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 1 Calculating the scattering matrix from first 
principles A recurring theme in condensed matter physics 
in the last twenty years has been the discovery of new 
physical effects and properties in systems with reduced 
dimensions. The prospect of exploiting these effects and 
properties in logical processing, sensing and storage de-
vices is an important driving force behind nano-science 
and -technology. In semiconductors, the electronic struc-
tures of the electrons responsible for conduction can be de-
scribed using simple models. The same is not true of the 
ferromagnetic (3d) transition metals which form the basis 
for magnetoelectronics and are characterized by multiply-
sheeted Fermi surfaces with complicated topologies. A 
number of methods capable of describing complex elec-
tronic structures have been developed for calculating the 

conductance of multilayers, atomic wires and related struc-
tures from first principles [1–22], or using as input elec-
tronic structures which were calculated from first princi-
ples [23–29]. Most of them utilize the Green function ex-
pression for conductance first derived by Caroli [30] which 
reduces in the appropriate limit to the well known Fisher–
Lee linear-response form [31] for the conductance of a  
finite disordered wire embedded between crystalline leads. 
An alternative linear-response technique, suitable for Ham-
iltonians that can be represented in tight-binding form, has 
been formulated by Ando [33] and is based upon direct 
matching of the scattering-region wave function to the 
Bloch modes of the leads. It can be shown to be fully 
equivalent to the Caroli expression [32]. A third approach 
based upon “embedding” [34, 35] has been combined with 

The conductance of nanoscale structures can be conveniently 

related to their scattering properties expressed in terms of 

transmission and reflection coefficients. Wave function 

matching (WFM) is a transparent technique for calculating 

transmission and reflection matrices for any Hamiltonian that 

can be represented in tight-binding form. A first-principles 

Kohn–Sham Hamiltonian represented on a localized orbital 

basis or on a real space grid has such a form. WFM is based 

upon direct matching of the scattering-region wave function 

to the Bloch modes of ideal leads used to probe the scattering 

 region. The purpose of this paper is to give a pedagogical in-

troduction to WFM and present some illustrative examples of 

its use in practice. We briefly discuss WFM for calculating 

the conductance of atomic wires, using a real space grid im-

plementation. A tight-binding muffin-tin orbital implementa-

tion very suitable for studying spin-dependent transport in 

layered magnetic materials is illustrated by looking at spin-

dependent transmission through ideal and disordered inter-

faces. 
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full-potential linearized augmented plane wave method to 
yield what is probably the most accurate scheme to date 
[13, 14] but is numerically very demanding. 
 Our main purpose is to outline a scheme suitable  
for studying microscopic transport in the linear response 
regime in inhomogeneous materials which is (i) physically 
transparent and (ii) first-principles, i.e., requiring no  
free parameters. Landauer and Büttiker formulated the 
problem of electronic transport in terms of scattering  
matrices where the transmission matrix element 

m n
t

,

 is  
the probability amplitude that a state |n〉 in the left-hand 
lead incident on the scattering region from the left is  
scattered into a state |m〉 in the right-hand lead. The con-
ductance 

0
d /d |

V
G I V

=

=  in the linear response regime is 
given by 

2
LB 2 †| | Tr [ ] .

m n

n m

e
G t

h
,

,

= =Â tt  (1) 

The Landauer–Büttiker approach is intuitively very ap-
pealing because transport through nanostructures is so 
naturally described in terms of the scattering of electron 
waves that is transmission and reflection. Usually, explicit 
calculation of the scattering states is avoided by making 
use of the invariance properties of the trace in Eq. (1) to 
calculate the conductance directly from Green functions 
expressed in some convenient localized orbital representa-
tion [30]. However, we want to make contact with a large 
body of theoretical literature on mesoscopic physics [36, 
37] which requires knowing the full microscopic transmis-
sion and reflection matrices and to make explicit use of the 
scattering states to analyze our numerical results. Our re-
quirement of physical transparency is satisfied by choosing 
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a computational scheme which yields the full scattering 
matrix and not just the conductance. 
 Any workable first-principles scheme is at present 
based upon an independent particle approximation. An ex-
tremely successful framework for calculating ground state 
properties of a wide variety of materials is Density Func-
tional Theory (DFT) using functionals based upon  
the Local Density Approximation (LDA) or the General-
ized Gradient Approximation (GGA). DFT/LDA or GGA 
calculations and their spin-polarized versions yield a 
charge (spin) density in all space as well as a Kohn–Sham 
effective potential. We assume that the latter can be used  
in describing the electron transport within the Landauer–
Büttiker formalism in the linear response regime. This  
then satisfies our requirement of introducing no free pa-
rameters. 
 To calculate transmission and reflection matrices from 
first principles, we combined the wave-function matching 
(WFM) formalism described by Ando [33] for an empirical 
tight-binding Hamiltonian, with an ab-initio tight-binding 
Hamiltonian (or equation of motion in algebraically 
equivalent form). A version of this method has been im-
plemented for a real-space grid using a high-order finite-
difference scheme and applied to the calculation of the 
conductance of atomic wires [17, 38]. An implementation 
[8, 39] based upon an ab-initio TB-MTO basis [40] was 
applied to a number of problems of current interest in spin-
transport: to the calculation of spin-dependent interface re-
sistances where interface disorder was modeled by means 
of large lateral supercells [8, 41]; to calculating from first-
principles the spin mixing conductance parameter [42] 
used to describe spin-transfer torque in systems with non-
collinear magnetizations, and the Gilbert damping en-
hancement in the presence of interfaces [43]; to a general-
ized scattering formulation of the suppression of Andreev 
scattering at a ferromagnetic | superconducting interface 
[44]; to the problem of how spin-dependent interface resis-
tances influence spin injection from a metallic ferromagnet 
into a III–V semiconductor [45–47]; to the influence of 
roughness and disorder on tunneling magnetoresistance 
[48]; to magnetization reversal by a spin-polarized heat 
current [49]. 
 In this section we give a general exposé of the wave-
function matching method. In Section 2 we discuss the ap-
plication of a real-space grid implementation to atomic wires. 
Applications to layered (magnetic) structures based upon a 
TB-MTO implementation are discussed in Section 3. 
 
 1.1 Formalism The scattering problem is formulated 
for an infinite system consisting of the region of interest 
(an interface, junction, quantum wire etc.) sandwiched be-
tween two semi-infinite ideal leads. By replacing the semi-
infinite leads by appropriate energy dependent boundary 
conditions, it can be reduced to finite size. This can be 
achieved by the wave-function matching (WFM) method 
for calculating the transmission and reflection matrices due 
to Ando [33]. In the next sections we will give a very sim- 
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ple, pedagogical introduction to this method, restricting 
ourselves to the linear response regime. The full details of 
the formalism and of the implementations can be found in 
[17, 32, 39]. 
 

 1.1.1 Tight binding: Linear chain WFM can be 
formulated most naturally for tight-binding (TB) Hamilto-
nians. We illustrate it in one dimension for the atomic wire 
sketched in Fig. 1. 
 To keep matters simple we use an orthonormal basis 
consisting of a single atomic orbital per site. Furthermore 
we assume nearest neighbour interactions only. The diago-
nal elements of the Hamiltonian are ;

i i i
H h

,

=  its off-
diagonal elements that are assumed real for simplicity, are 

1 1i i i i i
H H β

+ , , +
= =  and all elements 0j iH

,

=  for 1j i> +  and 
1j i< -  with i and j being site indices. The (Hermitian) 

Hamiltonian matrix is then 

1 1

1

1

0 0

0 0

0 0 .

0 0

0 0

i i

i i i

i i

h

h

h

β

β β

β

- -

-

+

Ê ˆ
Á ˜
Á ˜

= Á ˜
Á ˜
Á ˜Á ˜Ë ¯

H

� �

�

�

� �

 (2) 

The Schrödinger equation becomes1 

( ) 0 ,E - =I H y  (3) 

where y  is the wave function represented by the column 
vector with the elements 

i
c  describing the amplitude of the 

atomic orbital |
i

χ Ò  on the i-th site. Written in its compo-
nents, Eq. (3) has a form of infinite chain of equations 

1 1 1
( ) 0 ,

i i i i i i
c E h c cβ β

- - +
- + - - =  (4) 

with i running from -• to .•  
 We divide our system into three parts: a left lead, a 
scattering region, and a right lead. The left and right leads 
 

 

Figure 1 Nearest neighbor tight-binding model of an atomic 

chain. The periodic left and right regions are characterized by the 

on-site and hopping matrix elements 
L/R
h  and 

L/R
.β  The scattering 

region has site dependent matrix elements 
i
h  and .

i
β  

 
1 For non-orthogonal basis sets one introduces an overlap matrix O, with 

matrix elements | ,i j i jO χ χ
,

= · Ò  and replaces I by O. 

are crystalline materials with translational symmetry. Ma-
trix elements in the leads must be site-independent, i.e. 

L/Ri
h h=  and 

L/Ri
β β=  for the left/right leads. Only in the 

scattering region do we have site-dependent matrix ele-
ments. The basic idea is illustrated in Fig. 1. 
 Ideal lead modes For sites i in the left (right) lead the 
matrix elements are site independent and Eq. (4) becomes 

L(R) 1 L(R) L(R ) 1( ) 0 .
i i i
c E h c cβ β

- +
- + - - =  (5) 

As a consequence of the Bloch–Floquet theorem the wave 
functions in adjacent cells of a periodic system are related 
by a constant amplitude/phase factor ,λ  i.e. 

1 1
and .

i i i i
c c c cλ λ

- +
= =  (6) 

Combining Eqs. (5) and (6) yields the generalized linear 
eigenvalue problem for λ  

1

0
0 ,

1 0 0 1

i

i

cE h

c

β β
λ

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯-

- -ÈÊ ˆ Ê ˆ ˘- =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
 (7) 

that has two solutions 

2

1/ 22

( ) 0

1 ,
2 2

E h

E h E h

β λ βλ

λ
β β

±

- + - - =

È ˘- -Ê ˆfi = ± -Í ˙Á ˜Ë ¯Î ˚

 

where the subscript L/R for the left and right leads has 
been omitted for simplicity. The roots λ  can be expressed 
in a more familiar form. For |( )/2 | 1E h β- £   we define a 
wave number k by2 

cos ( ) ,
2

E h
ka

β

-

=  (8) 

which leads to the simple form 

e ,
ika

λ
±

±
=  (9) 

i.e. the familiar form of the Bloch factor, with λ
+
 corre-

sponding to a wave propagating to the right, and λ
-

 to a 
wave propagating to the left; a is the lattice constant of the 
ideal lead. 
 For |( )/2 | 1E h β- >  one can define κ  by 

cosh ( ) ,
2

E h
aκ

β

-

=  (10) 

and obtain 

+e if 1;
2

e if 1.
2

a

a

E h

E h

κ

κ

β
λ

β

±

-Ï >ÔÔ
= Ì

-Ô- < -
ÔÓ

∓

∓

 (11) 

 
2 ( ) 2 cosE k h kaβ= +  is of course the dispersion relation of a 1D  

s-band in the nearest neighbour tight-binding model. 
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 Both these cases describe waves that decay either to 
the right or to the left, i.e. evanescent waves.3 They are not 
acceptable as solutions of the Schrödinger equation for a 
translationally invariant system since they cannot be nor-
malized. However they can play a role in a scattering prob-
lem, describing piecewise solutions, especially for three-
dimensional structures. 
 Wave function matching Having obtained the modes 
of the ideal leads, we match them to the scattering region, 
where the matrix elements 

i
h  and 

i
β  in Eq. (4) are site de-

pendent. We assume that the scattering region is localized 
in space, so i runs from 1 to N. For 0i =  Eq. (4) gives: 

L 1 0 0 0 1
( ) 0 ,c E h c cβ β

-

- + - - =  (12) 

where 
0 L

.h h=  Assuming that the general solution in the 
left lead consists of the right- and left-going propagating 
modes, that is, incoming and reflected waves with ampli-
tudes A and B, respectively, we can write the amplitude at 
the 1i = -  site as 

( ) ( ) 1 1

1 L L

1 1

L 0 L

e e

( ) ,

ik a ik a
c A B A B

A c A

λ λ

λ λ

- - - - -

- ,+ ,-

- -

,+ ,-

= + ∫ +

= + -

 (13) 

where the last step follows because for 0i =  we have 

0
.c A B= +  In the scattering problem we assume that we 

have set the incoming wave so A is fixed. We can now use 
Eq. (13) to eliminate 

1
c
-

 in Eq. (12), rewriting it as 

1 1 1

0 L L 1 0 0 1 L L L
( ) ( ) ,E h c c Aβ λ β β λ λ- - -

,- ,+ ,-
- - - = -  (14) 

which truncates the infinite chain of Eq. (4) from the left. 
For 1,i N= +  Eq. (4) gives: 

1 1 R 2
( ) 0 ,

N N N N N
c E h c cβ β

+ + +
- + - - =  (15) 

where 
1 R

.

N
h h

+
=  In the right lead we assume there is only a 

transmitted, outgoing wave. Then, 
2 1 R

,
N N
c c λ

+ + ,+
=  

1 R R 1
( ) 0

N N N N
c E h cβ β λ

+ ,+ +
- + - - =  (16) 

and the infinite chain of Eq. (4) from the right is also trun-
cated. Using Eqs. (14) and (16), Eq. (3) can be replaced by 

( ) ,E - =¢I H qy  (17) 

where y  is a finite dimensional vector that contains the 
coefficients 

i
c  in the scattering region plus those on the two 

boundary atoms, i.e. 0, . . ., 1.i N= +  q is a “source” vector 
of length 2N + , whose coefficients are zero, except for the 
first one which is 

1 1

0 L L L
( ) .q Aβ λ λ- -

,+ ,-
= -  (18) 

¢H  is a finite ( 2) ( 2)N N+ ¥ +  Hamiltonian matrix. All its 
matrix elements are identical to those of the original Ham-
 
3 We label right- and left-decaying solutions as right- and left-going 

modes respectively. 

iltonian matrix, Eq. (2), except for the first and the last di-
agonal elements, which are 

0 0 0 L 1 1 1 R
( ) ( ) ,

N N N
H h E H h EΣ Σ

, + , + +
= + , = +¢ ¢  (19) 

with 
1

L L L R R R
( ) and ( ) .E EΣ β λ Σ β λ-

,- ,+
= =  (20) 

In Green function jargon 
L/R

( )EΣ  are called the self-
energies of the left and right leads. They contain all the in-
formation concerning the coupling of the scattering region 
to the leads. The self-energies are complex and energy de-
pendent through Eqs. (8) and (9). 
 We have replaced an infinite dimensional problem, 
Eq. (3), by a finite dimensional one, Eq. (17). Once 
Eq. (17) is solved, all that remains is to extract the trans-
mission coefficient given by the amplitude of the wave 
function in the right lead normalized to the amplitude of 
the incoming wave, and (flux) normalized with velocities 
to obtain the unitary scattering matrix [32, 33] 

R R 1

L L

,

N
v a c

t
v a A

+
/

=
/

 (21) 

with the velocities given by 

2
sin ( ) .

a
v ka

β
= -

�
 (22) 

The source term (18) then reduces to 

0 L

L

.

i A
q v

a
=

�
 (23) 

From Eqs. (20) and (22) we can relate the velocities to the 
self-energies 

L/R

L/R L/R

2
Im ( ) .

a
v EΣ= -

�
 (24) 

Using WFM, simple scattering problems with tight-binding 
Hamiltonians can be solved analytically in a straightfor-
ward way, as illustrated in [32, 38]. 
 Green function expressions These results can be put 
into a very compact form using Green functions. One can 
define a Green function matrix (“Green matrix”) by 

1( ) ( ) .E E
-

= - ¢G I H  (25) 

Like the modified Hamiltonian matrix ,¢H  it has dimen-
sions N + 2. One can also define the infinite dimensional 
retarded Green matrix related to the original infinite di-
mensional Hamiltonian 

[ ]
1r ( ) ,( )E E iη

-

= + -G I H  (26) 

where η is a real, positive infinitesimal. For z a complex 
number in the upper half plane, the matrix elements of 

( )zG  and r ( )zG  in the scattering region are identical [50]. 
Note that ¢H  is non-Hermitian, because the self-energy Σ  
is complex, see Eqs. (19) and (20). One can show that the 
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eigenvalues of ¢H  that correspond to the continuous spec-
trum of Eq. (3), are not real and lie in the upper half com-
plex plane. Thus ( )EG  is a well-defined quantity for real 
energies E .4 By construction it has the retarded boundary 
condition build into it and one does not need the usual iη+  
trick. 
 The definition of G allows us to write 

1 1 0 0
( ) ,

N N
c G E q

+ + ,
=  (27) 

see Eq. (17). Equations (21), (23) and (27) then lead to a 
compact Fisher–Lee expression [31] for the transmission 
amplitude 

R L

1 0

R L

( ) ,
N

v v
t i G E

a a
�

+ ,
=  (28) 

which relates matrix elements of the scattering matrix to 
elements of the Green matrix. Using Eq. (24) we can write 

R 1 0 L
2 Im ( ) 2 Im ,

N
t i G EΣ Σ

+ ,
= - -  (29) 

which allows the transmission probability to be written as 

r a

R 1 0 L 0 1
* ,

N N
T t t G GΓ Γ

+ , , +
= =  (30) 

with all quantities evaluated at a fixed energy E. 
a r †

[ ]=G G  
is the advanced Green matrix and 

L/R L/R
2 Im .Γ Σ= -  Equ-

ation (30) is known as the Caroli expression [30]. 
 
 1.1.2 Wave function matching in three dimen-
sions The ideas of the previous section can be straightfor-
wardly extended to a three dimensional system described 
by a TB Hamiltonian, provided it can be partitioned into a 
set of principal layers (PL) defined so that hopping only 
exists between neighbouring layers. The 

i
h  and 

i
β  are then 

substituted by matrices of dimension H equal to the total 
number of atomic orbitals within the principal layer. The 
method can be formulated equally well for systems with 
finite cross-section (i.e. wires) and for layered systems that 
are periodic along the interfaces. In the latter case, blocks 
of the Hamiltonian will be indexed by ||.k  The equivalent 
of the lead problem (7) must be then solved numerically 
and yields a set of 2H solutions divided into equal numbers 
of left- and right- going states. In general there are both 
propagating and evanescent modes present at any given 
energy. While only the former modes need to be taken into 
account in the Landauer–Büttiker formula (1), it is essen-
tial that the full set of modes be retained in the matching 
procedure. 
 Most of the Green function expressions we obtained in 
the one-dimensional case can be generalized to three dimen-
sions. In particular, it is possible to explicitly demonstrate 
the equivalence of the WFM approach coupled with the 
Landauer–Büttiker formula, and the Caroli expression [32]. 
 
4 We notice that ( )EG  might have poles for a discrete set of real ener-

gies that correspond to the localized states of Eq. (3). However, the lo-

calized states do not contribute to the physical transmission Eq. (28). 

 WFM can be applied to any equation of motion with 
the algebraic structure of a block-tridiagonal TB Hamilto-
nian. Examples include the Schrödinger equation discre-
tized on a real-space grid [17, 32] or the KKR (tail cancel-
lation) equation in a tight-binding representation [8, 39]. 
These are discussed in the following section together with 
illustrative applications. 
 
 2 Real space grid implementation: Conduc-
tance of atomic wires Application of the WFM tech-
nique for solving the scattering problem relies on a real 
space representation of the Kohn–Sham Hamiltonian and 
the wave functions. An efficient implementation based 
upon a high-order finite-difference scheme is discussed in 
[17]. In general, finite-difference schemes are suitable for 
treating systems with little symmetry and have a computa-
tional efficiency that is comparable to that of plane wave 
basis set representations [51–54]. 
 We can write the Kohn–Sham equation in a form  
that is similar to Eq. (4), by putting the wave function  
y  and the Kohn–Sham one-electron potential V on an 
equidistant grid in real space ( , , ),j k lx y z=r  where 

0 0 0
, ,j x k y l zx x jh y y kh z z lh= + = + = +  and , ,

x y z
h h h  are 

the grid spacings in the x,y- and z-directions, respectively. 
It is computationally advantageous to approximate the sec-
ond derivative in the Kohn–Sham equation using a high-
order finite-difference scheme [17]. For the x part this 
yields 

2

2 2

( , , ) 1
( , , ) ,

N

j k l

n j n k l

n Nx

x y z
c x y z

x h
+

=-

∂
ª

∂
Â

y
y  (31) 

with similar expressions for the y and z parts. Expressions 
for the coefficients 

n
c  for various values of N are tabulated 

in [52]. The simplest approximation, 1N =  (where 

1 1
1c c

-

= =  and 
0

2c = - ) reduces Eq. (31) to the textbook fi-
nite-difference expression for the second derivative. How-
ever, in [17] it is demonstrated that the scattering problem 
can be solved much more efficiently using high-order fi-
nite-difference approximations with N = 4–6. 
 In a finite-difference approximation the Kohn–Sham 
equation becomes 

( ) (

) 0 ,

N

x y

j k l j k l n j n k l n j k n l

n N

z

n j k l n

E V t t

t

, , , , + , , , + ,

=-

, , +

- + +

+ =

Ây y y

y

 (32) 

where j k l j k lV
, , , ,

y  is a shorthand notation for 

( , , ) ( , , )j k l j k lV x y z x y zy  and 2 2
2 .

x y z

n x y z n
t mh c

, ,

, ,

= / ¥�  In or-
der to make a connection to the formalism explained in the 
previous section, we divide the wire into cells of dimen-
sion .

x y z
a a a¥ ¥  The direction of the wire is given by the 

x-axis. The number of grid points in a cell is 
x x

L a h= / , 

,
y y y

W a h= /  
z z z

W a h= /  for the x,y- and z-directions respec-
tively. The values j k l, ,

y  where the indices , ,j k l  corre-
spond to a single cell i are grouped into a supervector .

i
Y  

The idea is shown in Fig. 2. This supervector  has  the di- 
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Figure 2 (online colour at: www.pss-b.com) (a) System is di-

vided into cells labelled by an index i. The cells contain L, 
y

W  and 

z
W  grid points in the x,y- and z-directions, respectively. 

i
Y  is the 

supervector that contains the wave function values on all grid 

points in cell i. (b) 
i

H  is the Hamilton matrix connecting grid 

points within cell i; the B-matrix connects grid points between 

neighboring cells and is independent of i for ideal leads. 

 
 
mension 

rs
,

y z
N L W W= ◊ ◊  which is the total number of real 

space grid points in a cell. If we let i denote the position of 
the cell along the wire then Eq. (32) can be rewritten as 

†

1 1( ) 0 ,
i i i i

E
- +

- + - - =B I H BY Y Y  (33) 

for , . . ., .i = -• •  Here I is the 
rs rs

N N¥  identity matrix. 
 The matrix elements of the 

rs rs
N N¥  matrices 

i
H  and B 

can be derived straightforwardly from Eq. (32). The ex-
pressions are given in [17]. Clearly Eq. (33) is similar to 
Eq. (4), which means that we can use the WFM method to 
solve the scattering problem. 
 As a first step, the one-electron self-consistent poten-
tials of the bulk leads and the scattering region containing 
the wire are obtained from DFT calculations. Subsequently 
the scattering problem is solved at the Fermi energy by 
matching the modes in the leads to the wave function in the 
scattering region. 
 
 2.1 Conductance of monatomic sodium wires 
Conductors whose cross section contains only a small 
number of atoms are commonly called “atomic wires”. 
Clear evidence that the fundamental limit of a one atom 
cross section can be reached has been presented for gold 
atomic wires [55, 56]. Over the last decade the electronic 
transport in atomic wires made of various metals has been 
characterized in great detail experimentally [57–59]. Such 
wires have conductances of the order of the quantum unit 

2

0
2 .G e h= /

5 Atomic wires that have a cross section of just 
one atom, so-called “monatomic” wires, are the ultimate 
 
5 The factor of 2 with respect to Eq. (1) results from spin degeneracy. 

examples of quasi-one-dimensional systems. Here the ef-
fects of a reduced dimensionality are expected to be most 
pronounced. One of the most striking features of mona-
tomic wires is the non-monotonic behavior of the conduc-
tance as a function of the number of atoms in the wire [60, 
61]. Specifically, the conductance in such wires oscillates. 
For simple monovalent metals the oscillation has a period 
that corresponds to two atoms, i.e. the conductance of 
wires consisting of an odd number of atoms is different 
from that of even numbered wires. The amplitude of such 
oscillations is of order 0.1 

0
.G  The central questions are: 

what determines the phase and amplitude of the oscillation 
and how robust are these with respect to changes in the ge-
ometry of the wire and in the coupling between the wire 
and the leads? 
 From our first-principles calculations on sodium mona-
tomic wires we find that odd numbered wires always have 
a conductance close to 1 

0
G  and that this value is not very 

sensitive to changes in the geometry or in the coupling [38]. 
Even numbered wires have lower conductances, whose 
values are determined by the geometry and the coupling. 
This general pattern can be understood from the electronic 
levels of free-standing wires giving rise to transmission 
resonances. We analyze our first-principles results using a 
simple tight-binding model. In particular, we show that lo-
cal charge neutrality of the sodium wires provides a strong 
constraint on the phase of the conductance oscillation. In 
the absence of a significant charge transfer between the 
wire and the leads, a transmission resonance is pinned at 
the Fermi energy for wires containing an odd number of 
atoms, which leads to a conductance close to one quantum 
unit. Obtaining quantitative values for the conductance,  
of even-numbered wires in particular, requires well-
converged first-principles calculations using a realistic 
structure of the wire and the leads. 
 The one-electron potentials of the leads and the scatter-
ing regions are extracted from two self-consistent DFT 
calculations for bulk bcc sodium and for the supercell 
shown in Fig. 3, respectively, using a standard approach 
based upon normconserving pseudopotentials and a plane 
wave basis set. It turns out that, in order to obtain poten-
tials that are converged, the total energies in such self-
consistent calculations have to be converged to within 

7
5 10

-

¥  Hartrees. One assumes that the leads outside the 
scattering region consist of bulk material. This means that 
at the edges of the scattering region, the potential should 
join smoothly to the potentials of the bulk leads. We have 
checked that this is the case. Enlarging the scattering re-
gion by including two extra atomic layers in each lead 
changes the results reported for the conductance only by 
~1.5% for even-numbered wires and 0.5% for odd-
numbered wires. The Fermi energy is extracted from the 
bulk calculation [17]. The only parameters in calculating 
the conductance within the finite-difference scheme are the 
order N of the finite-difference approximation of the ki-
netic energy (i.e., the second derivative) and the spacing 

x y z
h

, ,

 between the real-space grid points. We use 4N =  and  
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Figure 3 (online colour at: www.pss-b.com) Structure of an 

atomic wire consisting of two sodium atoms between two sodium 

leads terminated by (001) surfaces. The boundaries of the super-

cell are indicated by dashed lines. Bulk atoms are indicated by 

yellow (light grey) balls and atoms in the scattering region by 

blue (dark grey) balls, respectively. 

 
 

0
0 80

x y z
h a

, ,

= .  (
0
a  being the = Bohr radius); for details and 

convergence tests we refer to [17]. The total transmission 
is averaged over an 8 × 8 k||-point grid in the lateral BZ of 
the supercell. Most calculations are done for a 2 × 2 lateral 
supercell. Enlarging the supercell changes the conductance 
only marginally as discussed in [38]. 
 The electron transport in the crystalline leads is ballis-
tic, i.e. an electron goes through the leads without any scat-
tering. The transport properties of a monatomic wire sus-
pended between two leads depend upon three factors; the 
number of atoms in the chain, the geometry of the wire, 
and the contact between wire and leads. 
 The calculated conductance as a function of the num-
ber of atoms in the atomic chain is given in Fig. 4. Since a 
sodium atom has valence one, both the infinite sodium 
chain and bulk sodium have a half-filled band, and the in-
finite wire has one conducting channel at the Fermi level. 
The conductance of the infinite chain is equal to the quan-
tum unit 

0
,G  and the conductance of finite wires is 

0
.G£  As 

can be observed in Fig. 4 the conductance exhibits a regu- 
 

 

 
Figure 4 Conductance (in units of 

0
)G  as a function of the num-

ber of atoms in the atomic chain. All atomic bond lengths in the 

system are equal to the bulk value 
0

6 91 .d a= .  
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Figure 5 (online colour at: www.pss-b.com) Conductance (in 

units of 
0

G ) as a function of energy for monatomic wires consist-

ing of four (top figure) and five (bottom figure) atoms. The red 

(grey) bars correspond to the energy levels of free-standing wires. 

0E =  corresponds to the Fermi level. 

 
 
lar oscillation as a function of the number of atoms in  
the wire. The conductance is very close to 

0
G  for odd-

numbered wires, and for even-numbered wires it is ~10% 
lower. Such a behavior of the conductance in atomic-sized 
conductors is very different from ohmic behavior in mac-
roscopic conductors; it expresses the quantum nature of the 
electron transport at the nanoscale. 
 In order to interpret the even-odd oscillation we have 
calculated the conductance as a function of energy for 
wires of different length. The results for monatomic wires 
consisting of four and five atoms are shown in Fig. 5. 
Resonant peaks in the conductance can be clearly identi-
fied. Qualitatively they correspond to energy levels of a 
free-standing Na wire which are shifted and broadened into 
resonances by the interaction of the wire with the leads. To 
illustrate this, the calculated energy levels of free-standing 
wires of four and five atoms are shown as bars in Fig. 5. 
The levels are sufficiently close to the resonant energies to 
warrant an interpretation of the conductance in terms of a 
transmission through levels of the wire. As is clearly ob-
served in Fig. 5, the Fermi level is in between two resonant 
peaks for a four atom wire and right on top of a resonance 
for a five atom wire. By calculating the conductance as a 
function of energy for wires of different length it can be 
shown that this observation can be generalized. The Fermi 
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level is between resonances for even-numbered wires and 
on top of a resonance for odd-numbered wires. 
 
 2.1.1 Simple tight-binding model To support the 
intuitive picture presented in the previous section we use a 
simple tight-binding model as shown in Fig. 1, in which 
the leads are modeled as quasi-one-dimensional systems 
described by effective parameters. Here 

L R 0
h h ε= =  and 

L R
β β β= =  are, respectively, the on-site energies and 
nearest neighbour hopping coefficients of the leads while 

0i
h ε= ¢ and 

i
β β= ¢  are the corresponding wire parameters. 

The coupling between the left (right) electrode and the 
atomic chain is given by the hopping coefficient 

c
β  (

c
β ¢). 

 If the system has mirror symmetry, the coupling is 
symmetric, i.e. 

c c
.β β= ¢  The leads and the chain are made 

of the same material (sodium). If one assumes that all at-
oms are neutral (local charge neutrality), then it is not un-
reasonable to set 

0 0
.ε ε= ¢  The conductance can be calcu-

lated analytically for this model using WFM [32]. The pa-
rameter β  can be used as a scaling parameter. In the fol-
lowing all energy parameters 

0 0 c c
, , , ,ε ε β β β¢ ¢ ¢  are in units 

of .β  At the Fermi energy, the conductance of a wire con-
sisting of n  atoms is given by 

0

4 2

c

0 4 2 2

c

if is odd ;

4 /
if is even .

[1 / ]

G n

G
G n

β β

β β

Ï
Ô

= ¢Ì
Ô + ¢Ó

 (34) 

The conductance for odd-numbered wires is equal to the 
quantum unit, and it is smaller than the quantum unit for 
even-numbered wires (unless by accident 2

c
).β β= ¢  

 It is instructive to study some other consequences of 
the tight-binding model. If 

0 0
∆ 0ε ε ε= - π¢  then a charge 

transfer will take place between the leads and the wire. The 
conductance calculated at the Fermi energy for a one-site 
wire ( 1)n =  and a two-site wire ( 2)n =  becomes, respec-
tively, 

4

c

0 2 4

c

4
,

∆ 4
G G

β

ε β
=

+

 (35) 

4 2

c

0 4 2 4 2

c c

4
.

[ ( ∆ ) ][ ( ) ]
G G

β β

β β ε β β ε

¢
=

+ + + - D¢ ¢
 (36) 

According to Eq. (35), a nonzero εD  suppresses the  
transmission through a one-site wire. The transmission 
is shifted “off resonance” and the conductance be- 
comes smaller than the quantum unit. However, the  
coupling between wire and lead also causes a broadening 
of the resonance, which is proportional to 

c
.β  This  

broadening partially compensates for the decrease of the 
conductance. If the coupling is sufficiently strong, i.e. 

4 2

c
4 ,β εD�  then the conductance is again close to the 
quantum unit. In the limit of weak coupling, i.e. 

4 2

c
4 ,β εD�  the conductance goes to zero with decreasing 

c
β  for any nonzero .εD  

 The conductance of a two-site wire, see Eq. (36),  
behaves qualitatively differently as a function of the cou-
pling strength 

c
.β  In the weak coupling limit, i.e. 

4 2

c
( )β β ε± D¢�  the conductance goes to zero with de-

creasing 
c

β  and the decrease is faster than for a one-site 
wire. Note that this only holds for .ε βD ¢�  If ε βD ¢∼  
then the conductance decreases more slowly with decreas-
ing 

c
β  for a two-site wire than for a one-site wire.6 

 If the coupling between wire and lead is strong, i.e. 
4 2

c
( ) ,β β ε± D¢�  then the conductance always decreases 

with increasing 
c
.β  This is due to a phenomenon called 

“pair annihilation” of resonances [62], which happens if 
the resonance widths become larger than the spacing be-
tween the resonances. Between the strong and weak cou-
pling regimes there is a value of 

c
β  (close to 1) where the 

conductance of a two-site wire is equal to the quantum unit. 
 The conductance of longer wires, i.e. 2,n >  can be in-
terpreted along the same lines. For small ,εD  the odd-
numbered wires resemble the one-site wire and the even-
numbered wires resemble the two-site wire. For a very 
large range of coupling strengths 

c
β  one obtains an even-

odd oscillation in the conductance of a nearly constant am-
plitude. The conductance of odd-numbered chains is close 
to the quantum unit and that of even-numbered chains is 
smaller by an amount that depends upon the coupling be-
tween wire and lead. Apparently, this is the case that corre-
sponds to the results of our first-principles calculations, see 
Fig. 4. If εD  becomes larger, the conductance of all wires 
as a function of 

c
β  becomes qualitatively similar to that of 

the two-site wire. The amplitude and even the phase of the 
conductance oscillation as a function of the wire length 
then strongly depends upon the coupling 

c
β  of the wire to 

the lead. Note that if εD  is significant, it will be accompa-
nied by a significant charge transfer between wire and 
leads. In our first-principles calculations we have found no 
indication of such a large charge transfer. 
 In conclusion, odd-numbered wires have a conductance 
close to the quantum unit 2

0
2 /G e h=  and even-numbered 

wires have a lower conductance. This oscillation is re-
markably robust, as we show by systematically varying the 
structure of the wires and the geometry of the contacts be-
tween the wires and the electrodes. The phase of the oscil-
lation is not affected by these structural variations. The 
conductance of even-numbered wires is sensitive to the 
wire geometry. Increasing the interatomic distances in the 
wire and/or strengthening the contacts between wire and 
leads increases the conductance of even-numbered wires; 
increasing the asymmetry between the interatomic dis-
tances or between left and right contacts decreases the 
conductance. 
 
 3 TB-MTO implementation: Layered (magnetic) 
structures Magnetoelectronic devices such as magnetic 
multilayers usually contain layers of ferromagnetic transi-
 
6 This holds true except for ε βD = ± ¢  when the conductance increases 

with decreasing 
c

β  and approaches 
0

G  for 
2

c
4 .β β ¢�  
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tion metals. The magnetism of these metals is related to the 
presence in their electronic structures of open shells of 
itinerant 3d electrons. These form narrow bands and hy-
bridize with strongly delocalized s-electrons. The resulting 
band structures are complicated, often with multiple bands 
crossing the Fermi level, and can not be described by sim-
ple models. The appropriate framework for treating itiner-
ant electron systems from first-principles is the Local Spin-
Density Approximation (LSDA) of Density Functional 
Theory(DFT) [63]. 
 Oscillatory exchange coupling in layered magnetic 
structures was discussed by Bruno in terms of generalized 
reflection and transmission matrices [64] which were cal-
culated by Stiles [65, 66] for realistic electronic structures 
using a scheme [1, 2] based on linearized augmented plane 
waves (LAPWs). At an interface between a non-magnetic 
and a magnetic metal, the different electronic structures of 
the majority and minority spin electrons in the magnetic 
material give rise to strongly spin-dependent reflection [67, 
68]. Schep et al. used transmission and reflection matrices 
calculated from first-principles with an embedding surface 
Green function method [69] to calculate spin-dependent in-
terface resistances for specular Cu | Co interfaces embed-
ded in diffusive bulk material [4]. The resulting good 
agreement with experiment indicated that interface disor-
der is less important than the spin-dependent reflection and 
transmission from a perfect interface. Calculations of do-
main wall resistances as a function of the domain wall 
thickness illustrated the usefulness of calculating the full 
scattering matrix [5, 70]. However, the LAPW basis set 
used by Stiles and Schep is computationally too expensive 
to allow repeated lateral supercells to be used to model  
interfaces between materials with very different, incom-
mensurate lattice parameters or to model disorder. This is 
true of all plane-wave based basis sets which typically re-
quire of order 100 plane waves per atom in order to de-
scribe transition metal atom electronic structures reasona-
bly well. 
 Muffin-tin orbitals (MTO) form a flexible, minimal ba-
sis set leading to highly efficient computational schemes 
for solving the Kohn-Sham equations of DFT [71, 72, 40]. 
For the close packed structures adopted by the magnetic 
materials Fe, Co, Ni and their alloys, a basis set of 9 func-
tions (s-, p- and d-orbitals) per atom in combination with 
the atomic sphere approximation (ASA) for the potential 
leads to errors in describing the electronic structure which 
are comparable to the absolute errors incurred by using the 
LSDA. The tight-binding linearized muffin tin orbital (TB-
LMTO) surface Green function (SGF) method was devel-
oped to study the electronic structure of interfaces and 
other layered systems. When combined with the coherent-
potential approximation (CPA), it allows the electronic 
structure, charge and spin densities of layered materials 
with substitutional disorder to be calculated self-
consistently very efficiently [73]. MTOs satisfy our re-
quirements of being able to treat complex electronic struc-
tures efficiently. 

 To combine the WFM method with muffin-tin orbitals, 
it turns out to be convenient to use the so-called “tail-
cancellation” condition7 

[ ( ) ] 0 ,
Rl RR ll mm Rlm R l m R l m

R l m

P S c
α α α

ε δ δ δ¢ ¢ ¢ ; ¢ ¢ ¢ ¢ ¢ ¢

¢, ¢ ¢

- =Â  (37) 

in terms of potential functions ( )
Rl
P

α

ε  which characterize 
the AS potentials and the screened structure constant8 ma-
trix 

Rlm R l m
S
α

; ¢ ¢ ¢  whose range in real space depends on a set of 
screening parameters { }.

l
α  The set of parameters which 

minimize the range of hopping is denoted .α β=  The 
equation analogous to Eq. (4) which we use to solve the 
scattering problem is then 

1 1 1 1
( ( ) ) 0 .

i i i i i i i i i i i

β β β β
ε

, - - , , , + +
- + - - =S c P S c S c  (38) 

i
c  is a 2

max
( 1)l N M+ ∫  dimensional vector consisting of 

the coefficients of the i-th layer 
i Rlm
c

,

 with N atomic sites R 
and 2

max
( 1)l +  orbitals lm per site. For systems which are 

periodic along the interface the matrices in (38) are la-
belled by ||k  and Rlm runs over the orbitals within the lat-
eral (super)cell. 
 The transmission coefficients can be then used to  
calculate the Landauer–Büttiker (LB) conductance using 
Eq. (1). 9  For diffusive magnetoelectronic devices, this 
quantity is not suitable since calculating 

LB LB
1R G= /  re-

sults in a finite “interface” resistance, even for a fictitious 
interface between identical materials. Schep et al. [4] de-
rived an expression for the resistance of interfaces embed-
ded in a diffusive medium which takes into account the fi-
niteness of the conductance of perfect leads: 

Schep

2 2

1 1 1 1
( | ) ,

2| |
A Bmn

h
R A B

e N Nt
σ σ σσ

È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Î ˚Â
 (39) 

where the first term is the reciprocal of the LB conduc-
tance and 

A
N

σ  and 
B

N
σ  are the Sharvin conductances (all in 

units of 2
e h/ ) of the materials A and B forming the inter-

face, equal to the number of propagating modes in either 
material. Alternatively, Sharvin conductances can be ex-
pressed as the surface area of the projection of the Fermi 
surface in the transport direction [75]. 

 
7 This equation is nothing other than the KKR equation in the ASA  

in which the kinetic energy in the interstitial region is taken to be zero 

and the volume of the interstitial region is made to vanish by replacing 

the muffin tin spheres with space-filling atomic spheres [74]. This 

choice leads to structure constants which are energy and scale inde-

pendent, unlike the KKR structure constants. The potential function 

( )
l
P ε  is simply related to the logarithmic derivative ( )

l
D ε  as 

( ) 2(2 1) ( ( ) 1) ( ( ) ).
l l l
P l D l D lε ε ε= + + + / -  

8 The unscreened structure constant matrix 
0

S
α =

 does not depend on the 

potential and is determined solely by the geometry of the lattice. 
9 Evaluation of Eq. (1) for layered structures involves integration over the 

two-dimensional (2D) Brillouin zone (BZ). For metallic structures, the 

sampling density needed to achieve convergence in the range of 1% 

typically corresponds to about 4000 points in the full 2D zone. 
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 3.1 Ordered interfaces The non-trivial spin-depen-
dence of the transmission and reflection of electrons at 
magnetic interfaces provides the key to understanding phe-
nomena such as oscillatory exchange coupling, giant- and 
tunneling-magnetoresistance, spin transfer torque, spin-
pumping and spin-injection [76]. For well-studied material 
combinations such as Co | Cu and Fe | Cr, modest spin-
dependence of the interface transmission [4, 8, 77] of the 
order of 10–20% is sufficient to account for experimental 
observations [78]. 
 However, the confrontation of theory and experiment 
just referred to is at best indirect and model-dependent. 
Even though the theory of transport in small structures is 
formulated in terms of transmission and reflection matrices 
[36], measuring interface transparencies directly has 
proven quite difficult [79]. To identify interfaces suitable 
for experimental study, we undertook [41] a systematic 
materials-specific study of the orientation dependence of 
the interface transmission between pairs of isostructural 
metals whose lattice constants match within a percent or so 
in the hope that it will prove possible to grow such inter- 
 

Table 1 Sharvin conductances and interface transmissions in 
units of 15 1 2

10 Ω m ,
- -  interface resistances R [4, 8] for ideal (and, 

in brackets, for disordered) interfaces in units of 15 2
10 Ωm .

-  In-
terface disorder was modeled in 10 × 10 lateral supercells with 
two layers of 50–50 alloy. The largest uncertainty between dif-
ferent configurations of disorder is at most 5%. The values given 
are for a single spin. For the pairs of materials and orientations 
indicated by a (*), comparison of the interface resistances shown 
in the last two columns with experimental values extracted from 
measurement on multilayers by the MSU group [78, 79] yields 
reasonable quantitative agreement [4, 8, 39]. 

A | B   GA  GB  GA | B  R
Schep  

Al | Ag  (111)  0.69  0.45  0.41 (0.36)  0.64 (0.92)  
afcc = 4.05 Å (110)  0.68  0.47  0.30 (0.32)  1.60 (1.39)  
 (001)  0.73  0.45  0.22 (0.24)  2.82 (2.37)  

Al | Au  (111)  0.69  0.44  0.41 (0.35)  0.60 (0.99)  
afcc = 4.05 Å  (001)  0.73  0.46  0.24 (0.26)  2.37 (2.14)  
Pd | Pt  (111)  0.62  0.71  0.55 (0.54)  0.30 (0.33)  
afcc = 3.89 Å (001)  0.58  0.70  0.52 (0.51)  0.37 (0.39)  

W | Mo  (001)  0.45  0.59  0.42 (0.42)  0.42 (0.42)  
abcc = 3.16 Å (110)  0.40  0.54  0.37 (0.38)  0.52 (0.47)  

Cu | Co  (111)* 0.56  0.47  0.43 (0.43)  0.34 (0.35)  
majority  (001)  0.55  0.49  0.46 (0.45)  0.26 (0.27)  
afcc = 3.61 Å (110)  0.59  0.50  0.46 (0.46)  0.35 (0.35)  

Cu | Co  (111)* 0.56  1.05  0.36 (0.31)  1.38 (1.82)  
minority  (001)  0.55  1.11  0.32 (0.32)  1.79 (1.79)  
afcc = 3.61 Å (110)  0.59  1.04  0.31 (0.35)  1.89 (1.55)  

Cr | Fe  (111)  0.61  0.82  0.27 (0.31)  2.22 (1.84)  
majority  (001)  0.64  0.82  0.11 (0.25)  7.46 (2.55)  
abcc = 2.87 Å (110)  0.59  0.78  0.22 (0.27)  3.04 (2.18)  

Cr | Fe  (111)  0.61  0.41  0.34 (0.34)  0.93 (0.95)  
minority  (001)  0.64  0.46  0.35 (0.35)  0.98 (0.95)  
abcc = 2.87 Å (110)* 0.59  0.40  0.32 (0.32)  1.03 (1.06)  

faces epitaxially. In the following sections we will use the 
results of these calculations, summarized in Table 1, to 
discuss various mechanisms which control the scattering at 
interfaces. 
 The Sharvin conductances, 

A
G  and ,

B
G  reported in the 

third and fourth columns of Table 1 are properties of the 
bulk materials and measure the current-carrying capacity 
of the conductor in the ballistic regime. Comparing these 
with the conductances 

A B
G |  [i.e. transmissions integrated 

over two-dimensional Brillouin zones] for non-magnetic 
Pd | Pt, W |Mo and for the high conductance Cu | Co (ma-
jority) and Cr | Fe (minority) channels, reveals the follow-
ing trends: (i) 

A B
G |  tends to be slightly lower than the 

lesser of the two Sharvin conductances and (ii) the orienta-
tion dependence of 

A B
G |  is modest (at most ~15% for 

W | Mo) and mimics the behaviour of the lower Sharvin 
conductance. In all these cases the electronic structures of 
the respective materials  are  similar,  i.e.  the bands  
crossing  the  Fermi level are characterized by the same 
symmetries and orbital composition. In such situations the 
transmission tends to be high and the total conductance is 
determined largely by the geometrical overlap of the pro-
jected Fermi surfaces (FS). 
 

 3.1.1 Cu | Co: Majority spins The above can be il-
lustrated straightforwardly for the Cu | Co interface. The 
majority-spin FS of each metal consists of a single nearly-
free-electron like distorted sphere with necks developing in 
the vicinity of the 3D BZ boundary in the [111] directions. 
In Fig. 6 they are shown in projection along [001] and 
[011] directions. In the transport calculations we use 2D 
BZs defined by the in-plane translational symmetry. These 
are shown in the bottom corners of Fig. 6 as dashed lines 
overlaid on the projected 3D BZs. Folding of the original 
projected 3D FSs into the smaller 2D BZs yields Figs. 6a, 
b, d and e where the color scale denotes the number of 
states per k||-point. Note that the green areas of the plots 
contain pairs of states originating from the same single-
sheeted 3D FS. 
 The transmission probabilities shown in the two central 
panels of the bottom row of Fig. 6 as a function of k||, the 
wave-vector parallel to the interface, follow a simple pat-
tern. Wherever there exist states on both sides of the inter-
face, the transmission is close to the upper theoretical limit 
of min ( , )

A B
n n  where ( )A B

n  is the number of propagating 
states in material ( )A B  at the given k||.

10 Consequently the 
total, integrated transmission (conductance in 2

e h/  units) is 
well approximated simply by the area of the overlap of the 
projected FS. The transmission is additionally modulated 
by the velocity mismatch effect [80, 81], reminiscent of the 
free-electron formula for transmission through the poten-
tial step: 2

L R L R
4 ( )T v v v v= / +  where 

L/R
v  are the compo-

nents of the Fermi velocities in the transport direction. In 
most cases this effect is rather modest and becomes of im-
portance only when a large difference of velocities exists
 
10
 In the absence of disorder ||k  is conserved. 
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(thus “velocity mismatch”). This happens e.g. at the edges 
of the projected FS where 

L/R
v  drops to zero. 

 
 3.1.2 Cu | Co: Minority spins When the states on ei-
ther side of the interface have different orbital character, 
matrix element effects, reducing the transmission between 
states possessing different symmetry and/or orbital compo-
sition, become the most prominent factor controlling the 
scattering. This is the case e.g. for minority spin electrons 
in the Cu | Co system where sp states in Cu encounter 
strongly d-hybridized states in Co. The relevant Fermi sur-

faces and their projections for (001) and (011) orientations 
are shown in Fig. 7. The open 3d shell of Co gives rise to a 
FS with multiple sheets and complex topology. The mis-
match of the band states in Cu and Co results in a lowering 
of the total transmission by 15–30% depending on the ori-
entation. Even though the net reduction is modest, the  
k||-resolved transmissions shown in Fig. 7c and f reveal 
striking differences by comparison with the majority chan-
nel. Next to regions of high transmission, we now have ar-
eas of low or even vanishing transmission even for  
k||-points where there are many states available in Co for

 

  

Figure 6 (online colour at: www.pss-b.com) 

Fermi surfaces of fcc Cu (top row) and ma-

jority spin Co (middle row) viewed along the 

[001] (left hand column) and [011] (right 

hand column) directions with a projection of 

the bulk fcc Brillouin zone onto a plane per-

pendicular to these directions (bottom row, 

solid lines); the 2D BZ for both orientations 

is shown (dashed lines) superimposed upon 

the projection of the bulk BZ. Central Pan-

els: FS projections onto a plane perpendicu-

lar to the [001] (a, b) and [011] (d, e) direc-

tions folded into the 2D BZ. The number of 

propagating states is shown using the color 

bar; (bottom row) k||-resolved transmission 

probabilities for majority-spin states, T(k||), 

for (001) and (011) oriented interfaces, re-

spectively. 

Figure 7 (online colour at: www.pss-b.com) Pro-

jected Fermi surfaces and k||-resolved transmission 

probability for Cu | Co (001) and (011) interfaces 

as in Fig. 6 but for the minority spin electrons. 
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Cu states to scatter into. The intricate patterns of transmis-
sion can be interpreted in terms of the symmetries and or-
bital composition of Cu and Co states. For example, in the 
center of the 2D BZ for the (001) interface we have a sin- 
gle 

1
D  state in Cu composed predominantly of s and p

z
 or-

bitals. Facing it across the interface are four Co states: a 
doubly degenerate 

5
D  state consisting of p ,

x
 p ,

y
 d

xz
 and 

d
yz
 orbitals and two singly degenerate 

1
D  states.11 The 

5
D  

states are orthogonal to 
1

D  in Cu and consequently do not 
contribute to transmission. The scattering between symme-
try-compatible 

1
D  states saturates the channel ( 0 99).T = .  

Whereas the axial symmetry of the Co 
1

D  states is identi-
cal they differ considerably in their orbital composition. 
One of them, similar to its Cu counterpart, consists pre-
dominantly of s- and p

z
-orbitals and receives most of the 

transmission ( 0 95).T = .  The other is dominated by 2 2
3

d
z r-

 
character and contributes little to the total transmission. 
 Once we move away from the center we encounter (go-
ing along the y-axis as defined in the bottom-left panel of 
Fig. 6) states which are either even or odd with respect to 
the y,z-plane. The states derived from the central 

1
∆  modes 

in Cu and Co remain even. The 
5

∆  ones split into solutions 
of even (p ,

y
 d

yz
) and odd (p ,

x
 d

xz
) symmetry. Initially, the 

transmission remains high and is provided mostly by scat-
tering into states derived from “sp”-like 

1
∆  and even 

5
D states. Moving further from the center we reach a point 
 

11 The two Co 
1

D  states are degenerate in energy but differ in the values 

of the components of their wave vectors normal to the interface. 

where we encounter only odd states in Co and the trans-
mission drops to zero. 
 Although symmetry selection rules like those discussed 
above are strictly only valid for symmetry points and lines 
in the 2D BZ, they can serve as a useful guide for under-
standing the situation close by. 
 
 3.1.3 Al | Ag Examination of the numbers given in 
Table 1 for Al |Ag (and Al |Au) reveals a surprising, fac-
tor 2 difference between the interface conductances for 
(111) and (001) orientations. The effect is insensitive to 
disorder (see the values in brackets) and does not corre-
spond to the behaviour of the Sharvin conductance that ex-
hibits only a very modest degree of orientation dependence. 
What make the effect surprising is not only its magnitude, 
unique among systems reported in Table 3.1,12 but also the 
fact that it has been predicted for a remarkably simple sys-
tem. Aluminium is a textbook [82] example of a system 
well described by the (nearly) free electron model. Silver, 
also usually assumed to be a free electron-like material, is 
a noble metal with high conductivity which is frequently 
used for electrical contacting. However, for truly free elec-
trons the anisotropy should vanish. 
 The transmission probability for the (111) and (001) 
orientations is plotted in Fig. 8c and f within the 2D BZ. A 
 
12 Fe | Cr is an exception. For the majority spin channel, a large orienta-

tion dependence of the interface transmission is predicted. Unlike the 

Al | Ag case, this result is very sensitive to interface disorder. In addi-

tion, a single spin channel cannot be studied directly making it difficult 

to obtain an unambiguous experimental result. 

 

 

  

Figure 8 (online colour at: www.pss-b.com) Top 

row: Fermi surface projections for (a) Ag, (b) Al 

and (c) transmission probabilities in 2DBZ for (111) 

orientation. Middle row: Same for (001) orientation. 

The color bars on the left indicate the number of 

scattering states in the leads for a given two dimen-

sional wave vector k||. The transmission probabilities 

indicated by the color bars on the right can exceed 1 

for k|| s for which there is more than one scattering 

state in both Ag and Al. Bottom row: Fermi surfaces 

of (g) Ag and (h) Al, (i) the interface adapted BZ for 

(001) and (111) orientations. The vertical dashed 

line in (c) and on the yellow plane in panel (i) indi-

cate the cross-section used in the left-hand panel of 

Fig. 9 while the vertical dotted line in (f) and on the 

blue plane in panel (i) indicate the cross-section 

used in the right-hand panel. 
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qualitative difference between the two orientations can be 
observed. In the (111) case, the transmission is almost uni-
formly high wherever there are states on both sides of the 
interface. The situation here is quite analogous to the pre-
viously discussed majority spin channel of Cu | Co. The 
(001) orientation exhibits more variation with high trans-
mission in the central and outer regions of the 2D BZ but 
much lower in a ring-shaped region in between. The pres-
ence of this “cold ring” is the reason why the total trans-
mission is lower for the (001) orientation. Explaining the 
transparency anisotropy of Al | Ag interfaces requires find-
ing an explanation for the low transmission values in this 
region of the 2D BZ. 
 None of the mechanisms discussed previously can be 
responsible for the low values of  transmission. Naive ap-
plication of the free electron formula (i.e. velocity mis-
match) yields uniformly good transmission13 independent 
of the orientation. Examination of the eigenvectors demon-
strates that the symmetry and orbital composition of the 
states in Al and Ag is the same. Therefore the reduction of 
the transmission can not be explained by the symmetry 
mismatch argument. The origin of the “cold ring” must be 
sought elsewhere. 
 In spite of the failure of the free electron transmission 
formula, the simple free electron model serves as a useful 
starting point for analyzing the Fermi surface (FS) topolo-
gies. In the simplest possible approach, we model the FS of 
Ag (shown in Fig. 8g) as a sphere which fits into the first 
BZ. A larger sphere, accommodating three electrons, is 
needed for trivalent Al. In an extended BZ scheme, con-
servation of momentum parallel to the interface dictates 
that the transmission through a specular interface is non-
zero only between states with the same values of k||; these 
are the k||-vectors belonging to the region where projec-
tions of the Fermi spheres on a plane perpendicular to the 
transport direction overlap. For systems with lattice perio-  
 
13 Moreover the free electron formula would lead to the violation of the 

unitarity of the scattering matrix (i.e. the conservation of particles) 

whenever there is more than one state on either side of the interface. 

dicity, we must use a downfolded FS, with fragments of 
the original FS sphere back-translated into the 1st Brillouin 
zone, a procedure which can be realized geometrically by 
placing spheres accommodating three electrons on recipro-
cal lattice (RL) sites and then only considering the frag-
ments in the first BZ. Examination of the FS of Al calcu-
lated from first-principles (Fig. 8h) and its cross-section 
(Fig. 9) reveals that, in spite of its apparent complexity, it 
remains essentially (piecewise) spherical. For some values 
of k|| (see Fig. 8b and e), Al can now have more than one 
propagating state. Nevertheless, in the free electron limit, 
the downfolded states are strictly orthogonal to the states in 
Ag and the total transmission is unchanged. For a reduced 
zone scheme, we formulate the following rule: The trans-
mission between states in two (nearly) free electron mate-
rials which have the same k||, but originate from reciprocal 
lattice sites whose parallel components do not coincide, 
vanishes in the free electron limit and is expected to be 
strongly suppressed for nearly free electron like materials. 
 Obviously, the truly free electron system can not ex-
hibit anisotropy. However, in the presence of the periodic 
potential the original, piecewise-spherical Fermi surface 
and consequently the transmission is going to be modified. 
In Fig. 9, we show the intersection of the Al FS with a 
(110) plane. The two plots are rotated so that the vertical 
axis in Fig. 9a is the [111] direction while in Fig. 9b it is 
[001]. In both cases the positions of the nearest RL sites 
(on which spheres are centered) are shown together with 
the cross-section through the relevant interface-adapted 
Brillouin zone, which is different for each orientation; see 
Fig. 8i. We can now readily identify spheres from which 
various fragments of the Fermi surface originate and mark 
those fragments with positive (upward) velocities, accord-
ing to the rule given above, as having high (red) or low 
(blue) transmissions. In the (001) case, the “high” frag-
ments originate from (0, 0, 0) and (0, 0, –2) centered 
spheres. Comparing Figs. 8f and 9b, we note that the posi-
tion of the gaps opened between these spheres by Bragg  
reflection on the (001)  and (001) planes coincides, in pro-
jection along the [001] direction, with the position of the 

 

 

Figure 9 (online colour at: www.pss-b.com) 
Intersection of a (110) plane with the Al 

Fermi surface and with the interface adapted 

BZs indicated in Fig. 8i (where the meaning 

of the dashed and dotted lines is explained). 

The labeled dots indicate the positions of the 

RL sites with coordinates given in units of 

2π/a. The red (blue) lines indicate regions of 

high (low) transmission. 
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“cold ring” in Fig. 8f. The other states present in this re-
gion originate from (–1, –1, –1) (and equivalent) centered 
spheres, are therefore nearly orthogonal to states in Ag 
centered on (0, 0, 0) and so have low transmission. In the 
(111) case however, the large fragments of FS belonging to 
the same (–1, –1, –1) sphere have high transmissions 
(Fig. 9a) and dominate transport. In addition, the effect of 
gap-opening is reduced in this orientation because of the 
rotation. Combination of these two factors results in the 
almost uniformly high transmission seen in Fig. 8c. 
 Finally, we can identify the origin of the transmission 
anisotropy for Al|Ag interface. It stems from two factors: 
(i) the near orthogonality of  the downfolded Al states to 
those belonging to the simple Ag sphere and (ii) the gaps 
opened in the continuous free electron Fermi surface by the 
periodic potential. The latter factor is of course related to 
the symmetry of the underlying crystal lattice and directly 
responsible for the introduction of the orientation depend-
ence. For Al | Au interfaces, the interface transmissions 
and resistances are very similar to the Al | Ag case. The 
predicted anisotropic interface resistance and Andreev re-
flection (not shown) are not very sensitive to interface dis-
order and should be observable experimentally. 
 A free electron description of interface scattering, in 
which the effect of the crystal potential on transport is 
completely neglected, underlies the Blonder–Tinkham–
Klapwijk or BTK theory [83] used to interpret [80, 81] 
Andreev reflection (AR) experiments. Point contact AR 
experiments are increasingly used to identify the pairing 
symmetry of superconductors and, in the field of magneto-
electronics, to determine the polarization of magnetic ma-
terials [84, 85]. Our finding that the electronic structure 
can have such a large effect on the interface transmission, 
implies that experiments should be analyzed using more 
sophisticated models. 
 
 3.1.4 Ordered interfaces: Summary Interface scat-
tering between the band states is a complex process, espe-
cially in the presence of open 3d shells of ferromagnetic 
transition metals, which does not easily lend itself to a de-
scription in terms of simple models. However, using the 
examples discussed in the previous sections, we can iden-
tify the following mechanisms influencing the transmission 
through specular (k||-preserving) interfaces: 
 – velocity mismatch: reminiscent of the free electron 
formula and effective only for substantial differences be-
tween the Fermi velocities of the states, e.g. when one of 
the states is located close to the border of the FS projection 
where the velocity in the transport direction vanishes, 
 – orthogonality between different sheets of nearly  
free-electron Fermi surface: as discussed in 3.1.3 for 
Al | Ag, 
 – geometry of the Fermi surface: relating the LB inter-
face conductance to the area of overlap of the projected FSs, 
 – matrix element effects: the effect of symmetry and 
orbital composition, reducing the transmission between 
mismatched states. 

 Another important source of interface scattering is the 
disorder present to some extent in all experimental systems, 
to be discussed in the following section. 
 
 3.2 Interface disorder Instructive though the study 
of perfect interfaces may be in providing an understanding 
of the role electronic structure mismatch may play in  
determining giant magnetoresistive effects, all measure-
ments are made on devices which contain disorder, in the 
diffusive regime. The TB-MTO scheme is computationally 
very efficient and allows us to use large lateral supercells 
to model in a simple fashion interface disorder, interfaces 
between materials whose underlying lattices are incom-
mensurate, or quantum point contacts. This treatment be-
comes formally exact in the limit of infinitely large super-
cells. In practice, satisfactory convergence is achieved for 
supercells of quite moderate size. For disordered metallic 
interfaces the convergence is typically in the range of  
3–5% for 10 × 10 supercells and reduces to 1% for 
20 × 20 cells. 
 To perform fully self-consistent calculations for a 
number of large lateral supercells and for different con-
figurations of disorder would be prohibitively expensive. 
Fortunately, the coherent potential approximation (CPA) is 
a very efficient way of calculating charge and spin densi-
ties for a substitutional disordered 

1x x
A B

-

 alloy with an ex-
pense comparable to that required for an ordered system 
with a minimal unit cell [86]. The output from such a cal-
culation are atomic sphere potentials for the two sites, 

A
υ  

and .

B
υ  The layer CPA approximation generalizes this to 

allow the concentration to vary from one layer to the next 
[73]. Once 

A
υ  and 

B
υ  have been calculated for some con-

centration x , an N × N lateral supercell is constructed in 
which the potentials are distributed at random, maintaining 
the concentration for which they were calculated self-
consistently. A full discussion of technical details is given 
in [39]. 
 Figure 10 shows the interface resistance of a 
Cu | Co (111) interface calculated for three models of sub-
stitutional disorder (also shown in the figure). The values 
are plotted as a function of x and compared with a range of 
experimental values from the literature. Comparing the  
resistances without and with disorder, we see that dis- 
order has virtually no effect on the majority spin channel  
which is a consequence of the great similarity of the Cu 
and Co majority spin potentials and electronic structures. 
The transmission remains almost entirely specular,14 that is 
the scattering occurs only between states with the same 
parallel component of the wave vector, k||. 

 

 

14 Equation (39) used to calculate resistances in Fig. 10 assumes a lack of 

coherent scattering between subsequent interfaces. This assumption is 

most likely not valid for the Cu | Co majority spin channel. Including 

coherent scattering, using multilayer calculations, leads to interface re-

sistances substantially lower than values derived from experiment. See 

[39] for a fuller discussion. 
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Figure 10 (online colour at: www.pss-b.com) Left panel: Illustration of 3 different models of interface disorder considered. Top 

(1ML): disorder is modeled using one monolayer (ML) of [Cu1–xCox
] alloy between Cu and Co leads, denoted as Cu[Cu1–xCox

]Co. 

Middle (2ML): disorder modeled in two MLs as Cu[Cu1–xCox
 | Cu

x
Co1–x]Co. Bottom (4ML): starting from the 2ML disorder case,  

1/3 of the concentration x of impurity atoms is transferred to the next layer resulting in disorder in four MLs: Cu[Cu1–(x/3)Cox/3 | 

Cu1–(2x/3)Co2x/3 | Cu2x/3Co1–(2x/3) | Cux/3Co1–(x/3)]Co. Right panel: Interface resistance for disordered interfaces as a function of the alloy con-

centration used to model disordered interfaces, calculated using (39). The experimental values for sputtered and MBE grown multilay-

ers cited in Table 1 of [78] span a range of values which is indicated by the shaded regions. 

 

 In the minority-spin channel the effect of disorder  
is much more pronounced. Even for the 1ML model, where 
the total interface resistance exhibits only weak modulation, 
the disorder is strong enough to change the character  
of transmission. In the range 0 2x = .  to 0.8, transport is 
dominated by diffusive scattering whereby the k|| values 
are changed. For the more strongly disordered 2ML and 
4ML models, transport is also dominated by diffuse pro- 
cesses and the variation of the resistance is greater. Two 
MLs of 50% alloy (x = 0.5) are sufficient to essentially 
wash away all the symmetry effects discussed in section 
3.1.2. For all incoming states in Cu the total transmission, 
summed over all outgoing states in Co, becomes compara-
ble [39]. 
 The results for other interfaces are given in Table 1 for 
the 2ML (x = 0.5) model. Of particular interest is the 
Cr | Fe (001) system. The low-resistance minority channel 
is – like the Cu | Co majority spin case – hardly influenced 
by disorder. In the high-resistance majority channel how-
ever we observe a factor 3 reduction of the interface resist-
ance. It is worth noting that the conductance for the origi-
nal, perfect interface is exceptionally low and reaches only 
about 15% of the Cr Sharvin conductance. This reflects the 
poor matching of the electronic structures of the two met-
als [8, 87]. The diffuse scattering introduced by disorder 
opens new channels for transmission and increases the 
transparency of the interface thus reducing the interface re-
sistance. 
 The effect of disorder on transmission is highly mate-
rial specific but rules of thumb can be formulated for the 
two extreme cases: (i) the conductance of interfaces be-
tween materials with almost perfectly matched states (e.g. 
Cu | Co majority) is not hugely sensitive to disorder; (ii) 
the transmission between sets of poorly matched states (e.g. 
differing in symmetry) tends to be increased by disorder. 

 3.3 Spin-injection, spin-tunneling Spin-dependent 
matching of electronic structures does not only play a role 
at interfaces between metallic ferromagnets and non-
magnetic metals. It also occurs at the interface between 
itinerant ferromagnets and semiconductors or insulators 
where the electronic structure of the semiconduc-
tor/insulator in a very small region of reciprocal space 
dominates the injection/tunneling. This happens when 
there is lattice matching and in the absence of disorder so 
transverse crystal momentum is conserved. Most work has 
focused on systems containing Fe(001)-related interfaces 
because in this orientation the lattice constant of Fe is rea-
sonably well matched to those of a number of inorganic 
semiconductors and to MgO. The electronic structures 
were either calculated directly from first-principles [27, 45, 
88–96] or obtained by fitting to first-principles electronic 
structures [23, 25, 28, 29, 97]. 
 Unlike metallic systems, the current in semiconductors 
or tunnel junctions is carried by a very small number of 
channels. In zinc-blende semiconductors these are concen-
trated around the center of the BZ and possess (along 
[001]) 

1

zb
D  symmetry. Focusing on the Fe | InAs (001) sys-

tem as a typical example, we observe a very high polariza-
tion for an ordered interface (Fig. 11). This is the result of 
good matching between the 

1
D  states present at the Fermi 

energy in the majority band structure of Fe to the conduc-
tion band states in InAs. The Fe minority spin states are 
nearly orthogonal to 

1

zb
D  and are almost completely re-

flected at the interface.15 In the presence of disorder the 
system follows the general rule sketched in the previous   
  

 

15 The same symmetry considerations also hold for Fe | GaAs and 

Fe | ZnSe (001) [94]. 



638 M. Zwierzycki et al.: Calculating scattering matrices by wave function matching 

 

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  www.pss-b.com 

p
h

ys
ic

ap s sst
at

u
s

so
lid

i b

0

200

400

600

800

In
te

rf
ac

e 
re

si
st

an
ce

 [
10

4  f
Ω

 m
2  ]

 

majority
minority

0 0.1 0.2 0.3 0.4 0.5

fraction of substituted In (As) atoms

0

10

20

30

40

50

60

majority
minority

0.1 0.2 0.3 0.4 0.5

0

10

20

a) In-terminated

b) As-terminated

 

Figure 11 Interface resistances of InAs | Fe for a) In- and b) As-
termination as a function of the fraction of interfacial In or As at-
oms substituted by Fe for majority (�) and minority (�) spins. 
For both terminations the symmetry-induced spin-asymmetry is 
strongly reduced by disorder. 
 
section. The well-matched majority channel is only weakly 
influenced by disorder. In  the poorly-matched minority  
channel  on the other hand we observe a massive increase 
of the transmission (and reduction of the interface resist-
ance) occurring via diffuse scattering. The net result is a 
rapid quenching of the original very high polarization  
[45]. 
 Extremely high polarization of the tunneling currents 
was predicted also for disorder-free tunnel junctions [27, 
28]. So far, only much lower values have been measured, 
including the recent experiments on single-crystal MgO-
based tunnel junctions [98–100]. In Fig. 12 we show the 
effect of disorder, in the form of surface roughness, on the 
tunneling in a model Fe | vacuum | Fe junction. Transport 
for an ideal system (0% coverage) is dominated by reso-
nant tunneling in the minority channel, the effect associ-
ated with the presence of a 

1
D  surface state on the Fe sur-

face [101]. In the presence of disorder the resonant chan-
nels are removed. The minority conductance decreases and 
eventually drops below the majority channel values.16 In-
terestingly for all but the cleanest interfaces the conduc-
tance of  the antiparallel  configuration follows the simple 

formula:  
maj min

.

AP P P
G G G

σ

=  This suggest that the tunnel-
ing conductance through a general non-symmetric junction 
(with enough disorder to remove resonant channels) can be 
expressed in a factorized form reminiscent of a Julliere for-
mula [102]. 

 

 
16 The increase of the majority conductance is related to the specific 

model considered here. Increasing the coverage of the Fe electrodes de-

creases the average distance between them and promotes the tunneling. 
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Figure 12 (online colour at: www.pss-b.com) Configuration-
averaged conductances min

P
G  (�), maj

P
G  (�), and 

AP
G

σ  (×) of an 
Fe | vacuum | Fe magnetic tunnel junction with 8 ML thick vac-
uum barrier as a function of the surface coverage, normalized to a  

1 × 1 surface unit cell. The dashed line denotes maj min
.

AP P P
G G G

σ

=  
Inset: TMR as a function of the surface coverage. The dashed line 
is the value predicted using Julliere’s expression and a calculated 
DOS polarization of 55%. 
 

 The polarization of both injected and tunneling current 
depends sensitively on the detailed interface structure. 
While the quality of  tunnel junctions is clearly improving,  
much more work needs to be done to characterize the ex-
perimental disorder quantitatively. 
 
 4 Outlook So far we have been concerned with the 
quantitative and qualitative characteristics of the transmis-
sion and reflection of electron states at single interfaces be-
tween real materials, one of which is an itinerant ferro-
magnet. The advantage of focusing on the full scattering 
matrix, rather than simply calculating the conductance, is 
that it provides us with greater insight and is a very con-
venient point of contact with other theories, such as ran-
dom matrix theory [36] or circuit theory [37]. By interfac-
ing with phenomenological theories, we can make contact 
relatively easily with more complex transport problems. A 
good example of this is the study of the materials depend-
ence of the suppression of Andreev scattering at a ferro-
magnetic | superconducting interface. This is a problem 
which had been studied phenomenologically [36] without 
taking into account details of the electronic structure of 
materials which might be used in an actual experiment. 
Because it had been formulated in terms of the scattering 
matrix for the F | S interface with the superconducting ma-
terial in its normal state, it was straightforward to introduce 
and study the dependence on the constituent materials [44]. 
We argue that such an approach may be more fruitful than 
a frontal, brute force approach to calculating transport 
properties entirely from first principles. 
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