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Liquid drops can be kept from touching a plane solid surface by a gas stream entering from underneath, as
it is observed for water drops on a heated plate, kept aloft by a stream of water vapor. We investigate the limit
of small flow rates, for which the size of the gap between the drop and the substrate becomes very small, to
obtain a full analytical description of stationary drop states and their stability. Above a critical drop radius no
stationary drops can exist, below the critical radius two solutions coexist. However, only the solution with the
smaller gap width is stable, the other is unstable. We compare to experimental data and use boundary integral
simulations to show that unstable drops develop a gas “chimney” that breaks the drop in its middle.
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I. INTRODUCTION

Drops levitated on an air cushion have numerous applica-
tions, and have for a long time generated interest. For ex-
ample, in lens manufacture drops of molten glass can be
prevented from contact with a solid substrate �1�. This is
achieved by levitating the glass above a porous mould,
through which an air stream is forced. A second example is
the so-called “Leidenfrost” drop �2�, a drop of liquid on a
plate hot enough to create a film of vapor between the drop
and the plate �3–6�. Since the drop is thermally insulated by
the vapor film, it can persist for minutes �5�. Finally, a thin
air film is believed to play a crucial role for the “noncoales-
cence” of a liquid drop bouncing off another liquid surface
�7–9�.

The question we will address in this paper is whether for
a given set of parameters, in particular the radius of the drop
as it “rests” on the substrate, a stationary solution exists and
whether it is stable. Apart from lens manufacture �1�, this
question is important for the manipulation of corrosive sub-
stances �10� or the frictionless displacement of drops �6�. Of
particular interest is the maximum drop size that can be sus-
tained, and the limit of very small flow rates. The drop con-
tinues to levitate in this limit since the gap between the liquid
and the substrate becomes very small, so the lubrication
pressure produced by the viscosity of the gas becomes sig-
nificant. This enables us to employ asymptotic methods,
making use of the disparity of scales between the gap size
and that of the drop.

Experimentally, it is observed that the stability limit is
reached when the radius equals at least a few capillary
lengths �c=�� / ��g�. This natural length scale for our system
is determined by the surface tension �, density � of the liq-
uid, and acceleration of gravity g. At a few capillary lengths,
the drop is flattened to a pancake shape. Biance et al. �5,11�
observed a critical radius

rmax

�c
= 4.0 � 0.2, �1�

where rmax is defined in Fig. 1. Beyond this radius, “chim-
neys” appeared, i.e., bubbles of air trapped below the curved

and concave surface of the drop, that rise owing to buoyancy
and eventually burst through the center of the drop. This
suggests that the critical radius is related to the Rayleigh-
Taylor instability of a heavy fluid �the drop� layered above a
light fluid �the gas layer�. In �5,11� this idea is used to esti-
mate rmax /�c�3.83.

While this is close to the experimental value, the argu-
ment ignores the gas flow responsible for the levitation force.
This flow was taken into account by Duchemin et al. �1�,
who calculated the static shape of a drop levitated above a
curved porous mould, using a combination of numerics and
asymptotic arguments. For large enough drop volume, they
found no physical solutions, while for smaller drops multiple
solutions were calculated numerically. This work was
complemented recently by a numerical stability analysis
�12�.

A large number of studies of Leidenfrost drops have fo-
cused on the appearance of self-sustained oscillations of the
drop �3,5,13–18�. These oscillations can sometimes lead to a
morphological bifurcation of the drop, which takes the shape
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FIG. 1. Definitions and sketch of the matching regions. The
liquid-gas interface will be denoted by z=h. In the “gas pocket”
region below the drop, we can write h as a function of the radial
coordinate r. Due to the overhang exterior of the neck, h�r� is
multivalued in the “drop” region.
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of a star �3,14,15,17,18�. Similar star-shaped drops have
been reported in drops vertically vibrated on nonsticky sur-
faces, and the shape is generally attributed to a parametric
instability �19�. Our original question was whether oscilla-
tions could perhaps be explained even in the limit of viscous
drops, which we focus on in this paper. This is not the case,
since both our asymptotic results and simulations of the com-
plete dynamics �i.e., beyond linear stability analysis� show
that once unstable, a drop breaks up owing to the formation
of a chimney.

We treat both the liquid drop and the surrounding gas in
the inertialess �Stokes� limit. For the asymptotic analysis, we
also require the drop to be much more viscous than the gas.
The main effect of this assumption is that there is hardly any
flow inside the drop, so it can be treated as being in hydro-
static equilibrium at any instant in time. We also prescribe
the rate at which gas is injected into the underside of the
drop, thus ignoring the possible interplay between drop dy-
namics and vapor production in the Leidenfrost problem.

Our analysis is similar in spirit to the earlier paper of
Duchemin et al. �1�, but we only address the simpler case of
a flat substrate. As a result, we are able to perform all the
calculations analytically �up to a few universal constants,
which have to be computed numerically�. Our solution
curves are in qualitative agreement with those for a curved
substrate �1,12�, but now imply a full analytical description.
In addition, we determine the stability boundary of the sta-
tionary states. We find the maximum stable radius

rmax

�c
� 4.35 − r̃ , �2�

where r̃ goes to zero in the limit of vanishing gas flow.
For typical experimental flow rates we find that r̃�0.4,

consistent with the experimental result �1�. At the end of the
paper, we discuss how our analysis relates to the stability
argument of �5,11�, based on the Rayleigh-Taylor instability.

II. PROBLEM FORMULATION

A. Geometry and dimensionless parameters

We consider axisymmetric drops of liquid, levitated above
a flat surface by gas flowing into the underside of the drop;
cf. Fig. 1. We set out to find the shape of stationary drops and
their stability, as a function of the gas flow rate and the drop
volume. The size of the drop is expressed by the Bond num-
ber

Bo =
R2

�c
2 , �3�

where V is the volume of the liquid drop, and R
= �3V /4��1/3 is the unperturbed radius. The dimensionless
gas flow rate supporting the drop reads

� =
Q�gas

�c
2�

, �4�

where Q is the volume of gas that escapes through the nar-
row neck region �see Fig. 1� per unit of time, and �gas is the

viscosity of the gas. Our analysis will identify the flux Q as
the relevant quantity, which can be calculated by integrating
the gas flux entering from underneath up to the neck position
rn. Let us also introduce a slightly different dimensionaliza-
tion of the flow rate,

� =
6��c

�rn
=

6Qn

�rn�c
, �5�

which will appear naturally in the analysis.
Finally, another parameter is the viscosity ratio between

liquid and gas,

	 =
�drop

�gas
, �6�

but which will be considered asymptotically large for most
of this paper. Throughout, lengths will be expressed in �c,
velocities in � /�gas, and stresses in � /�c.

B. Structure of the problem

The problem we attempt to solve is the inertialess, axi-
symmetric fluid flow equations, with a prescribed influx of
gas into the underside of the drop. Most of our analytical
work assumes in addition that the drop is much more viscous
than the gas. The structure of the expected solution is shown
in Fig. 1. The gas pressure below the drop has to be suffi-
ciently large in order to support the weight of the drop. In the
limit of small dimensionless gas flux �, the gap between the
drop and the substrate must therefore be small in order to
generate enough pressure. The underside of the drop inflates
to a gas pocket, whose width is of similar size to the drop
itself. The narrow gap is formed in a small neck region only,
where a large curvature assures that the gas pressure can be
sustained by corresponding surface tension forces. Apart
from this viscous neck region, the gas pressure is constant,
both in the gas pocket as well as to the exterior of the neck.

This leads to the following asymptotic structure of the
problem, characterized by the matching between three differ-
ent regions. In the limit of small flux, all viscous effects
become localized in a small neck region, situated at a radius
r=rn from the center. In this region, there exists a balance
between viscous and surface tension forces. In addition, the
slope of the gap profile h�r� turns out to be small in this
region, so lubrication theory �20� permits to reduce the flow
equations to an ordinary differential equation for h�r�. We
will call this the inner solution or neck region.

To close the problem, boundary conditions are needed.
These are provided by two outer regions on either side of the
neck, denoted by “�” �the gas pocket toward the center of
the drop� and “
” �the outside of the drop�. Both regions are
controlled by a balance of gravity and surface tension alone.
First, we solve the equations in each of the regions individu-
ally. Second, we require that both the slope and the curvature
of the profile match smoothly at the boundaries between two
regions. This leads to a set of equations that determines sta-
tionary drop solutions uniquely. Solutions exist only below a
certain critical neck position rc, in which case we find two
branches, one with a small gap width �the lower branch� and
an upper branch with a larger gap width.
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Our stability analysis of the two branches is based on the
observation that the relevant dynamic variable is the position
rn of the neck, which can shift easily. The maximum stable
neck radius does not coincide with rc, but is significantly
smaller, located on the lower branch. We show that this point
corresponds to the drop of maximum volume, consistent with
the numerical results by �12�.

III. INNER SOLUTION: NECK REGION

A. Lubrication approximation

We consider incompressible, axisymmetric flow in the gas
layer, so that mass conservation gives

rḣ + �rhū�� = rv�r� . �7�

Here ū is the depth-averaged horizontal velocity of the air
layer, while v�r� is the rate at which air volume is injected
per unit area below the drop. The main focus of the paper
will be on stationary states and their stability. Stationary drop

profiles are found by taking ḣ=0, and integrating Eq. �7� to

rhū =
��r�
2�

, �8�

where ��r�=2��0
rdr�r�v�r�� is the flux in the lubrication

layer. In the case in which the injection source is localized at
r=0, the flux � is simply constant.

To get a closed equation for h�r� in the neck region, we
solve for ū. As our results will confirm, the neck region is
shallow, h��1, meaning that we can use the lubrication ap-
proximation �20� to analyze the flow; see Fig. 1. Owing to
the large viscosity ratio between the drop and the surround-
ing gas, the liquid drop acts as a no-slip boundary, and the
flow in the gas layer is well approximated by

u = 6ū� z

h
−

z2

h2	 . �9�

Since the Reynolds number is very small in typical experi-
ments, we use the Stokes approximation �20� to relate this
velocity to the pressure. As there is almost no flow inside the
drop, the liquid will be at hydrostatic equilibrium, pliquid
= p0−z. At the liquid-gas interface, the pressure thus equals
p0−h at the interior of the drop. Furthermore, the pressure
jump across the interface equals the curvature times the sur-
face tension, so one obtains the lubrication pressure inside
the gas layer as

p = p0 − h − h�. �10�

In what follows, we will show that the width of the neck
region scales as �1/5 and thus is asymptotically small in the
limit of vanishing flux. We are therefore permitted to neglect
the axisymmetric contribution to the curvature in the neck
region. Using the horizontal component of the Stokes equa-
tion, p�=�2u /�z2, we find

ū =
1

12
h2�h� + h�� . �11�

Now Eqs. �8� and �11� provide a closed equation for the
stationary interface profile h�r�,

h3�h� + h�� =
6��r�

�r
. �12�

The right-hand side of Eq. �12� represents the viscous stress
in the flow, and will only become important when h is small,
i.e., in a small neck region around rn, where we may set
r=rn. This gives

h3�h� + h�� = � , �13�

with

� 

6��rn�

�rn
. �14�

A crucial observation is that there is no need to know the
precise form of how the gas is injected, but one only requires
the flux across the neck. This of course provides a great
simplification for the Leidenfrost problem, where evapora-
tion rates are related in a complicated way to the temperature
profile inside the drop.

B. Similarity solution for the neck region

As gravity is unimportant in the thin neck region, Eq. �13�
can be further simplified to

h3h� = � . �15�

Since we are interested in the limit of small flux, we look for
similarity solutions

h�r� = ��H�
�, where 
 =
r − rn

�� �16�

giving

H3H� = 1, with 4� − 3� = 1. �17�

Note that this same equation emerges in film drainage prob-
lems during droplet coalescence �21� and sedimentation �22�.

In the limit 
→�, the solutions have to match onto a
sessile drop of constant curvature. Since

h� = ��−2�H�, �18�

one requires that �−2�=0 for the curvature to remain finite
as �→0. Together with Eq. �17� this fixes �= 2

5 and �= 1
5 ,

and hence we have

h�r� = �2/5H� r − rn

�1/5 	 . �19�

The form of the similarity function will be determined
from the matching below. The fact that ��� justifies the
assumptions made so far. First, we find that h��1 in the
limit �→0, justifying the use of lubrication theory. Simi-
larly, h��h�, so that both gravity and the axisymmetric cur-
vature can indeed be neglected in the neck region.

The asymptotic behavior of Eq. �17� is quadratic for both

→ ��,

H+ =
1

2
K+
2 + S+
 for 
 → � , �20�
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H− =
1

2
K−
2 + S−
 for 
 → − � . �21�

Physically, the values of the asymptotic curvatures K� set the
pressure in the corresponding outer regions.

Since Eq. �17� is of third order, solutions can be specified
by three independent parameters, one of which can be ab-
sorbed into a shift of 
. Therefore, the two asymptotic cur-
vatures K� uniquely determine the solution. As a conse-
quence, the slopes S� are dependent variables. To perform
the matching, we require the function

S− = − f�K−,K+� , �22�

whose existence is assured by the above argument. Since Eq.
�17� is invariant under the transformation H→H /a and 

→
 /a4/3, one must have

f�K−,K+� = K+
1/5f�K−

K+
,1	 , �23�

where we used a5/3=K+. This scaling was already mentioned
in �21� This function is computed numerically and is plotted
in Fig. 2. We show below that stationary solutions corre-
spond to the intersection of f with another function g, shown
in the same figure. It can be seen that the matching breaks
down at a critical neck radius rn, beyond which stationary
solutions cease to exist.

IV. OUTER SOLUTIONS

Having seen that viscous effects are localized in the neck
region, the rest of the drop is at static equilibrium. Hence, the
pressure is constant both in the gas pocket between the drop
and the substrate, as well as to the exterior of the neck. These
pressures are not equal, however, since one requires a pres-
sure difference to drive the flow across the neck. In Fig. 1,
we therefore distinguish two outer regions, denoted by 


and �, respectively. Since p�= p0−h−�, the outer solutions
can be obtained from

� + h = c�, �24�

where � is the curvature of the interface. The constants c�

determine the pressure difference across the neck,

�p = p− − p+ = c+ − c−, �25�

and will follow from the matching.

A. Outer “drop” region: �

Below we will find that the profile of the “drop” region
requires dh /dr→0 as h→0 in order to match to the neck
smoothly. This corresponds to a perfectly nonwetting sessile
drop �Fig. 3�. When matching the curvature, we also require
d2h /dr2=K+ as h→0. Owing to the vanishing slope near h
=0, we are allowed to write �=d2h /dr2 in Eq. �24�. Hence,
one finds c+=K+.

To deal with the overhang of the sessile drop, it is conve-
nient to solve the profile in terms of the arclength s along the
interface. We define � as the angle with the horizontal and
rewrite Eq. �24� as

d�

ds
= −

sin �

r
− h + K+, �26�

dh

ds
= sin � , �27�

dr

ds
= cos � , �28�

with boundary conditions

��0� = 0, �29�

h�0� = 0, �30�

r�0� = rn, �31�

0.50 1 1.5 20

0.5

1

1.5

FIG. 2. Solid line: the function f relates the slope S− to curva-
ture K− of the inner solution �Eq. �23� with K+=2.17�. Dotted lines:
the function g provides the matching condition between inner re-
gion and gas pocket region �Eq. �51� with �=10−7�. The three
curves correspond to values rn=3.55 �below critical�, rn=3.62
�critical�, and rn=3.65 �above critical�.

FIG. 3. The outer solution of the “drop” region corresponds to a
perfectly nonwetting sessile drop. The size of the drop, character-
ized by rn, sets the curvature K+ for the inner solution.
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��st� = � , �32�

r�st� = 0, �33�

where st is the value of the arclength at the top. Two of these
five boundary conditions serve as the definitions of rn and st,
so that the remaining three boundary conditions fix the solu-
tion uniquely. The equations have been solved numerically.

Each value of K+ thus gives a solution with a different rn,
some of which are shown in Fig. 3. The numerically obtained
relation between K+ and rn is depicted in Fig. 4. For the
maximal neck radius rn=r0=3.8317¯, introduced below,
one finds K+=2.17¯.

The value of rn effectively sets the volume of the drop.
Namely, the weight of the sessile drop is carried by the pres-
sure exerted by the substrate on the contact area �rn

2. The
difference between the liquid and the gas pressures at h=0 is
simply K+, so we find

K+�rn
2 = 2�V+ ⇒ V+ =

1

2
K+rn

2, �34�

where V+ is defined as the real volume divided by 2�, i.e.,

V+ =
1

2�
�

0

hmax

dh�r2. �35�

Note that to obtain the real liquid volume, one has to subtract
the volume V− of the gas pocket. However, V− goes to zero in
the limit of vanishing gas flow, as shown below.

B. Outer “gas pocket” region

In the “gas pocket” region, the profile h�r� is no longer
multivalued and we can express the curvature as

� =
h�

�1 + h�2�3/2 +
h�

r�1 + h�2�1/2 . �36�

The solution is then specified by Eq. �24� with boundary
conditions

h��0� = 0, �37�

h�rn� = 0. �38�

In Appendix A, we show that the solution can be written as
an expansion,

h�r� = − c−
J0�r� − J0�rn�

J0�rn�
+ O�c−

3� , �39�

where J0�r� is a Bessel function of the first kind. Using fur-
thermore that the curvature has to match the curvature of the
inner solution K−, and thus K−=h��rn�, we can further sim-
plify to

h�r� = K−
J0�r� − J0�rn�

J0��rn�
+ O�K−

3� . �40�

We see that the thickness scale of the gas pocket is set by the
value of K−. In the limit of vanishing flux, we expect this
thickness to tend to zero, making K− a small parameter. To
find solution branches, it is crucial to go beyond linear order
and to find the term of order K−

3 in Eq. �40�. The only quan-
tity that is needed to perform the matching to Eq. �22�, com-
ing from the inner solution, is the slope h−��rn�. This calcula-
tion is done in Appendix A.

At this point we can already infer an upper bound on the
possible values of rn. Figure 5 shows the outer gas pocket
solution �with normalized amplitude� for various values of
rn. The outer solutions are defined on the domain where
h�r��0, hence the maximum possible neck radius is
achieved when J0�r� has its first minimum at the maximal
radius r0=3.8317¯ �vertical line�. The corresponding solu-
tion is drawn with a heavy line.

A second remark is that J0� vanishes at r�1.852¯, so K−
must become zero at this radius. At even smaller radii J0�
turns negative, which yields negative values of K−. However,
the inner solution cannot reach large h for negative K−,

FIG. 4. The outer solution fixes the value of K+ as a function of
the neck radius �which controls the drop volume�. The maximal
radius r0=3.383 17¯ gives K+=2.17¯.

FIG. 5. Outer solutions for the gas pocket region �amplitudes
normalized to unity�. Thin solid lines correspond to rn=1,2; the
dashed line, corresponding to rn=3, illustrates that h would have to
become negative to realize a neck radius larger than r0. The heavy
line shows the maximum possible rn=r0, corresponding to the first
minimum of J0�r�.
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which means that the matching procedure described here
does not work. Dealing with this problem requires an addi-
tional matching region between the inner and outer �gas
pocket� solution, the introduction of which is beyond the
scope of this paper. We will simply stay away from rn
�1.852 and instead focus on radii close to the maximal
value r0�3.8317, as detailed below.

V. MATCHING THE ASYMPTOTIC REGIONS

A. Matching conditions

We can now match the asymptotic regions by expressing
Eqs. �20� and �21� in their original variables and expanding
the outer solutions around r=rn,

hout� =
1

2
�h�� �rn

�r − rn�2 + �h�� �rn
�r − rn� , �41�

hin� =
1

2
K��r − rn�2 + �1/5S��r − rn� . �42�

Therefore, the matching conditions become

K� = �h�� �rn
, �43�

�1/5S� = �h�� �rn
. �44�

The conditions on the curvature were already taken into
account when computing the outer profiles from Eq. �24�.
Typical values for K+ are of order unity, while the slope
requires �h+��rn

=0 as �→0. This is why for the first outer
solution we considered a perfectly nonwetting drop.

The � conditions are more subtle. The thickness of the
gas pocket goes to zero asymptotically so that both �h−��rn
and �h−��rn

will be small. In this case, the selection of the
solution explicitly requires the slope condition, which we
express as

S− =
K−

�1/5

�h−��rn

�h−��rn


 − g�K−,rn;�� . �45�

Together with Eq. �22�, this closes the matching problem,

f�K−,K+� = g�K−,rn;�� . �46�

This equation indeed contains the three matching regions: K+
implicitly depends on rn through the 
 outer solution, f is
determined by the inner solution, while g follows from the �
outer solution.

B. Bifurcation: Critical radius rc

For a given value of the flux �, we have reduced the
problem to finding the intersections of the functions f and g.
This is sketched in Fig. 2, showing f and g for �=10−7 and
several values of rn. Depending on the value of rn, there can
be two intersections, one intersection �when the curves are
tangent�, or no intersection. Each intersection corresponds to
a stationary drop solution. This can be translated into a bi-
furcation diagram showing K− versus rn �Fig. 7�. For small

radii there are two branches of solutions, corresponding to
the two intersections, which merge at rc. No stationary drop
solutions exist for rn�rc.

We analyze the bifurcation in the limit of vanishing flux,
�→0. We will show that

rc = r0 + O��2/15� , �47�

so that the critical neck radius rc approaches the maximal
radius r0 in the limit of vanishing flux. To analyze the vicin-
ity of the critical point, we introduce

r̃ = r0 − rn. �48�

At the same time we will find that K−��1/15. This means that
as the limit of � going to zero is reached, K−=0 and rn=r0,
which implies K+=2.17 according to Fig. 4. These two data
fix the solution of Eq. �17� uniquely, and lead to the
asymptotic profile shown in Fig. 6. From its minimum, one
finds that

hn � 0.931�2/5, �49�

in agreement with the scaling found by �1�.
We now analyze the first correction to the solution as �

increases, but in the limit where � ,K− , r̃�1. This can be
done by considering the corresponding limit of the functions
f and g, cf. Fig. 2. Namely, the function f approaches a
constant, which is found numerically to be

f 
 f0 = 1.12 ¯ . �50�

On the other hand, the asymptotic form of g becomes

g 
 �−1/5K−�r̃ − g2K−
2� . �51�

The first term of Eq. �51� is found by expanding Eq. �40� for
rn close to r0,

FIG. 6. The inner solution H�
� obtained from numerical inte-
gration of Eq. �17�, with K+=2.17 and K−=0. It will follow that
these values correspond to the critical solution. The minimum value
Hn�0.931 determines the thickness of the neck �49�.
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�h−��rn

�h−��rn

=
J0��r0��r − rn�

J0��rn�
+ O�K−

2� 
 − r̃ + O�K−
2� , �52�

where we used the property J0��r0�=0. We need to keep the
K−

2 term as it can become of the same order as r̃. For details
we refer to Appendix A, where we show that g2=1.486¯.

The matching condition f =g �cf. Eq. �46�� is now reduced
to a horizontal line intersecting a cubic function,

f0 =
K−

�1/5 �r̃ − g2K−
2� . �53�

Solving for r̃, one finds

r̃�K−,�� =
�1/5f0

K−
+ g2K−

2 , �54�

which has been plotted for different values of � in Fig. 7.
Thus for a given value of rn one finds two solution branches,
which end at the critical value

r̃c = 3�1

4
g2f0

2	1/3
�2/15 + O��4/15� , �55�

as claimed before. Note that the smallness of the power 2 /15
makes r̃c non-negligible. For typical experimental values of
the flux, the critical point is thus substantially shifted with
respect to the asymptotic value r0.

Plugging this back into Eq. �54�, one finds the value of K−
at the critical point: K−

�c�=0.72�1/15. But it follows from Eq.
�40� that h0=h�0��K−�1−J0�r0�� /J0��r0�, and thus the maxi-
mum gap width is to leading order

h0 � 2.52�1/15. �56�

This concludes the analysis of the stationary solutions, which
are described by Eq. �54�. At a given flow rate �, the critical
neck radius is given by Eq. �55�, which approaches the maxi-
mal value r0 in the limit �→0.

C. Drop volume: Bo versus rn

Experimentally the control parameter is the drop volume,
measured by the Bond number �3�, rather than K−. As the
size of the inner region is asymptotically small, one can com-
pute the drop volume from the outer solutions. We already
defined V+ as the volume of the sessile drop solution �35�,
i.e., without taking into account the gas layer. V+ is deter-
mined by the value of rn. The real volume of the liquid is
then obtained by subtracting the volume of the gas pocket,

V−�rn,K−� = �
0

rn

drrh−�r� 

1

2
K−rn

2� J0�rn� − 2J1�rn�/rn

J0�rn� − J1�rn�/rn
	 .

�57�

Note that this expression simplifies at r0, because of the
property J1�r0�=0.

The volume then becomes V=2��V+−V−�, yielding

Bo = �3

2
�V+ − V−�	2/3

. �58�

With this we can compute the Bond number for each value of
K+ and rn. Using furthermore the relation between rn and K−
for stationary states �54�, we can translate Fig. 7 into a bi-
furcation diagram in terms of Bo and rn. This is plotted in
Fig. 8, showing that stability of steady states is lost when the
maximum drop volume is reached. This maximum occurs
slightly before the maximum neck radius rc. The resulting
bifurcation diagram closely resembles the first branch of the
numerical simulations in �1,12�.

VI. STABILITY BOUNDARY

We now turn to the important question of which part of
the solution branches shown in Fig. 7 is stable. Essentially,
we find that the lower branch is linearly stable, while the
upper is linearly unstable. Surprisingly, however, the mar-

χ=10

χ=10
−10

−5

χ=10
−7

FIG. 7. The bifurcation diagram �K− , r̃�, derived from Eq. �54�.
Curves correspond to different values of the flux, �
=10−5 ,10−7 ,10−10, revealing the weak dependence on �. The
dashed lines represent perturbations �r̃ ,�K−=−�r̃ /c, which are tan-
gent to the solution curve. They represent marginal perturbations,
separating stable from unstable solutions.

χ=10
−10

χ=10
−7

χ=10
−5

FIG. 8. The bifurcation diagram �Bo,rn�, for different values of
the flux, �=10−5 ,10−7 ,10−10. The maximum drop volume is at-
tained slightly before the maximum radius rc. This maximum coin-
cides with the stability boundary shown as the dashed lines in Fig.
7. The dotted lines indicate the asymptotic limit for �→0.
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ginal point is not exactly at the maximum radius, but slightly
before. We show that this marginal point corresponds to the
stationary drop of maximum volume, as seen in Fig. 8.

A. Stability limit

To assess the stability of the drop solutions, we character-
ize the eigenmodes of the drop by infinitesimal variations in
the neck position rn. In principle, these deformations induce
a flow inside the drop that is not taken into account in our
static approximation for the outer solution. However, the
question of whether solutions are stable is one of energetics,
and thus can be addressed without explicitly computing the
flow inside the liquid. In particular, at the marginal point,
defined by a vanishing growth rate, there is no liquid flow to
affect the pressure balance based on the flow in the gas
alone.

We therefore consider infinitesimal variations in the neck
position �rn, and assess the corresponding change in levita-
tion force �F. Since the pressure difference �p= p−− p+
across the neck acts for r�rn, this force reads

F = �p�rn
2. �59�

As mentioned, we will compute �p based on the gas flow
alone. A marginal perturbation �rn occurs whenever the re-
sulting levitation force is unchanged, �F=F��rn=0, so that it
still equilibrates the weight of the drop. Hence, we find the
marginal condition

�p� = −
2�p

rn
, �60�

where the prime denotes the derivative with respect to rn. In
order to produce the same levitation force, an increase in rn
thus has to be compensated by a decrease of �p. Had the
pressure stayed constant, F would be larger than the weight
of the drop leading to the formation of a chimney and thus to
instability. Similarly, pressures smaller than the marginal
condition lead to a stable situation, giving the stability crite-
rion

�p� +
2�p

rn
� 0. �61�

In the limit of small �, the pressure difference �25� is simply
the difference of the curvatures,

�p = K+ − K−, �62�

so that stability requires

K+� − K−� +
2�p

rn
� 0. �63�

The derivative K+� can be read off from Fig. 4, and is nega-
tive. Clearly, this has a stabilizing effect. The sign of K−� can
be inferred from the bifurcation diagram. The lower branch
has a stabilizing contribution, while the upper branch is de-
stabilizing. The location of the marginal point, however, de-
pends on the numerical values of the three terms.

Taking the derivative of Eq. �34�, we find

K+� =
2V+�

rn
2 −

2K+

rn
. �64�

Moreover, for vanishing flux K−�K+, hence we may replace
�p
K+, giving the stability criterion

K−� �
2V+�

rn
2 . �65�

Near the maximal radius rn�r0, the criterion for stability
becomes

K−� � c−1 

2V+�

r0
2 = 0.92 ¯ . �66�

Indeed, the upper branch with K−��0 is unstable, but the
marginal point is not at the maximum radius K−�=0, but
slightly before. This is indicated in Fig. 7 by the dashed
lines, each having a slope of −0.92. The �sign is because the
figure uses r̃=r0−rn, while the derivative in Eq. �66� is taken
with respect to rn.

The maximum stable radius r̃s is found from Eq. �66�,

�1/5f0

K−
2 − 2g2K− = c , �67�

providing an equation for K− at the stability boundary. This
value of K− is inconsistent with the asymptotic estimate K−
��1/15 considered so far, indicating that the point where the
solution exchanges stability is at a distance slightly larger
from the critical point rc. This means that K− is smaller than
expected �further down the lower branch; cf. Fig. 7�. Thus
the second term on the right of Eq. �67� is small compared to
the other two, and we obtain

K− = � f0

c
	1/2

�1/10. �68�

If we evaluate Eq. �54� in the same limit, we finally obtain

r̃s = �f0c�1/2�1/10. �69�

Thus for vanishing flux the maximum radius of stable solu-
tions approaches r0, but with an even smaller power than rc.
This scaling implies that rs�rc�r0, as seen in Fig. 7.

We can show that this marginal point coincides with the
maximum Bo shown in Fig. 8. This maximum is achieved
when dBo /drn=0, which close to r0 becomes

V+� − �1

2
K−rn

2	�

 V+� −

1

2
rn

2K−� = 0. �70�

Indeed, this is equivalent to Eq. �65� when rn�r0, as is the
case for small enough flux �. This finding is again in agree-
ment with the detailed numerical analysis by Lister et al.
�12�, in which the growth rate for the first branch was found
to change sign at the maximum value of Bo.

B. Linear stability analysis

We now include dynamics in the stability analysis, once
more assuming that the flow inside the drop can be ne-
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glected. At the end of this section, we discuss the range of
parameters where this assumption is valid. We note first that
an infinitesimal variation of the neck position, �rn=−�r̃, also
induces a variation of the curvature, �K−, and of the flux, ��.
These three parameters are related through mass conserva-
tion of the liquid and the gas. The analysis is closed by a
third equation coming from matching the dynamic inner re-
gion to the hydrostatic outer regions.

As before, we compute the volume of the liquid from the
outer solutions as

Vliquid = V+�rn� − V−�rn,K−� , �71�

which is exact up to asymptotically small corrections due to
the inner region. The volume V+ is �numerically� determined
by the value of rn, while V− was computed in Eq. �57�. Since

the liquid volume is strictly conserved, V̇liquid=0, one finds
near r0

�K− = −
�r̃

c
, �72�

where the constant c has been defined by Eq. �66�. Relation
�72� expresses the fact that when rn increases, increasing V+,
the volume of the gas pocket has to increase by a similar
amount to keep the liquid volume constant. This is achieved
by an increase of K−.

Mass conservation of the gas is described by continuity
�7�, which can be integrated to

rhū = ��r� −
�

�t
�

0

r

drrh . �73�

The second term on the right-hand side can be identified as

the rate of change of gas pocket volume V̇−, which we will
write as −V+��ṙ̃. This change absorbs part of the injected air,
decreasing the flux passing across the neck. Considering the
radius somewhere inside the neck region, r�rn, the equation
can be simplified to �using Eq. �11� and h��1�

h3h� = � + �� , �74�

where the variation of the flux reads

�� =
r0

24c
�ṙ̃ . �75�

The matching condition �54� closes the dynamical system,
taking into account the dependencies �72� and �75�. The mar-
ginal case ��=0 corresponds to a curve tangent to any of the
lines r̃�K−� shown in Fig. 7. Since in addition the slope of
such a tangent curve must be −c−1 according to Eq. �72�, this
uniquely fixes a point on any of the lines at constant �. The
critical tangent curve was already drawn dashed in Fig. 7,
based on the analysis of the previous section. Below this
point, on the lower branch, solutions are stable; above they
are unstable.

Formally, the growth rate of perturbations is computed by
writing

�ṙ̃ = ��r̃ . �76�

Now using Eqs. �72� and �75�, and the first variation of Eq.
�54�, one finds

� =
24

cr0
� �r̃

��
	−1� �r̃

�K−
+ c� . �77�

The partial derivatives are to be evaluated from Eq. �54�. The
maximum stable radius is found by the condition �=0. This
indeed gives the same stability boundary as Eq. �65�, which
was based on a global force balance �note that �r̃ /�K−=
−�K−��−1�.

Let us conclude this section by discussing the effect of
flow inside the drop, which was neglected in the above
analysis. As noted by Lister et al. �12�, one needs to compare
the relaxation time �−1 of the gas flow to the viscous relax-
ation time scale of the drop,

tdrop =
�c�drop

�
, �78�

which for water is of the order of 10−5 s. Throughout our
analysis we used the gas viscosity �gas to rescale all vari-
ables, so that the gas relaxation time becomes

tgas =
�c�gas

��
=

tdrop

�	
, �79�

where 	=�drop /�gas.
As � can be arbitrarily small upon approaching the insta-

bility, there is always a region where we find that tgas� tdrop,
so that the flow inside the drop can indeed be neglected. To
estimate the range of validity away from the marginal point,
we evaluate � at the maximum radius r̃c, where �r̃ /�K−=0
�cf. Fig. 7�. At this point we find

tgas

tdrop
� 0.05	−1�−13/15. �80�

Typical values for Leidenfrost drops can be estimated �see
Sec. VIII� as ��10−4 and 	�102, so that the ratio of time
scales �1.5 when the maximum radius is reached. Hence,
liquid flow begins to be relevant for these parameter values.
The range of validity of our theory will of course be larger
when the flow rate is reduced further. We wish to note, how-
ever, that for water viscous time scales are very fast com-
pared to the eigenfrequency of the drop, so that inertial ef-
fects may also come into play.

VII. NUMERICAL TESTS

A. Nonlinear dynamical behavior

We begin with a simulation of the full axisymmetric
Stokes problem, using a boundary integral method �23�,
which has the advantage that it tracks the interface with high
precision. The idea is to regard the interface as a continuous
distribution of point forces, which point in the direction of
the normal and whose strength is proportional to the mean
curvature. Since for Stokes flow one knows the Green func-
tion giving the velocity field resulting from a point force, one
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can write the velocity anywhere in space as an integral over
the free surface. In an axisymmetric situation, the angle in-
tegral can be performed, so the remaining integration is one-
dimensional.

External flow sources can simply be added; in the present
case we take the gas flow as a point source of strength Q
situated at the origin on the solid plate that bounds the flow.
For this a simple exact solution is available �24�. Likewise
for the Green function one must take into account the pres-
ence of a no-slip wall. This is possible using the method of
images �25�, and the resulting boundary integral formulation
has been applied successfully to the motion of drops relative
to a wall �26�. If, as in our case, the viscosity of the drop is
different from that of the surrounding, one must account for
the stress mismatch across the interface. This can be done at
the cost of introducing another integral over the velocity on
the interface into the equation, which turns the equation for
the velocity field into an integral equation. After solving this
equation for a given interface shape, the thus computed ve-
locity field can be used to advance the interface.

We follow closely an earlier implementation of the
boundary integral method, used, for example, in the coales-
cence of two drops inside another fluid �27�. The only sig-
nificant difference is that the free-space Green function has
been replaced by the half-space Green function, bounded by
a wall. We tested the code by comparing to an exact solution
of a sphere moving perpendicular to a wall �28�. This is
realized in the limit of a very small drop, or of very large
drop viscosity, so that there is hardly any deformation. The
agreement was good, but significant deviations occurred
when the gap between the wall and the drop was smaller than
5% of the drop radius. At present, we do not know the origin
of this numerical problem, which prohibits us from investi-
gating the asymptotic limit of very small gap spacings. In-
stead, we report on simulations at moderate gap spacings,
which show the nonlinear stages of chimney formation, not
captured by our linear stability analysis.

Figure 9 shows a viscous drop that is slightly smaller than
the stability boundary. Starting from a configuration shown
as the light curve, it relaxes toward a stationary stable state

�heavy line�. For a Bond number that is just slightly larger,
the same initial condition leads to a rising gas bubble in the
center of the drop; see Fig. 10. A thin film forms between the
rising gas bubble and the top of the drop, which drains
slowly. As seen in Fig. 9, the neck radius is rn�2.5, giving
�=0.015. On the basis of our asymptotic theory �69�, a rough
estimate of the stability boundary gives rs�3.2, somewhat
larger than the expected value of 2.5. In the following section
it will become clear that such a difference is consistent with
the slow convergence to the asymptotic regime.

B. Lubrication approximation

To test the bifurcation scenario in more detail, we resort to
direct numerical simulation of the lubrication equation. Due
to the overhang of the drop, we separate the upper part of the
drop and the lower part of the drop at the maximum radius,
rmax, defined by the point �h��=�. The upper part is solved as
described in Sec. IV A, and for the lower part of the drop we
use

� =
h�

�1 + h�2�3/2 +
h�

r�1 + h�2�1/2 , �81�

� = h3��� + h�� . �82�

This describes both the inner and outer regions in the lower
part of the interface, while we have conveniently taken the
rate of injection ��r� /r to be constant for all r. Boundary
conditions for this third-order equation are

h��0� = 0, �83�

h��rmax� = � , �84�

��rmax� = �patch, �85�

where �patch is the curvature at the point where the upper and
lower solutions are patched. A one-parameter family of solu-
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FIG. 9. Boundary integral simulation of a drop with parameters
�=0.02, Bo=4.2, and 	=100. The drop relaxes toward a stable
state, which is drawn as the heavy line.
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FIG. 10. The same as Fig. 9, but with a slightly larger Bo=4.4.
The air bubble under the center of the drop lifts up to form a
chimney. The time interval between the profiles is �t=3000, in
units of �c�gas /�.
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tions is obtained through variation of the upper part of the
drop. It was shown in �1� that this procedure provides drop
solutions that are quantitatively accurate.

The numerically obtained drop profiles are conveniently
characterized by the position of the neck, rn, and the gap
below the center of the drop, h0. Numerical results for the
solution branches are shown as solid lines in Fig. 11 for two
values of the flux. �=10−4 is a typical experimental value
encountered for Leidenfrost drops, while �=10−7 illustrates
the convergence toward the asymptotic limit. As predicted,
there is a critical radius beyond which no stationary solutions
exist. The asymptotic predictions shown in Fig. 7 have been
translated to the dashed lines of Fig. 11. These are obtained
from Eq. �54�, where K− was computed from h0 using Eq.
�40�. Good quantitative agreement is achieved for small
enough values of the flux.

Finally, we determined the critical radius rc for a range of
values of the flux �. Figure 12 shows how the numerical
values �dots� indeed approach the asymptotic prediction
�solid line� in the limit of vanishing flux. Due to the very
small powers �2/15, the convergence toward r0=3.8317. . . is
extremely slow �horizontal line�. As a consequence, the cor-
rection with respect to this asymptotic value will be signifi-
cant for typical experimental values of the flux.

VIII. DISCUSSION

Owing to the smallness of the neck region �49�, we can
make the simplification that the pressure inside the gas
pocket below the drop is constant �Fig. 1�. This pressure is
larger than the atmospheric pressure and provides the force
required to levitate the drop. Matching the pressure differ-
ence across the neck with the viscous flow then provides the
bifurcation diagram of Fig. 7, yielding a critical neck radius
rc. In the limit of vanishing flux, the critical radius ap-
proaches r0=3.8317. . .. This value arises because it is the
first minimum of the function characterizing the shape of the
gas pocket, which is the Bessel function J0�r�. For larger rn,

the gas pocket shape would need to become negative, which
is of course not allowed.

Experimentally, the size of the drop is measured by look-
ing at the drop from above. This measurement provides the
maximum radius rmax rather than the neck radius; cf. Fig. 1.
For large puddles the difference between rmax and rn ap-
proaches �2−arc cosh�2�0.53. For drop sizes relevant here
we confirmed numerically that rmax−rn�0.52. Combined
with Eq. �55�, we thus find

rmax,st � 4.35 − 1.02�1/10 �86�

for the boundary of stability, expressed in terms of the cap-
illary length. Typical experimental values of � can be ex-
tracted using Eq. �49�, and typical experiments yield hn
�100 �m, obtained from diffraction data �5�. This gives �
�10−4, and thus rmax,st�3.95, to be compared with reported
experimental values of 4.0�0.2 �5,11�. A similar estimate of
� is obtained by considering the latent heat of evaporation
�5�. Furthermore, our boundary integral simulations show
that the nonlinear dynamics for larger drops lead to the for-
mation of chimneys, as observed experimentally. We are
therefore confident that the analysis in terms of Stokes flow
provides an accurate description of this instability.

Let us now return to the argument put forward in �5,11�,
relating chimney formation to the Rayleigh-Taylor instabil-
ity. The latter occurs when a layer of fluid is suspended
above another fluid of lower density, so that the system tends
to destabilize due to buoyancy forces. Surface tension op-
poses this effect, so that the instability occurs at long wave-
lengths only. Biance et al. �5,11� propose that levitated drops
remain stable as long as axisymmetric perturbations that fit
inside the drop are stable with respect to this buoyancy-
driven instability.

For an infinitely extended liquid film, one finds that J0�kr�
are axisymmetric eigenmodes, with the stability criterion k
�1. While the Bessel function does not have a well-defined
period, the maximum drop size was estimated in �11� by the
first minimum of the mode with k=1, occurring at r0. In

FIG. 11. Bifurcation diagram h0 vs rn for �=10−4 and 10−7.
Smaller � yield larger radii. Solid lines were obtained from numeri-
cal solution of the lubrication equation �82�. Dashed lines corre-
spond to asymptotic theory �54�.

5667

FIG. 12. Critical radius rc as a function of the flux �. The nu-
merical values obtained from the lubrication equation �dots� indeed
approach the theoretical prediction �55� �solid line�. The dashed line
indicates the asymptotic value r0=3.8317. . ..
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hindsight, our results justify this choice of taking the mini-
mum of J0�r� as the stability boundary, provided that it is
identified with the neck radius, rather than with rmax. With
this connection, our results reduce to the Rayleigh-Taylor
argument in the limit of vanishing gas flow, showing that the
balance between buoyancy and surface tension provides the
right mechanism. The effect of the gas flow is to reduce
slightly the range of stable solutions �86�.

We close the discussion by comparing our results once
more with the numerical findings in �1,12�, obtained for
drops levitating above a curved mould. The bifurcation sce-
nario for such a curved substrate was found to be much
richer than the single fold considered in the present paper. In
particular, a new set of solutions emerges above rn�7, dis-
playing multiple folds. We believe these new solutions result
from the curvature of the mould, allowing the substrate to
“touch” the outer solution at new locations; cf. Fig. 5. As the
next extremum of J0�r� after r0=3.83. . . is found at r
=7.02. . ., it may be worthwhile to pursue this connection in
more detail.
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APPENDIX A: GAS POCKET SOLUTION

In this appendix, we expand the gas pocket solution for
small amplitudes and compute the constant g2. We consider
the equation

h�

�1 + h�2�3/2 +
h�

r�1 + h�2�1/2 + h = c−, �A1�

with boundary conditions

h��0� = 0, �A2�

h�rn� = 0. �A3�

This is equivalent to solving

y�

�1 + y�2�3/2 +
y�

r�1 + y�2�1/2 + y = 0, �A4�

with boundary conditions

y��0� = 0, �A5�

y�rn� = − A , �A6�

where A=c− We expand in A,

y�r� = Ay1�r� + A3y3�r� + O�A5� . �A7�

This yields a hierarchy of equations

y1� +
y1�

r
+ y1 = 0, �A8�

y3� +
y3�

r
+ y1 =

3

2
y1�

2y1� +
1

2r
y1�

3, �A9�

with boundary conditions

y1��0� = 0, �A10�

y1�rn� = − 1, �A11�

y3��0� = 0, �A12�

y3�rn� = 0. �A13�

The first equation gives y1�r�=−J0�r� /J0�rn�, which can be
inserted into the right-hand side of the equation for y3�r�.

To compute the constant g2, we require the ratio
y��r0� /y��r0�. In terms of the expansion,

y��r0�
y��r0�

= A2y3��r0� + O�A4� , �A14�

where we used the properties y1�r0��=0 and y1��r0�=−y1�r0�
=1. Comparing to Eq. �51�, we simply find

g2 = y3��r0� . �A15�

We obtained this value numerically by solving the ODE for
y3, for which we numerically obtained g2=1.486¯.
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