previous section.

The results are shown in Table 1. In the third column of the table, it can be seen that when
the true values for all parameters were used, the Type I error rates of the UB test were very
close to the nominal significance level. This is as expected, because in this case the test does not
involve estimation. In the next two columns, it can be seen that the Type I error rate decreased
substantially when parameter estimates were used. The Type I error rates of the LM1 test were
close to 5% in both cases. It must be noted that the Type I error rate of LM1 was slightly inflated
for the case where N = 100 and the true item parameters were used. The effect vanished when
estimates of the item parameters were used. Finally, the Type I error rate of the LM2 test was
not substantially closer to 5% than the Type I error rates of the LM1 test. So explicitly taking
the effects of the estimation of the item parameters into account did not result in a marked
improvement.

5.1.2. Power of tests. Next, the power of the LM1 and LM2 tests was studied. The MML
estimation procedure was run using the data of all simulees, both the aberrant and nonaberrant
ones. In all simulations, 10% of the simulees were aberrant. The presence of the aberrant simulees
did, of course, produce some bias in the parameter estimates, but this setup was considered realistic
because in many situations it is not a priori known which respondents are aberrant, and which
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TABLE 1.
Type I error rate for tests for constancy of theta.

UB LM1 LM2
Theta
Beta True Estimated Estimated Estimated Estimated Estimated

K N True True Estimated True Estimated Estimated

20 100 .042 .008 .007 .049 .041 .044
1000 .042 .007 .007 .043 .042 .042
4000 .042 .007 .007 .041 .041 .041

40 100 .049 .008 .005 .068 .050 .055
1000 .047 .005 .005 .051 .045 .045
4000 .047 .005 .005 .046 .045 .045

60 100 .047 .014 .004 .087 .050 .054
1000 .048 .006 .005 .055 .051 .051
4000 .048 .005 .005 .051 .051 .051

are not. Item parameters were equal to the item parameters in the previous study and the ability
parameters θ were again drawn from a standard normal distribution. In all simulations, test length
was equal to K = 40 and K = 60. The samples sizes were N = 400 and N = 1000. These
sample sizes determine the precision of the estimates of the item parameters.

Two model violations were studied: different abilities for different subsets of items, and
guessing on part of the items. An example of the first violation occurs in computerized adaptive
testing when part of the items has been exposed and become known to the examinees. If the
test administrator has a specific hypothesis about which items this may concern, this hypothesis
can support a specific formulation of the LM test in terms of the composition of the subtests
g = 1, . . . ,G. An example of the second violation, random guessing, occurs in educational
testing when the examinees have several opportunities to take a test and use their first opportunity
to test the ice without much studying.

For the study regarding different ability parameters, the model violation was imposed by
assuming that the ability parameter in the last part of the test changed by a shift of 1.0. This shift

TABLE 2.
Power and Type I error of LM1 and LM2 to differences in ability and guessing.

Difference in ability Guessing

LM1 LM2 LM1 LM2

Items Type I Type I Type I Type I
K N infected error power error power error power error power

40 400 10 .06 .07 .06 .07 .05 .55 .05 .56
20 .06 .15 .06 .15 .06 .85 .06 .84

1000 10 .05 .07 .05 .07 .05 .55 .05 .55
20 .05 .23 .05 .22 .06 .86 .06 .84

60 400 15 .06 .07 .06 .08 .05 .72 .05 .72
30 .07 .20 .07 .21 .06 .83 .06 .84

1000 15 .05 .09 .05 .09 .05 .72 .05 .72
30 .06 .26 .06 .26 .06 .83 .06 .83



168 PSYCHOMETRIKA

pertained either in the last half or the last quarter of the test. The results are displayed in Table 2
in the columns under the heading “Difference in ability.” The column labeled “Items infected”
gives the number of items where the model violation was imposed. The columns labeled “Type
I error” give the proportion of the 90% nonaberrant simulees where the test was significant at
5%. The columns labeled “Power” give the proportion of significant tests for the 10% aberrant
simulees. Note that the power of LM1 and LM2 for the detection of the imposed difference in
ability is limited. The explanation is that the amount of information with respect to a person’s
ability and response behavior in 20 or 40 dichotomously scored items is quite low. There are main
effects on power of the test length and of the number of items where the model violation was
imposed. The explanation of the two effects is that the model violation can be better detected if
the amount of aberrant data is larger. Further, a longer test length may provide more information
for the estimation of the ability parameter. Comparing the cases N = 400 and N = 1000, it can
be seen that the increased precision of the parameter estimates had a mild positive effect on the
power when half of the items were infected. The power of LM1 is comparable to the power of
LM2, so taking the effects of the estimation of item parameters into account in the definition of
the test did not have a marked effect.

As a second example of a change in ability the simulees guess the response on part of
the test. Guessing occurred for a quarter or a half of the test items. For the guessed items, the
probability of a correct response was equal to 0.2. This violation is more severe than the previous
one. In the previous simulation the item parameters were not changed, so for aberrant simulees
the probabilities of correct responses were uniformly shifted for the affected part of the test. In
the present simulation, guessing implies that the original items parameters lose their meaning,
that is, all items are equally difficult. The results are shown in the last four columns of Table 2.
Note that the power is now much larger than in the previous study. This is as expected, because
the model violation is more serious.

5.2. Simulation Study 2: Robustness of Test Statistics

Above, it was already mentioned that the GRM, the SM, and the GPCM have response
functions that are very close (Verhelst et al., 1997). Therefore, the models are often hard to
distinguish. The second set of simulation studies addresses whether this also holds for the person
fit test presented here. Because the previous simulation studies show that the effect of accounting
for the estimation of the item parameters has little impact, in the remaining simulation studies
only the LM test that takes the effect of the estimation of the ability parameter into account will
be reported.

5.2.1. Type I Error Rate. First, the Type I error rate of the UB and LM tests for the GRM,
the SM, and the GPCM was studied. The setup of the study was as follows. For all three models,
ability parameters were drawn from a standard normal distribution. The parameters αi were drawn
from a log-normal distribution with a mean equal to zero and a standard deviation of 0.25. The
item location parameters were fixed as follows. For the GPCM, the values of the category-bounds
parameters for the items i = 1, . . . , 5 were chosen as

ηij = −2 + (i − 1)/2 + (j − 1)/2 for j ≤ 2

and ηij = −1.5 + (i − 1)/2 + (j − 1)/2 for j > 2.

Note that the parameters of item 3 is located in such a way that the category bounds are located
symmetric with respect to the standard normal ability distribution. The first two items are shifted
to the left on the latent scale, the last two items are shifted to the right. The item parameters for
the SM and the GRM were chosen in such a way that the item category response functions were
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TABLE 3.
Type 1 error rates of UB and LM.

Generating model Estimation model K UB LM

GPCM 20 .005 .051
40 .006 .054

GPCM SM 20 .007 .054
40 .009 .055

GRM 20 .006 .048
40 .007 .050

GPCM 20 .007 .056
40 .008 .057

SM SM 20 .004 .052
40 .008 .057

GRM 20 .006 .045
40 .009 .050

GPCM 20 .004 .042
40 .008 .048

GRM SM 20 .003 .030
40 .005 .039

GRM 20 .004 .052
40 .009 .050

close to the response functions under the GPCM. To achieve this, data were generated under the
GPCM, and using these data, the item parameters of the SM and the GRM were estimated using
MML. These estimated values were then used as generating values for the simulation of data
following the SM and the GRM. The sample size was always equal to 1000.

Table 3 gives the Type I error rate of the UB and LM tests. The column labeled “Generating
model” gives the model used for generating the data. The model used for estimation and testing
is given in the column labeled “Estimation model.” The column labeled “K” gives the number of
items, and the columns labeled UB and LM give the proportions of rejections at a 5% significance
level. Analogous to the previous study, the results show that the empirical Type I error rate of the
UB tests were much smaller than the nominal ones. The Type I error rate of the LM test attained
its nominal value. Note that estimation with the “wrong model” still gives an acceptable Type I
error rate.

5.2.2. Power of tests. The setup of the simulation study to the power of the tests in terms of
test lengths and choice of parameters was analogous to the setup of the simulation study of the
Type I error rate. However, a model violation was created by shifting the ability parameter for the
second half of the test. The shifts were equal to either −0.5 or −1.0. As argued above, a realistic
situation was created by obtaining MML estimates of the item parameters using the data of all
1000 simulees, both the aberrant and nonaberrant ones. In all simulations, 10% of the simulees
were aberrant. Item parameters were equal to the item parameters in the previous study and the
ability parameters θ were again drawn from a standard normal distribution. In all simulations,
the samples size was always equal to 1000 and the test length was equal to K = 20 and K = 40.
Therefore, the item parameter values defined above were repeated four and eight times.

The results for a shift of the ability parameter are shown in Table 4. The column labeled
“Type I error” pertains to the proportion of incorrectly flagged respondents in the sample of 900
nonaberrant simulees, the column labeled “Power” refers to the proportion of correctly flagged



170 PSYCHOMETRIKA

TABLE 4.
Detection of differences in ability.

Generating Estimation Type I
K model model δ error power

20 GPCM GPCM −0.5 .051 .131
−1.0 .054 .358

SM −0.5 .054 .136
−1.0 .056 .373

GRM −0.5 .049 .123
−1.0 .051 .339

SM GPCM −0.5 .045 .145
−1.0 .047 .384

SM −0.5 .029 .148
−1.0 .031 .420

GRM −0.5 .036 .140
−1.0 .037 .376

GRM GPCM −0.5 .042 .151
−1.0 .045 .393

SM −0.5 .030 .151
−1.0 .031 .426

GRM −0.5 .033 .146
−1.0 .035 .386

40 GPCM GPCM −0.5 .052 .235
−1.0 .057 .641

SM −0.5 .056 .240
−1.0 .060 .645

GRM −0.5 .051 .225
−1.0 .055 .616

SM GPCM −0.5 .055 .289
−1.0 .056 .647

SM −0.5 .034 .312
−1.0 .036 .677

GRM −0.5 .043 .283
−1.0 .045 .639

GRM GPCM −0.5 .050 .294
−1.0 .057 .662

SM −0.5 .035 .315
−1.0 .039 .678

GRM −0.5 .040 .294
−1.0 .043 .638

simulees in the sample of the 100 aberrant simulees. The Type I error rate of the LM test was
relatively close to the nominal significance level. Also, the power of the test for the GRM was
lower than the power of the test for the GPCM with the power of the test for the SM performing
better than the other two models. In general, the LM tests have quite reasonable power to detect
model violations of constancy of the ability parameter.
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TABLE 5.
Percentage of agreement between the GRM, the SM, and the GPCM.

Generating Estimation
K model model δ Normal Aberrant

20 GPCM SM −0.5 98.5 81.4
−1.0 98.3 84.7

GRM −0.5 99.1 80.8
−1.0 99.0 83.2

SM SM −0.5 99.4 62.5
−1.0 99.1 74.6

GRM −0.5 99.3 71.4
−1.0 99.3 79.1

GRM SM −0.5 99.3 66.7
−1.0 99.1 76.2

GRM −0.5 99.4 72.6
−1.0 99.3 78.5

40 GPCM SM −0.5 98.3 82.2
−1.0 98.2 88.1

GRM −0.5 98.9 81.9
−1.0 98.9 87.0

SM SM −0.5 99.0 65.1
−1.0 99.1 78.2

GRM −0.5 99.1 72.8
−1.0 99.1 82.2

GRM SM −0.5 98.9 69.3
−1.0 98.9 78.3

GRM −0.5 99.0 74.1
−1.0 99.2 80.1

5.2.3. Agreement Between the Models. To investigate to what extent the three models give
comparable results the degree of agreement to detect normal and aberrant responses between the
three models in the previous simulation was determined.

Table 5 gives the results of the degree of agreement. The degree of agreement for normal
simulees was higher than for aberrant simulees. It was not greatly improved as the number of
items increased from 20 to 40. Note that the highest degree of agreement regarding the detection
of aberrant simulees occurred with the GPCM as the generating model, and it was lowest when
the generating model was the SM.

6. Simulation Study 3: The Test in a Multidimensional Setting

If a scale consists of more than one subscale, a person fit statistic pertaining to one of
the subscales can be computed in two ways: using the estimate of the relevant ability obtained
on the focused subscale alone, or using an estimate of all ability parameters pertaining to all
subscales. The purpose of this simulation study is to assess the effect of using auxiliary information
from other subscales on the power as a function of the correlation between the subscales. The
expectation is that using auxiliary information pays off most when the correlation is high.



172 PSYCHOMETRIKA

We considered three subscales, t = 1, . . . , 3, associated with three ability parameters
θ1, θ2, θ3. It was assumed that the three ability parameters had a three-variate normal distri-
bution, so the model was a special case of the general model given by (14) in Appendix A. The
variances of the three ability parameters were all equal to one. Every subscale had 16 items, so
there were 48 items in total. The null-hypothesis was that the last eight items of the first subscale
relate to the same ability parameter θ1 as the first eight items. For all items, the number of cat-
egories equaled five, that is, m = 4, and the item parameters were the same as in the previous
study. Every data set consisted of N = 1000 simulees. The design of the simulation studies was
crossed with three facets:

(1) the values for the correlations between the ability dimensions: ρθθ = 0.4 and ρθθ = 0.8;
(2) the effect size of the model violation: δ = −0.5 and δ = −1.0; and
(3) using an estimate of θ1 alone or using an estimate of all person parameters θ1, θ2, θ3 simul-

taneously, that is, an estimate that maximizes the likelihood (14) given in Appendix A.

The results are given in Table 6. The column marked “Generating model” gives the model
used for generating the data and the column marked “Estimation model” gives the model used
for the estimation and testing of the model. The tests were computed as indicated in Appendix A.

Note that for both the estimation procedures, the Type I error rates were again close to the
nominal significance level if the correct estimation model was used. Using the wrong estimation
model generally produced inflated Type I error rates, especially if the GPCM was used as an
estimation model. An exception is the case where data generated using the SM were analyzed
using the GRM. In that case, the Type I error rate was too low. There are no obvious explanations
for these effects. Overall, the combination of the GPCM as a generating and estimation model
produced the best combination of power and Type I error rate characteristics.

As expected, there were clear main effects of the effect size on the power of the test. The
effect of the size of the correlation was negligible. Concurrently estimating the person parameters
θ1, θ2, θ3 had a systematic positive effect on the power, but this effect was very small.

7. An Empirical Example

Data from the NEO Personality Inventory data were used to get an impression of the degree
of agreement between the three IRT models in a real data set. The NEO Personality Inventory is a
personality test designed to provide a general description of normal personality that is relevant to
clinical, counseling, and educational situations. It is based on the Five-Factor model of personality
(Costa & McCrae, 1992). The NEO Personality Inventory consists of five broad domains and
for each of these domains, six facet scores or subfactors have been developed to provide specific
levels of information. Each of the six facets is measured by eight items. All items are rated on a
five-point scale. Three validity items are also included.

The empirical example presented here pertains to the neuroticism domain. To obtain sub-
scales of reasonable length, pairs of two facets within the domain were grouped together on the
basis of their correlation. That is, facets with the highest mutual correlation were grouped to-
gether. So three subscales of 16 items each were analyzed. Note that this setup is analogous to the
setup used in the second simulation. Further, also in the present analysis, the null-hypothesis
tested was that the last eight items of the first subscale related to the same ability parameter as
the first eight items. Note that these two groups of eight items related to two different facets.
The test was performed in two versions: one version using the parameter estimates of the first
subscale only, and the other using the item parameter estimates of all three subscales. The MML
estimates of the item parameters for the unidimensional model were computed using Multi-
log (Thissen, Chen, & Bock, 2003) and the MML estimates of the item and latent covariance
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TABLE 6.
Power of the LM as a function of the correlation between the subscales.

Estimation of θ1 Estimation of θ1, θ2, θ3
Generating Estimation

model model δ ρθθ Type I error Power Type I error Power

GPCM GPCM −0.5 .40 .047 .138 .047 .142
.80 .050 .138 .049 .150

−1.0 .40 .047 .415 .047 .425
.80 .050 .414 .049 .450

SM −0.5 .40 .068 .070 .071 .071
.80 .071 .068 .052 .078

−1.0 .40 .068 .209 .071 .213
.80 .071 .212 .052 .259

GRM −0.5 .40 .040 .047 .046 .037
.80 .043 .043 .047 .035

−1.0 .40 .040 .112 .046 .087
.80 .043 .112 .047 .105

SM GPCM −0.5 .40 .130 .228 .132 .232
.80 .138 .224 .132 .224

−1.0 .40 .130 .397 .132 .402
.80 .138 .409 .129 .421

SM −0.5 .40 .051 .098 .052 .100
.80 .055 .097 .052 .103

−1.0 .40 .051 .230 .052 .235
.80 .055 .230 .052 .260

GRM −0.5 .40 .025 .060 .024 .049
.80 .025 .058 .026 .045

−1.0 .40 .025 .151 .024 .123
.80 .025 .148 .026 .127

GRM GPCM −0.5 .40 .105 .164 .116 .189
.80 .108 .165 .104 .186

−1.0 .40 .105 .291 .116 .326
.80 .108 .277 .104 .325

SM −0.5 .40 .072 .075 .066 .083
.80 .075 .077 .064 .101

−1.0 .40 .072 .140 .066 .169
.80 .075 .139 .064 .203

GRM −0.5 .40 .043 .053 .043 .054
.80 .046 .054 .043 .057

−1.0 .40 .043 .112 .043 .118
.80 .046 .114 .043 .135
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TABLE 7.
Observed and latent correlations.

Observed Latent-GPCM

1.000 0.694 0.596 1.000 0.848 0.758
0.694 1.000 0.585 0.848 1.000 0.778
0.596 0.585 1.000 0.758 0.778 1.000

Latent-GRM Latent-SM
1.000 0.864 0.767 1.000 0.861 0.772
0.864 1.000 0.797 0.861 1.000 0.802
0.767 0.797 1.000 0.772 0.802 1.000

parameters of the multidimensional model were computed using dedicated software developed by
the authors.

Table 7 gives the manifest correlations between the total scores on the three subscales
(upper right-hand matrix under label “Observed”) and the MML estimated latent correlations
for the three IRT models (the matrices under the labels “Latent-GPCM,” “Latent-GRM” and
“Latent-SM,” respectively). Note that, as expected, the manifest correlations are attenuated, that
is, they are lower than the latent correlations. Note that the pattern of the correlations is similar
for each of the three models.

Given the MML estimates of the item parameters and the covariance matrices, the θ -
parameters were estimated by maximum likelihood, and the fit statistics were computed. Table 8
gives a cross-tabulation of the persons identified as aberrant and nonaberrant under the three

TABLE 8.
Agreement between the SM, the GRM, and the GPCM and between the unidimensional and multidimensional
models.

Unidimensional item-parameter estimates
SM GRM SM

+ − + − + −

GPCM + .128 .061 GPCM + .074 .038 GRM + .108 .132
− .083 .728 − .096 .792 − .081 .679

Kappa = 0.55 Kappa = 0.45 Kappa = 0.37
Multidimensional item-parameter estimates

SM GRM SM

+ − + − + −
GPCM + .109 .061 GPCM + .061 .049 GRM + .098 .103

− .089 .741 − .077 .813 − .088 .711
Kappa = 0.50 Kappa = 0.42 Kappa = 0.39

Agreement between the unidimensional and multidimensional models
GPCM GRM SM

UNI UNI UNI

+ − + − + −
MULTI + .112 .019 MULTI + .093 .065 MULTI + .074 .099

− .048 .821 − .051 .791 − .055 .772
Kappa = 0.73 Kappa = 0.55 Kappa = 0.40



C.A.W. GLAS AND ANNA VILLA T. DAGOHOY 175

models for the unidimensional and multidimensional cases, respectively. The “plus” and “minus”
signs in all tables refer to persons flagged as aberrant and normal, respectively. Coefficient Kappa
was used as a measure of agreement, the values are given at the bottom of each section of
the table. The values of Kappa indicate that the degree of agreement between the models is
moderate. The largest agreement is between the GPCM and the GRM and between the GPCM
and the SM, respectively. This holds for both parameter estimation procedures. The degree of
agreement between the unidimensional and multidimensional versions of the models is presented
in the last panel of Table 8. It can be seen that the agreement between the unidimensional and
multidimensional models was highest for the GPCM.

8. Discussion

An LM test statistic for assessing person fit was introduced where the effects of estimation
of the item and person parameters are explicitly taken into account. Simulation studies showed
that taking the effects of the estimation of the person parameter has a substantial effect on the
precision of the Type I error rate and on the power. The simulation studies also showed that
accounting for estimation of item parameters had little additional effect. The other goal was to
compare the robustness of person fit of tests across three IRT models for polytomous items: the
GPCM, the SM, and the GRM. Simulation studies for the unidimensional cases of these models
showed that the Type I error rate was close to its nominal value, both if the correct and wrong
model were used for estimation and computation of the statistics.

The test statistics were generalized to multidimensional versions of the GRM, the SM,
and the GPCM. Simulation studies showed that the power of the tests was quite acceptable.
The conclusion regarding the robustness of the person fit tests across three IRT models for
polytomous items did not hold here: in the multidimensional case, using the “wrong model” often
resulted in an inflation of Type I error. The conclusion is that searching for the best fitting model
for the majority of the persons before searching for aberrant persons remains the best strategy.
Of course, in many situations, searching for item fit across persons and searching for person fit
across items may be an iterative process.

For the multidimensional versions of the GRM, the SM, and the GPCM, the effect of
using auxiliary information obtained from concurrent estimation of the ability parameters of
all subscales on the power of the fit tests was assessed. Results showed that the effect of this
auxiliary information was small, and also the main effect of the size of the correlation between
the subscales was very small. In an empirical example, data from the NEO Personality Inventory-
Revised were used to get an impression of the degree agreement between the three IRT models
in a real situation. Results showed that the degree of agreement between the three models was
only moderate. Also, the degree of agreement between the unidimensional and multidimensional
versions of the models was moderate.

The final remarks of this discussion pertain to the relation of the proposed test to other tests
of person fit. An essential feature of the test is that a model violation is translated into an explicit
alternative model by introducing extra parameters that represent the model violation. The test then
amounts to the evaluation whether the additional parameters are equal to zero. This distinguishes
the present approach from the use of more general tests such as the test based on the likelihood
statistic lz by Drasgow et al. (1985) and the test based on the Pearson-type W -statistic by Wright
and Stone (1979). These tests have an unspecified general alternative, so they have a more global
nature. The present approach allows for targeting specific model violations, and in Appendix A
it is shown that the approach presented here can also be used to target a number of other model
violations rather than the one studied here in detail.
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It may be of interest to contrast the approach to adjusting for the estimation of θ with the
approach by Snijders (2001). In the framework of dichotomously scored items, Snijders (2001)
notes that statistics such as lz and W have a form

W (θ ) =
∑

i

(Xi − pi(θ ))wi(θ ).

For dichotomously scored items, it holds that X2
i = Xi , so also statistics of the form

∑

i

(Xi − pi(θ ))2vi(θ )

belong to this class. For a class of estimators that includes maximum likelihood and Bayesian
modal estimators, adjusting the weights wi(θ ) and dividing results in a statistic W (θ ) that
has an asymptotic standard normal distribution if the person parameter is estimated. Conse-
quently, the squared statistic has an asymptotic χ2-distribution with one degree of freedom.
To align the approach of the present paper with the approach by Snijders (2001) two ele-
ments are needed: first, for dichotomous items, Snijders’ approach must be generalized to
test statistics with an asymptotic χ2-distribution with more than one degree of freedom; and,
second, the approach should be generalized to polytomous responses, which involves tak-
ing the dependencies of the response variables Xij (j = 1, . . . , m) within an item i into ac-
count. These topics, however, are beyond the scope of the present paper and remain points for
further study.

Appendix A

Detailed characterization of the test statistics.
A detailed characterization of the LM tests will be given for the multidimensional versions

of the GPCM, the SM, and the GRM; the unidimensional versions follow directly as a special
case. A general formulation for all statistics considered above is given by

LM = h(η2)t
(
�22 − �

′

12�
−1
11 �−1

12

)−1
h(η2), (13)

where h(η2), �11, �12, and �22 are first- and second-order derivatives as defined in (5), (6), and
(7).

The log-likelihood of a response pattern x for the general alternative model for multidimen-
sional data is given by

log L(θ, δ) =
k∑

i=1

m∑

j=0

xij log Pij (ηi) + log g (θ |�θ ) , (14)

where g (θ |�θ ) is the multivariate normal density with a mean set equal to zero to identify the
latent scaler, and covariance matrix �θ . Further, Pij (ηi) is the probability of a response on item
i in category j , given by either the GPCM, the SM, or the GRM. In general, this probabil-
ity depends on ηi = αt

i θ + zt
iδ, where αt

i = (αi1, . . . , αiQ), θ t = (θ1, ...θQ), zt
i = (zi1, . . . , ziG)

and δt = (δ1, . . . , δG). The parameters δ are the parameters added to the restricted model (i.e.,
the IRT model) to obtain a more general model, so the null-hypothesis tested is δ = 0. In the
application considered above, the covariate zi is an indicator function specifying to which of
the G subtests item i belongs. However, this definition also includes other applications. For
instance, Klauer (1995) and Glas (1999) show that violation of local independence can be mod-
eled (and, therefore, tested) by assuming that zi is the response on one or more previous items.
Further, the framework presented here can also be applied to evaluate person fit to the testlet
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model, because Glas, Wainer, and Bradlow (2000) note that the testlet model (an IRT model
that takes the dependencies of items clustered in testlets into account) can be seen as a full-
information factor analysis model as given by (14) (Gibbons & Hedeker, 1992). A detailed study
of the power and practical usefulness of such generalizations is however beyond the scope of the
present paper.

To derive the specific expressions for (13) for the IRT models considered here, we define

dij = ∂ log Pij (ηi)

∂ηi

and

Dij = ∂2 log Pij (ηi)

∂η2
i

.

Using the chain rule, it directly follows that

∂ log Pij (ηi)

∂θq

= ∂ log Pij (ηi)

∂ηi

∂ηi

∂θq

= αiqdij ,

and
∂ log Pij (ηi)

∂δg

= ∂ log Pij (ηi)

∂ηi

∂ηi

∂δg

= zigdij .

Analogously,

∂2 log Pij (ηi)

∂θq∂θq ′
= αiqαiq ′Dij ,

∂2 log Pij (ηi)

∂θq∂δg

= αiqzigDij ,

∂2 log Pij (ηi)

∂δg∂δg′
= zigzig′Dij ,

and
∂ log g (θ |�θ )

∂θ
= −�−1θ.

These expressions can be used to obtain the first-order derivatives in (13), which are given by

h(η2) = ∂ log L(θ, δ)

∂δ
=

∑

i

m∑

j=0

xij dij ,

and the second-order derivatives in (13), which are given by

�11 = −∂2 log L(θ, δ)

∂θ∂θ ′ = −
∑

i

m∑

j=0

xij ∂
2 log Pij (ηi)

∂θ∂θ ′ + ∂2 log g (θ |�θ )

∂θ∂θ ′ ,

�22 = −∂2 log L(θ, δ)

∂δ∂δ′ = −
∑

i

m∑

j=0

xij ∂
2 log Pij (ηi)

∂δ∂δ′ ,

�12 = −∂2 log L(θ, δ)

∂θ∂δ′ =
∑

i

m∑

j=0

xij ∂
2 log Pij (ηi)

∂θ∂δ′ .
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Finally, the specific expressions for dij and Dij for the three IRT models need to be derived.

8.1. First- and Second-Order Derivatives for the Graded Response Model

We introduce a concise notation Pij = �ij − �i(j+1) with �ij = �
(
ηi − βij

)
, �(·) is the

logistic function defined by (1), �i0 = 1, and �i(m+1) = 0. Further, �
′
ij and P

′
ij are first-order

derivatives with respect to ηi . Then

dij = ∂ log Pij (ηi)

∂ηi

= [1 − �ij − �i(j+1)]

for j = 0, . . . , m. Note that for j = 0 we have dij = −�i(j+1), and for j = m we have dtij =
−(1 − �ij ).

For the second-order derivatives of the log-likelihood we obtain

Dij = ∂2 log Pij (ηi)

∂η2
i

= −[�ij (1 − �ij ) + �i(j+1)(1 − �i(j+1))]

for j = 0, . . . , m. Note that for j = 0 we have dtij = −�i(j+1)(1 − �i(j+1)), and for j = m we
have dtij = −�ij (1 − �ij ).

8.2. First- and Second-Order Derivatives for the Sequential Model

We introduce a concise notation

Pij =
[

j∏

h=1

�ih

]

[1 − �i(j+1)]

where the product from j = 1 to 0 is assumed to result in unity, and 1 − �i(m+1) = 1. Then

dij =
[

j∑

h=1

(1 − �ih) − �i(h+1)

]

.

The second-order derivative is given by

Dij = ∂2 log Pij (ηi)

∂η2
i

= −
j+1∑

h=1

�ih(1 − �ih).

8.3. First- and Second-Order Derivatives for the Generalized Partial Credit Model

We introduce a concise notation Pij = Pij (ηi). Then

dij = ∂ log Pij (ηi)

∂ηi

=
(

j −
m∑

h=1

hPih

)

and

Dij = ∂2 log Pij (ηi)

∂ηi
2

= −
m∑

j=0

jPij

[

j −
m∑

h=1

hPih

]

.
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