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Abstract: A new set of vector solutions to Maxwell's equations based
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includes a splitting due to coupling between orbital angular momentum and
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1. Introduction

From cavity quantum electrodynamics to deterministic single-photon generation, a host of ex-
citing recent experiments are made possible due to the precise control of light achievable inside
optical resonators [1,2]. In the case of Fabry-Perot resonators, the detailed understanding of the
resonator modes necessary for these experiments is generally based on solutions to the paraxial
wave equation. Despite being approximate in nature, these solutions allow many crucial fea-
tures of the resonator modes to be explained, from the Gaussian profile of the lowest-order
TEMo o mode to the regularly spaced eigenmode spectrum.

Despite its success, novel experiments allow the boundary of the validity of the paraxial
approximation to be probed. This includes microresonators, where the small mode volume
leads to a violation of the assumed paraxiality, and ultra-high-finesse resonators, where the
high spectral resolution allows even minute details to be resolved. Understanding all observable
features in such experiments requires the electromagnetic field to be treated more precisely than
the paraxial approximation allows.

In the past, several approaches have been used to obtain corrections to the paraxial approx-
imation for resonators [3—6]. Lazutkin [3] chose an analytic expansion of the wavefunction to
satisfy the wave equation with appropriate boundary conditions. Letabis[4] calculated a
resonator round-trip propagation matrix using the method ofeted. [7] of calculating cor-
rections to the paraxial equation. The effect of spherical aberrations was calculated bywisser
al. [5] based on perturbation to Gaussian propagation inside a resonator. Zbahd6] used
a diffraction integral to propagate light around a resonator.

None of these papers take into account all effects needed to calculate the complete first-order
correction beyond the paraxial approximation of the electromagnetic eigenfrequencies of a res-
onator. Lazutkin and Zomest al. restricted their analysis to scalar fields in two-dimensional
resonators. Vissest al. focused solely on spherical aberrations, albeit leading to an analytical
result reproduced here. The most rigorous approach so far by eaahsised an insufficient
approximation by treating the mirror surfaces purely in terms of a position-dependent phase
shift.

An alternative approach for treatment of the resonator eigenmode problem is through the use
of spheroidal coordinates. The spheroidal coordinate system, depicted in Fig. 1, is ideally suited
for calculations with Gaussian beams due to the match between surfaces of constant phase of
a beam and surfaces of const&nas well as between the variation in beam diameter along
a beam and surfaces of constgntWith appropriate approximations, these coordinates have
been applied in the past to resonators to obtain results in agreement with paraxial theory [8, 9].

In this paper, spheroidal coordinates are used to calculate the eigenfrequencies of a Fabry-
Perot resonator to first order beyond the paraxial approximation in the short-wavelength limit.
The electric field inside the resonator is expanded in terms of vector spheroidal wave functions.
Requiring the boundary conditions for perfectly conducting mirrors to be satisfied allows the
expansion coefficients of the outgoing wave at each mirror to be expressed in terms of the ex-
pansion coefficients of the incoming wave. The resulting round-trip propagation matrix for the
expansion coefficients is solved via perturbation theory, resulting in a compact expression for
the resonator round-trip phase shift, Egs. (40) and (41). The paper concludes with a discussion
on the experimental implications of this result.

2. Mathematical foundations

This paper relies heavily on the theory of spheroidal wave functions as found elsewhere [10,11].
In particular, the theory of spheroidal wave functions in the short-wavelength limit has recently
been significantly expanded in Ref. [11]. Here we briefly summarize the most important defi-
nitions and results from this paper.
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Fig. 1. The oblate spheroidal coordinate system. §hsoordinate describes the set of
ellipses with a common pair of focal points separated by a distdntee n-coordinate
describes the set of hyperbolas with the same two focal points, ang-tberdinate de-
scribes the rotational angle around the z-axis. A pair of mirrors forming a resonators can be
matched to the coordinate system as indicated, in this cas€ with—1.25 and§;. =1.75

The mapping from spheroidal coordinatésn, ) to cylindrical coordinate§r, z, @) is given
by

r=SJamarey  andz=Sng (1)

the @-coordinate being the same in both coordinate systemsl &iethg the interfocal distance

as shown in Fig. 1. The scalar wave equation is separable in spheroidal coordinates, allowing
the solutions to be written as the product of three functions depending onfy grand ¢,
respectively. This leads to so-called scalar spheroidal wave funafigns Rmv(é)sw(n)eim"’

with 2
) 1_j&)v+tm
Reu(8) = € s o (8) @
and N
Sw(n) =C¢"2(1-n?)ze M Mgy, (x), @3)

labeled by the indicem andv. Note thaimis simply the integer orbital angular momentum due

to thee™? g-dependence. The variabke= 2C(1 — ), not to be confused with the Cartesian
coordinate, is introduced to simplify calculations. The parametekd/2, with wavevectok,
guantifies the scaling of the coordinate system relative to the wavelength. For short wavelengths
compared tal, cis a large number, and the functiong, () andsmy, (x) can be expanded as
asymptotic series i%r. To lowest order ir%-, rmv (&) =1 andsm (X) = Ls,m)(x) whereL(Vm)(x) is

a Laguerre polynomial.

Based on the scalar spheroidal wave functions, vector spheroidal wave furl?.:}jp;prop—
agating in thet& direction are defined which satisfy the wave equation as wéll-&;,, = 0.
TheEj,, can therefore be regarded as the electric field of a solution to Maxwell's equations in
free space. With spin angular momentare= o™ corresponding to left and right circular polar-
ization,J = m+ 1 denotes the total integer angular momentum of the field about the symmetry
axis.
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3. Satisfying the boundary conditions

Theelectric field inside the resonator is expanded in terms of vector spheroidal wave functions
as
E= Jz (bjoijav + bjcrv Ejav)v (4)
ov

with expansion coefficienlls}ov. For perfectly conducting mirrors, the component of the elec-
tric field parallel to a mirror surfac® must vanish as, i.e.E|s|| = 0.

The mirror surfaces are matched to the spheroidal coordinate system as exemplified in Fig. 1
as follows. For a resonator of lengthwith spherical mirrors with radius of curvatufe.

andR,, the spheroidal coordinate system is appropriately scaled by choosing the didtance
between the focal points to be [8]

_ JAR 4R —L)(R, —L)(R —L)
d_\/ (R, +R —2L7 : ®)
In this case, the two surfaces of constant &, with
L 2LRe-L)
Ei_id(&+R_—2L) ©

are separated by a distaricand have a radius of curvatureRf on the resonator axis.

For a spherical mirror, a correction to the spheroidal surface of conStargenerally nec-
essary. Switching briefly to cylindrical coordinatesr, @), the mirror surfaces are specified as
the distance = z.(r, ) above the plane= 0. For a smooth, cylindrically symmetric mirror,
Z.(r, @) can be expanded in powersrsfas

2
z.(r, o) :4¢i$c4ir4+ﬁ(r6). (7)

Here,z, andcsy areexpansion coefficients ariel. is the radius of curvature of the surface at
r = 0. For a spherical surface;. = 1/(8R1). Other values ot can be chosen to describe
cylindrically-symmetric mirror aberrations. For example, for a spheroidal surface of constant
& =& we havezy = dé./2 andcyy = 1/(4dEiR2i). For a parabolic mirrorcs. = 0 by
definition.

Switching back to spheroidal coordinates, the mirror surfaces can equivalently be specified
as the value of as a function ok = 2c(1—n) andg. Eq. (7) is transformed into

— 2
f, —ixo-trwSro(s) ©
with 452
= szi Cax F %, 9)

S. beingthe mirror surface af.. Note that for smalt, x is proportional tect2. Additionally,

due to the factoe /2 in the definition 0fSy, (1), Eq. (3), the spheroidal wave functions vanish
for x> 1, motivating the use ofin Eq. (8). The term linear in is missing due to the specific
choice ofd and&.. in Egs. (5) and (6). As will be seen, tk& term in Eq. (8) is the highest-
order term inx which must be retained to calculate first-order corrections to the resonator
eigenfrequencies.
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The mirror surfaces can now be parameterized in terms of the transverse coorgiaatts
pas

5:(n,9) =x(& (x(n).9).n.,0) (10)

wherex(&,n, @) is the vector inR3 from the origin to the point denoted in spheroidal coordi-
nates by(&,n, @). A basis for the tangent space to the mirror surface at a point on the mirror
surface, needed to calculate the componeiit parallel to the mirror surface, is given by

0S: o 9S: | oy o 080X
{d(ph(pe(pvarlhneﬂ+hfef Ix (9!)}’ (11)

where theg; are unit vectors and the, are scale factors in spheroidal coordinates [12]. The
component of the electric field parallel to the mirror surface is proportional to the inner product
of the electric field with these basis vectors.

We now show that as long as we are only interested in corrections to the resonator eigen-
frequencies to first order ié, we can usg&y, &, } as an approximation for the basis (11). For
x= (1), we have the following order of magnitudes,

hg = 0(2), hy = 6(c%?), he=0(C/?),
é{ : E\jltgv = ﬁ(a_l/z)v éﬂ 'Ekj]EUv = ﬁ(1)7 (12)
&4 =2 1704 B
ax o(c ), an 0(c),

as can be seen from the corresponding definitions in Ref. [11]. As a result, the contribution to
95 E of the&; - E term is of ordec™ compared to the contribution of tiég - E term and can
therefore be neglected, justifying our simplified basis.

To calculated, - E5,, and&, - E3,,, we additionally need the following expressions,

8- (X£i9) = £ieH? 0 2=0

- /LEZ 1 P

)=-n ,724_529i & -2=¢ n2+éz (13)
1-n2 . 1+ &2
= et e 2

For first-order corrections, the expressions véthare not needed, but have been included for
completeness. Using previous expressions and with a significant amount of algebra, one obtains

&, (R£iy
(X£i9

eg .

+ A0
=l1e"Py-1y
Jotv S. Vs,

ol -

- JX < . .
X7 (1— 80_) ex/ze'J‘pR]_lN(Ei){ —iL iy + [q: faPL) |+ fanlly) -

(14)

i(v+I-1)(v—1) 3 i(2v?4+2Jv—-5v—-2J+1) (4
5 LYo+ . LY+

i(2v24+2V+5v+3J+1) (5 i(V+1)2v+2J+1), (g 1
8 b7 8 b Tz
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&, ET _ =
P =o vis,

=—ie Yy,
s

-1

JX i . .
X2 (1— 8(:_) e Ze'J“’Rm.V(si){ —i(v+I+ DL Hi(v+ DL+

1 i(v+J)(v+JI+1)2v+1
E|::Ff4:i:X2(V+J+l)|—$/J):|:f4j:X2(V+l)L$,J+)1— v+ I)( 5 T
i(VHI+1)(2v2+3v+I+2) (3)  i(V+1)(2v2+4Iv+5v+2F+6]+4) )
38 Ly’ + 8 Lv+li
i(v+1)(v+2)(2v+23+3) () 1
8 Lv+2 +0 ? ’
é’l'E\J]rcﬁv s. =
A J-1 IX\ o 10l i
+¢f

(2v+3- L L) +Rou(E) (v ILY, — v+ 3+ L + v+ 1L ) [+

2
fiiz Ry_1.(&4) [(v +I-Y —@u+23- 1LY+ @I+ LY — (v + 1)L<VJ+>1] :
2(1+&2)

(16)
and
1. +

=
é-E _Te(l"EervSi

Jo~v

{i‘fi [Rou(E)(v+3+1) (~(v+ LYy + v+ 3+ 1L = (v+ 1L ) +

Nars

Rovi1(E)(v+2) (~(v+3+ LY + v+ 3+3)1L0) - (v2L)),) |+

&2
2(1+€&2)

+x7 (1— ‘;X_> e /20y
C

S+

ol -

Rorav(&)[ = (v +I+ LY + (v+3+1)@v+ I+ 20—

(v+1)@v+23+ 4L + (v+ 1) +2)L<VJ+>2]
17)

The LS,J) are Laguerre ponnomiaIlsS,”(x) with the dependence axbeing implicit. Heavy
use of recursion relations among the Laguerre polynomials has been made. Note that we have
evaluated the spheroidal wave functions at the mirror surfdcesorEj,,,, the field running
in the other direction, the results are the same exceptéthas replaced by-&. and fs1 is
replaced by fs...

Combining Egs. (14-17) with Eqg. (4), the boundary conditionEdor the mirror atéL can
be reformulated as a matrix equation for the coefficiefts of the outgoing wave in terms of
the coefficientss;, of the incoming wave. We begin by defining the set of vector functions
Vigv @S

_ JX N N i
Vigty = X'z (1_ 80_> e <_L$;J21 + LE/J)> (i8p—&)e’? (18)
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and

_ Jx n R .
Vig-y = X7 (1— 86) g x/2 ((v +J+ 1)L$,J) —(v+ 1)Lffll) (—iéy— en)t—:"J"’, (19)

and by defining the functions;jsy anduy;s, according to
Ujo+y = \/;((‘I—’J,vfl-ﬁ- lI.IJV)én =

1

é RJ,V—1(5> (VJU,VZ —Vio-v-1— (V +J- 1)VJ0+,\/71 —+ VVJU*V) + (20)

1
é RJV(E) (VJG,V—l —Vig-v — (V + J)VJ0+V + (V + 1)VJJ+,V+1> )

Upg-v = ﬁ((v +J+ 1)‘/—’Jv + (V + 1)‘-/-’J7v+1> én =
1
5 RJV(E)(V +J+ 1) (VJo,vl —Vig-v — (V + J)"Jo*v + (V + l)VJ0+,v+1) + (21)
1

E R],V-&-l(‘f)(v + 1) (VJO'V - VJO”,V+1 - (V +J+ 1>VJ0+.V+1 + (V + 2)VJ0+,V+2) ;

Uojgt+y = wa,Lve"”én =

1 1 (22)
- gR]—l,V(E)VJG+V - ERJ—]-,V(E)(VJO",V—Z - 2VJO",V—1 +VJ0*V> +0 (6)
and
Upjo—y = X416 P8, =
1
- gRJJrl,v(E)VJa*v - éRJ+l,V(E)[(V +I)(V+I+1)Vygey— (23)

1
2v+1)(VHI+IVigt 1 H(VHL) (V2 yio] + O <c_) .

Theparallel component of the electric field Bf, at the mirror surfaces can then be written
in terms of thev;qy as

if4iX2 X _
iy, =R (0 [ (15254 X v A g 1+ AT -
So| c 8c
i &y 1 &2 ( 1)
C T—’—Ei 1Jotv f—, 2C1+E:E 2Jotv f-c. 2
(24)
and
+ ifa®  x v-1 v+l
Jo—v = RJJrl,V(Ei) 1F — — o= | Viov +AJ+1,VVJU*,V71+AJ+1,VVJG*,V+1 +
Sy, c 8c
i & 1 & (1>
—-———Uu — + ——Uu — + ﬁ =1 .
c T-kfi 1Jo~v g 201+Ei 2o~v Fog. 2
(25)
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For E;,, we must again replacg. everywhere by-¢. andfs. by —fs+. TheA5, are expan-
sion coefficients for the angular spheroidal functions [11]. We m{},ﬂﬁy = ﬁ(%) sothat to
lowest order in%, EJiUV|Si,H is simply proportional to/;4,, motivating the choice of g, .

Egs. (24) and (25) have the form

+ +2,J,
1 = Z VJU’V’a\;/lv 2,00 (26)
S

Jov

with appropriate coeﬁicientajl‘;iz’l”"“. The subscripts on thé signs denote two indepen-
dent choices of- or —. Egs. (24) and (25) contain factors>oés part of the coefficients of the
functionsv;4y,. These can be removed using the relations

XVigry = —(V+I=1Vigt y 1+ (2V+I)Vygry — (VH+ 1)Vt via (27)
and
XVyg-v = _(V +J+ 1)VJ0* v-1+t (ZV +J+ 2)VJO"V - (V + 1)VJU’,V+17 (28)
making the coefficienta’:1*2"% independent of and.

The boundary condltlon fdE can now be written as

.si I Z( DjavEda s. Si=|>

+iJU ,g :I:JCT Ne)
— Z Vig'y! [z (av Y b:]'—dv +a.v, bJGV)] =0.
a'v’

av

H + bJ_O'VEJ_UV
' (29)

Due to cylindrical symmetry, modes of differeditdo not couple, so we have restricted our
attention to a singld. Thev;qy, considered as vector functions xofand ¢, are linearly in-
dependent. As a result, the expression in the square bracket in Eq. (29) must be zero for each
value ofg” andv’.

We define the following matrices and vectors,

Ail +2 Ailaiz
gy = (8,2, Ail’iz—( 4% AL ‘:{2> and  bg = (bl )v.

0 ot o (o
(30)
The matrixA™1*2 maps the traveling wave described by the vebigrof coefficients of wave-
functionsEJ2, onto a set of coefficients of surface functiong, describing the electric field
component parallel to the surfaceSat, . This finally allows us to write the boundary conditions

as matrix equations,
AtE (b+*> +A* <b0+> =0 (31)
b? b ) =0
g~ g~

Solving forbF in termsb using the boundary condition imposed by the mirrof.atwe find
the round-trip matrix for the resonator to be given by

A= (AHT) AT (AT AR (32)

The eigenvectors oA are vectors of coefficients;,, of resonator eigenmodes, the cor-
responding eigenvalues are the round-trip phase shifts. To lowest or%eth’e matrixA is

diagonal. The resonator eigenmodes are therefore of thetfjjgg‘}EJaiv +bj,+ Ej -, @and
the corresponding round-trip phase shift is equal to
Aoty e2|(075+ —(2v+(IF1)+1)(arctarié ) — arctamé,))ﬁ-ﬁ(%)). (33)

This result is equivalent to the one obtained by considering a resonator in the framework of the
paraxial approximation.
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4. First-order corrections to the round-trip phase shift

First-ordercorrections to the round-trip phase shift of Eq. (33) can be obtained via degenerate
perturbation theory. We begin by determining those eigenmodes of the round-trip matrix
which are degenerate to lowest order%inAs can be seen from Eqg. (33), the lowest-order
eigenvalues corresponding to the moégg+, andE;;- ,_1 are the same for arbitra/and

v. This reflects the fact that, within the paraxial approximation, the resonator eigenfrequency is
independent of the polarization. Additionally, for a cavity geometry such%ﬁﬁ‘i?w

is a rational number, sa& with relatively prime integerg andn, the lowest-order eigenvalues
corresponding to the mod&s,y, andE ;g y+n are the same for arbitrady v ando.

Lowest-order degeneracy between modes is only relevant if the modes are coupled by first-
order matrix elements. As can be seen from Egs. (24) and (25) together with Egs. (20-23), a
modeE;s+, in general couples to the modeg,+ .1 as well as to the modes;,-,, with
v/'=v—2,v—1andv. AmodeE,,-, couples to the modds,,- ., as well as to the modes
Ejg+y With V/ = v, v +1 andv + 2. For nonzerd,. coefficient, the modeg, 4+, andE;,-,
additionally couple to the modés;,+, 4, andE;,- .o, respectively.

From this analysis, we see that the degeneracy between the regggs andE; - 1
must be taken into account. On the other hand, a degeneracy between theERpdeand
Ejo+ v+n due to resonator geometry is only relevantries 1 and forn = 2, f4.. # 0. For these
two special cases, an infinite set of degenerate modes are coupled by first-order off-diagonal
matrix elements, and finding the first-order corrections to the eigenvalugssdfignificantly
more difficult. We therefore exclude these two cases from further analysis.

Disregarding the two cases= 1 andn = 2, f41 # 0, the first-order corrections to the eigen-
values ofA can be obtained from the two-by-two submatrix/Afvhich corresponds to the
subspace spanned By, +, andE;,- ,_;. We denote this matrix as the two-by-two round-trip
matrix. Since the four matrice&™*2 are all diagonal to lowest order %\ the two-by-two
round-trip matrix is given to first order ié by a product as in Eq. (32), except that each of the
matricesA*1*2 is replaced by an appropriate two-by-two submatrix. Specifically, these four
submatrices are made up of the coeffici&n;i?é:jt2 with i, j € {0,1}, given by

+9,42 _ +1,42J,00 0" +1,42 _ +1,423,0 ,0F

CR%) =ayy ; a0 - av—l.,v ’ (34)
+1.4p ailviz-,\]-,U*,U* atrEe ailiz,«lff*,ff*
Qi =&y 1 ) 11 T =& v .

The coefﬁcientsﬁ’i, obtained by applying Egs. (27) and (28) to Eqgs. (24) and (25) and com-
paring with Eq. (26), are given explicitly by

if4e(6V2+6IV+I°4+) 2v+J
35 = Ri-1v(és) (1:F al = )y = )+

i &t v v+J
hw 5 Rova(8) - 5 Ru(E) | -
1 &

2
4+ i Ei .
a5 = e [Ruv-1(84) — Ry (82) | + 5oy Ry 10 () + 0 (ez) ’

—- — 2

2v+J &2
4 1+é&2

Ri2(E)+0 (3 ).

#121507 - $15.00 USD  Received 16 Dec 2009; revised 25 Feb 2010; accepted 8 Mar 2010; published 23 Apr 2010
(C) 2010 OSA 26 April 2010/ Vol. 18, No. 9/ OPTICS EXPRESS 9588



6V24+6Jv+J2—J) 2v+J
c 8c

if
a5 =Ryriv-1(8x) <1:F 4

| Ei v+J v 2v 4+ Ei
3\/@ [_ 2 R]-f"l(fi)szRJV(fi)} sl Ryt1v- 1(5i)+ﬁ< )

and
v V(D) &y

ao = —
' x L Jite

For ai_j'jE one can check tha{j’jE (a:j”i)* with * denoting complex conjugation.
The half of the two-by-two round-trip matrix corresponding to the mirrof.ats given by

B o) @2

alO aq a11

|:RJ7V71(Ei) — RJV(E:E)] + V(Vzi;‘]) ljifz RJ+1 V— 1(Ei) + % <(;L ) .

(35)

. il . jE(6‘11 aoi a01 alg a11 aoi ao 11
ajy al; —ag; alg ag aoo +aoo alO —aj; a01 +aoo ajg
(36)

F £t A 4+ Foghd _ kg ii)

Surprisingly, the off-diagonal elements in Eq. (36) are zero to first ord%r ifhis is due to
the fact that the complex phase of the three functioRg,_1(£) —Ryw(&)), Riz1v—1(€) and
Ri—1v(&) is equal to lowest order i%i, i.e.

1 1
arg(i(Ruv-1(6) ~ Ru(E)) =arg(Ris1(6) + 0 (3) —amR1u(€) +0(3) . @)
Thisin turn results in equal complex phase to lowest ord%ffor the four coef“ficientsa,il 2
with fixed +7 and+». Sinceaai is the complex conjugate @ﬁi the Iowest order term of
a], * is real for arbitranyi, j, i’ andj’. Sinceaﬁ’jE =0(1)fori=]j anda1 ( =) for
|7é j, we have

T A4 Tt T+t £ Fotx
a0 &5 — a6 85 =ay &9 — (a9 ago )

1 1 (38)
F,+ *,+ F,+ *,+
=a5) & —agg Ay X <1+ﬁ(5>> ﬁ(@)
andsimilarly
4 _Fh bt 1

aj] ay —ay & = ﬁ( (39)
For the diagonal elements in Eq. (36), We note mﬁtizaﬁ 2 = 0(%), so the top left ele-
ment, which we denotkjaw, is given by /aOO , and the bottom right element, which we
denoteA;; , ., is given bya,; /af ;"

The fact that the off-diagonal elements in Eq. (36) are zero through first orc{en‘ieans

thatthe mirrors do not couple the modeg,+, andE;,- ,,_; to first order. As a resulg;,+,
andE,,- ,_1 remain lowest-order resonator eigenmodes when taking into account first-order

corrections, despite being degenerate at lowest order. The round- trip phase shifts for the two
modes are given by the produdtg;+, =A; . A~ andAj,-, 1 =A A With

Jotv T Jotv Jo—,v-1"Jo~,v-1'
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a bit of algebra we obtain the central result,

Ajgiy = exp[i 2i (Efi —(2v+J)arctan€.)—
1 £ 1 (40)
E(1+i52 V(V+J)+ far (6v(v+J) +JJ3+ 1))) +0 (62> )]
+
and
)\Jia_‘vfl = exp[i 2i (EEi —(2v+J)arctan. )—
| (41)

i‘(lﬁsgv(vw)i f4i(6v(v+3)+3(31))> +ﬁ<612) )]

Note that the first line of both Eqgs. (40) and (41) is simply the paraxial result of Eq. (33).
The term proportional td;. has been calculated previously [5], and is simply equal to the
phase shift corresponding to the intensity weighted average position shift of the mirror due to a
change inf...

5. Discussion of the results

The resonator round-trip phase shift of Egs. (40) and (41) allows the calculation of the exact
next-order correction to the eigenfrequencies of a Fabry-Perot resonator with perfectly con-
ducting mirrors. Beyond providing a bound for the accuracy of the paraxial approximation,
the correction term has a number of physical implications. One of the most interesting is the
prediction of spin-orbit coupling in a resonator. For two modes with eguaid equal orbital
angular momenturm = J F 1 but opposite spiw*, we find a difference in round-trip phase
shift equal to

)\i 2 .

m+10+v i &y 2im

—_— = exp(i_ X m) = exp() . (42)
Am 1oy C1+¢&2 kR

Theresonator eigenfrequency is therefore equal to the sum of a term independent of spin and
a term proportional to the product of spin and orbital angular momentum, i.e. spin and orbital
angular momentum are coupled.

The correction term for the resonator round-trip phase shift fundamentally alters the no-
tion of degeneracy of modes in a resonator. In the absence of this term, all modes with equal
2v +mare degenerate, independent of polarization. This allows significant arbitrariness in the
choice of eigenmode basis for a resonator, i.e. Hermite-Gaussian modes, Laguerre-Gaussian
modes and many other linear combinations are equally valid. For a resonator geometry such
that%/gma"&) = ﬁ, additional degeneracy results, making, e.g., a confocal resonator an
apparently ideal choice in applications where a cavity with many degenerate modes is desired.

Taking the corrections into account, this picture breaks down completely. Degeneracy be-
tween the various modes is almost completely lifted. Circularly polarized Laguerre-Gaussian
modes are clearly singled out as the fundamental resonator modes, consistent with the cylin-
drical symmetry. This removal of degeneracy is the ultimate situation for spherical mirror
resonators. However, the presence of fhe term in the round-trip phase shift opens com-
pletely new possibilities via the capability to manufacture aspherical mirrors. For a choice of
fae = 1%&/(1—% Ei), the correction term for the round-trip phase shift is significantly re-
duced, leaving only a term which is independenvand mainly quadratic id. This allows
for the construction of resonators with a degeneracy of a large number of modes reestablished.
Note however that this possibility does not include confocal resonators. Such resonators fall
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in the class of resonators with= 1 as defined above, causing the derivation of Egs. (40) and
(41) in section 4 to fail. Together with the fact that they lie at the edge of the zone of stability,
confocal resonators turn out to be among the worst possible choices for a degenerate resonator.

Last but not least, we consider the prospect of observing the effects of the correction term
experimentally. While this should be relatively easy for a resonator with dimensions on the or-
der of the wavelength, an alternative highly interesting system would be an ultra-high-finesse
macroscopic resonator in the optical domain. Although the expected frequency shift for the
lowest-order modes of such a resonator is near the resolution limit and is likely to be swamped
by mirror imperfections, the quadratic dependence of the correction term on the mode dndices
andv should allow the correction term to be relatively easily observed for higher-order modes.
Verification of the present results in such a system would constitute a precision test of diffrac-
tion and propagation in a resonator.
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