
Introduction
Although risk control is a key step in risk manage-
ment of construction projects, very often risk
measures used are based merely on personal jud-
gements rather than analysis of comprehensive in-
formation relating to a specific risk. An alternative
approach to risk control might be developing mo-
dels to represent interactions between risk factors
and carrying out analysis to identify critical factors
on which risk measures ought to be focus. This un-
dertaking is by no means straightforward due to a
number of constraints and challenges. An impor-
tant constraint is probabilistic input data on risk
factors is rarely available. Such information is little
measured and documented in construction pro-
jects and if such information exists it is difficult to
use due to its unique nature. 

This is particularly true for underground construc-
tion projects. Tunnel risks are consequences of in-
teractions of site- and project- specific factors.
Large variation and uncertainty in ground conditi-

ons as well as project singularities usually raise
particular risk factors and very specific potential
impacts. Under these circumstances the use of, for
instance, averaged statistics from past experien-
ces is of little significance  (Muir Wood, 2000). A
further challenge is a construction project, its en-
vironment and therefore its risks are continuously
evolving. New risks have to be continually identi-
fied and analysed.  The project risks should thus
be continuously assessed and modelled throug-
hout the project.

To cope with these difficulties expert judgement
is necessarily deployed to bridge the gaps in the
available probabilistic data and such information
can be encoded into Bayesian Belief Networks
(BBNs). Furthermore, customized BBNs could be
updated to reflect enhanced information as new
risk-related information becomes available in a
project. The advantages and limitations of  BBNs
are discussed in Liu et al. (2002) and Chivata Car-
denas et al. (2012a).

Bles et al. (2003) were the first to demonstrate the
application of BBNs for representing underground
construction risks while Sousa (2010) had demon-
strated the application of Bayesian Networks
(BNs) for tunnelling. With a different approach,
using only hard data this author developed a geo-
logic prediction model. Dynamic BNs were also
used by Spasková and Straub (2011) to model the
excavation performance of a road tunnel built
using the New Austrian Tunnelling Method. 

Modelling
The BBN approach is essentially a framework for
modelling the relationships between variables,
and for capturing the uncertainty in the depen-
dencies between these variables using conditional
probabilities (van der Gaag, 1996). The probability
of a value of a factor in the BBN occurring is deter-
mined by the occurrence of change in other inter-
related factors (Onisko et al., 2001). In this way,
unknown probabilities for a factor in a BNN can be
calculated or revised from existing information of
interrelated factors in the network. The inference
mechanism used in a BBN is the Bayes theorem
which makes it possible to compute the probabi-
lity of an effect on any variable in the model from
the probability of a given cause. 

BBNs can be used to construct models composed
of scenarios based on a set of known possible risk
factors associated with the risks being analysed.
These possible scenarios must be structured as a
set of mutually exclusive and collectively exhaus-
tive elements to which a probability distribution
can be attributed. Probability estimates are elici-
ted from experts by means of a structured method
which is specified to minimise bias in the estimates
provided.  Such method is described in Chivata
Cardenas et al. (2012a). The BBNs provide reliabi-
lity and probabilistic consistency to both the
judgments and the information available, as well
as, facilitate risk analysis in developing further
risk-related knowledge. Such BBNs-based risk
analysis not only contributes to delivering a com-
prehensive understanding of the risks involved, it

30 GEOT ECHNIEK – Januari 2013

Relevant risk factors associated 
with the construction of 
excavated tunnel cross-

passages in soft soils  

Johannes IM Halman*

W. van der Linde

Ibsen Chivatá 
Cárdenas* 

Saad SH Al-Jibouri*

*Department of Construction Management and Engineering Faculty of Engineering Technology, University of Twente, The Netherlands

Figure 1 – Abbreviated risk model for construction of cross-passages in soft soils in bored tunnels.



also yields information on opportunities to control
specific risks.
In a BBN, the interrelationships between variables
are expressed graphically in the form of diagrams.
Variables are represented by nodes. Diagram
nodes that have interdependencies are connected
by arcs, whereas independent nodes are not con-
nected. The direction attached to an arc reflects
the direction of causal influence, which might be
indicated by an expert, or determined from data. 

In figure 1, the components of a model for the risk
factors involved in the construction of cross-pas-
sages in soft soils are displayed. The model was
developed earlier with the support of more than
six experts involved in on-going or past under-
ground construction projects, such as bored tun-
nels and deep shaft excavations, in the Nether-
lands. The experts all had a minimum of ten years
of tunnelling experience. Further details on how
the models were developed are described in Chi-
vata Cardenas et al., (2012a, b).

According to the experts consulted, more than
fifty risk factors were identified as relevant to the
excavation of tunnelling cross-passages. The
model included issues limited to soft soils similar
to Dutch ground conditions. Dutch ground condi-
tions are characterised by saturated, low stiffness
sandy soils with medium-fine size particles and a
high groundwater table. The developed risk model
refers only to bored cross-passages using ground
freezing technologies in combination with outer
struts protecting the main tunnel tubes as the
temporal support and concrete linings cast in situ
as the definitive support. Two major events-sce-
narios (ovals) were identified: water inflow into
the excavation and excessive soil deformation.
Both scenarios might trigger the collapse of the
excavation. These two scenarios share common
causes such as faults in the excavation process, de-
sign, monitoring and testing mistakes and are af-
fected by variables related to ground conditions
(the boxes in figure 1). The developed model is
only composed of risk factors whose failure states
involve either events exceeding an undesirable
threshold, or conditions becoming unfavourable.
The detailed model is available from Chivata Car-
denas et al. (2012b)
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Summary
This paper reports on an investigation of risk factors associated with the construc-
tion of excavated tunnel cross-passages in soft soils. The investigation focused
on excavations where freezing technologies are used to provide temporary
 support. The relevant risk factors and their associated probabilistic data were
 gathered from elicitation of experts. A ranking of the most important factors was

obtained for an on-going project: Sluiskil tunnel in the Netherlands. This was
made possible by modelling the risk factors using Bayesian Belief Networks.
Based on the modelling results the project has increased its awareness of the
 relevant risk factors in the construction of cross- passages and further optimized
the associated mitigation measures.  

Figure 2a – Ranking of most relevant factors and their impact on the occurrence
of cross-passages excavation deformation at the case study project

Figure 2b – Ranking of most relevant factors and their impact on the occurrence
of water inflow into cross-passages excavation at the case study project



Model validation
Models can be validated by testing how they be-
have when analysing well-known scenarios. This
option is challenging in this study because infor-
mation on well-known scenarios is not available.
The use of information from historical failures is
constrained by the fact the only partial informa-
tion is available, making validation unreliable and
impracticable. Therefore, to verify the models’ re-
liability, different evaluations have been em-
ployed as explained below.

To ensure that the probability estimates reliably
represent expert knowledge, a discrepancy analy-
sis was conducted. Discrepancy analysis aims to
identify those pieces of data where the experts’
assessments differ the most. These data should be
reviewed to see if there are avoidable causes of
the discrepancy (Cooke and Goossens, 2000) or for
the purpose of adopting values based on esta-
blished confidence bands (Ayyub, 2001). In our
case, discrepancy analysis provided information
on which pieces of information were suitable for
incorporation in the model, which needed to be
revisited by its provider, and which had to be re-
tained for further analysis to assess the effect of
epistemic uncertainties. Discrepant judgments are
associated with epistemic uncertainties allowing
the views of various experts to differ (Paté-Cor-
nell, 1996). One reason why diversity in judgments
can arise is that experts have different experiences
regarding the failure events under consideration
(Adams, 2006).
In addition, models’ structure was reviewed by va-

rious experts during the elicitation sessions. By
considering the diagrams depicting the risks being
studied, each expert consulted had the opportu-
nity to review the relationships amongst the vari-
ables in the models and provide conditional
probability estimates. The relationships within the
networks were intensively reviewed, and this can
be seen as an internal validation of the models.
Few divergences arose among the experts on the
existence of some relationships and their impact
was investigated.
After this validation process, any remaining bias
data were investigated by computing entropy and
mutual information measures. Entropy, H(x), is
commonly used to evaluate the uncertainty, or
randomness, of a probability distribution and can
be estimated for a distribution P(x) as follows: 

H(X) = - Σx€XP(x)logP(x)                                             (3)

The effect of one variable on another was
 measured by means of the mutual information, MI,
measure: 

MI(X|Y) = H (X) – H(X|Y)                                              (4)

where H(X|Y) is the entropy measure of the condi-
tional distribution of X with a given Y.
Once MI was estimated for a given variable X, and
if it was concluded that X was a critical variable
 because it had a high value of MI, the data associ-
ated with this variable were reviewed with the
 experts in order to be rejected or maintained for
further analysis to assess the effect of epistemic

uncertainties. If the MI is low, then it is assumed
that the elicitation process had adequately repre-
sented the expert’s knowledge. This analysis is
described in more detail in Woodberry et al.
(2005).

Model evaluation
The models development process has been descri-
bed in the previous section. Capturing and repre-
senting risk-related information in the models
required a careful process of data collection, de-
puration, and refinement. All this knowledge inte-
gration effort has a specific reason which is to
provide information that supports risk manage-
ment decisions; more specifically, supportive in-
formation to derive appropriate risk mediation
measures. Appropriate measures are those that
successfully either avoid or mitigate a risk, or res-
pond satisfactorily to the materialized risks given
constrained resources. In principle, and as part of
a cause-reduction approach to risk management,
these measures should act upon those dominant
risk factors that most affect the occurrence of a
given risk. This section provides a brief description
of the approach adopted in this study to analyse
the risk model based on Bayesian Networks in
order to identify these relevant risk factors but
first an evaluation of the model’s capability of pro-
viding such information is described.

The literature provides a number of methods to
determine critical variables from multidimensional
phenomena, as are the risks under study, to allow
risk reduction measures to be identified. Ansten
and Vaurio (1992) and Aven and Nøkland (2010)
provide guidance on this matter. To offer an in-
sight on the appropriateness of the approach
adopted in this study; a comparison is made be-
tween two standards approaches to identify criti-
cal variables (i.e. likelihood and input-output
correlation measures) and the proposed approach.
The likelihood measure is a measure used to rank
factors according to their probability of occur-
rence. Using such a measure, factors with a high
probability are regarded as the most critical. The
alternative standard measure is based on the cor-
relation between input variables (i.e. risk factors)
and the output (i.e. failure event). 
The variable with the highest influence on the out-
put variable in a model is ranked as the most im-
portant component and so on. For the proposed
approach, a risk factor is regarded as more critical
in a model when it has the ability to affect to a hig-
her degree a target variable uncertainty (i.e. fai-
lure event), relative to others. In the field of
ground-related construction projects, the latter
approach is seen as more convenient since this
measure conveys information about uncertainty in
risks characterisation which is the most common
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Figure 3 – Fragment of the relevant model
for the particular ground conditions and 

project features in the case study project.



phenomenon in this kind of projects. 

For the evaluation of the model, trial information
(gathered earlier in this research and different
from the case study data) was used to rank risk fac-
tors for both likelihood and input-output correla-
tion approaches and was directly elicited from
experts. With the uncertainty measure, the pro-
posed approach, the analysis needs to be based on
a sensitivity analysis. Saltelli (2002) defines sensi-
tivity analysis as the determination of how uncer-
tainty in the output of a model can be apportioned
to different sources of uncertainty in the model’s
inputs. Sensitivity analysis can be used to screen a
large set of candidate variables and identify those
which could significantly contribute to the output
uncertainty. In this way, the analysis provides gui-
dance on identifying the critical risk factors. In our
study, Borgonovo's measure is used as a sensitivity
indicator. This is an alternative approach that exa-
mines the global response of a model’s output by
looking at the whole output distribution changes
while assessing the influence of uncertainty (Bor-
gonovo, 2006). Borgonovo’s measure was tested
and reported in Borgonovo (2006) and in Borgo-
novo et al. (2011).

Table I. summarizes the results obtained from the
computation of likelihood, input-output correla-
tion, and Borgonovo’s, δl, importance measures
for a set of risk factors directly related to one the
main risk scenarios associated with the construc-
tion of cross-passages: “Excessive deformation of
cross-passages excavation”. The numbers in pa-
rentheses indicate the relative positions of the risk
factors based on the estimated values of the mea-

sures: the larger the indicator, the more important
a variable is. The indicators reflect importance of
all the variables, and then identify the key contri-
buting variables, thus providing guidance on po-
tential remediation measures. In the case of δl
measure, the indicators reflect the relative impor-
tance. Similar computations can be performed for
any variable or sets of variables in the network in
order to assess the effects of combinations of risk
remediation measures for other targeted risks fac-
tors selected.

It is noticed, that using Borgonovo’s measure, in
Table 1 that the “Insufficient frozen soil strength/
stiffness during freezing up/maintenance” event
is the source of uncertainty that most affects ex-
cessive deformation of cross-passages excavation
risk, and that the “Insufficient strength/stiffness
of shotcrete” event is the least contributing fac-
tor. There are also significant differences in the
rankings provided by the various measures. For in-
stance, the δl uncertainty measure ranks “Insuffi-
cient strength/stiffness of shotcrete” as the least
important event whereas the likelihood measure
puts such an event in first place. As expected, each
importance measure provides different ranks and
this is because each importance measure relies on
different criteria associated with the decision-ma-
kers preferences. These facts indicate that using
merely a single measure to decide on the alloca-
tion of resources to control the risk under conside-
ration likely misinform decision making. A more
comprehensive approach might be to use the mea-
sures all together. If Borgonovo’s importance
measure is used in combination with Bayesian Be-
lief Networks it is possible to generate a ranking

on the basis of the combination of the relative fre-
quency, influence and contribution of each risk
factor on the occurrence and uncertainty of the
potential failure event under analysis.

To investigate the impact of divergent expert es-
timates (caused by epistemic uncertainty) incor-
porated into the model on its performance, three
levels of uncertainty were analysed. Accordingly,
three different sets of probabilistic information
were employed as experimental data for each
input variable in the model (gathered earlier in this
research and different from the case study data).
For the first level of uncertainty assessment, full
distributions derived from the whole set of ex-
perts estimates were used as input information.
For the second level of the uncertainty assess-
ment, input information only consisted of the va-
lues indicated by the experts. For the third level of
uncertainty, the model was run using only the pro-
bability value most frequently chosen by the ex-
perts. The results of the analysis of the impact
divergent expert estimates (robustness analysis)
are displayed in Table 2.

Table 2 shows that changing the information
sets of input variables with different degrees of
uncertainty can lead to different results. The third
level of uncertainty (the right-hand column)
 corresponds to a condition with little uncertainty
which is probably unrealistic for a real project. The
first and second levels of uncertainty are both
more realistic and conservative situations and
could more sensibly be used to guide the allo -
cation of resources in order to control risks. The
results in Table 2 are encouraging in terms of
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Table 1 - Ranking of risk factors according to likelihood, correlation, 
and Borgonovo’s measures for the target risk “Excessive deformation 
of cross-passages excavation”

Target risk: Excessive deformation of cross-passages excavation 

Directly related risk factors Likelihood Correlation 1

Insufficient frozen soil 0,500  (3) 0,600  (5) 0,138  (2)
watertightness during 
freezing up/maintenance

Incomplete frozen body 0,571  (2) 0,800  (2) 0,112  (3)

Insufficient frozen soil 0,667  (1) 0,818  (1) 0,213  (1)
strength/stiffness during 
freezing up/maintenance

Insufficient prestressing 0,667  (1) 0,714  (4) 0,036  (4)
of strutting system

Excessive freezing period 0,667  (1) 0,545  (6) 0,035  (5)

Insufficient strength/ 0,667  (1) 0,800  (2) 0,019  (7)
stiffness of shotcrete

Excessive disturbance 0,571  (2) 0,750  (3) 0,026  (6)
of the ground

�

Table 2 - Ranking of risk factors according to Borgonovo’s measure for 
‘Excessive deformation of cross-passages excavation’ for different 
levels of uncertainty
Target risk: Excessive Input information set
deformation of cross- Derived Only values Most
passages excavation distribution indicated favoured

from expert favoured probability
estimates by experts value

Directly related risk factors 1 1 1

Insufficient frozen soil 0,138  (2) 0,089  (4) 0,071  (4)
watertightness during 
freezing up/maintenance

Incomplete frozen body 0,112  (3) 0,155  (1) 0,170  (1)
Insufficient frozen soil 0,213  (1) 0,153  (2) 0,120  (3)
strength/stiffness during 
freezing up/maintenance
Insufficient prestressing 0,036  (4) 0,120  (3) 0,152  (2)
of strutting system

Excessive freezing period 0,035  (5) 0,057 (5) 0,063  (5)

Insufficient strength/ 0,019  (7) 0,011 (7) 0,012  (6)
stiffness of shotcrete
Excessive disturbance 0,026  (6) 0,016  (6) 0,006  (7)
of the ground

���



model robustness since the outcomes differ little
between the first two levels of uncertainty. At this
stage, it has been verified the ability of the
 developed model to provide reliable information.
The robustness of the model has also been con -
firmed to a great extent, therefore the model
is suitable for application.
Identification of relevant risk factors associated
with cross-connections excavation at Sluilkil -
tunnel project.
The analysis of the model is intended to obtain
 different indicators that inform on the relative
 effect of the risk factors associated with the
 construction of tunnel cross-passages. By deter-
mining those factors that increase most the
chance of occurrence of events such as water in-
flow or  excessive deformation of the excavation a
project manager increases his understanding of
risks and this information can support the plan-
ning of  control actions.
To determine the relative importance of major
risks associated with the construction of tunnel

cross-passages at Sluiskiltunnel project, the
 Bayesian Network model was used in combination
with Borgonovo’s measure-based analysis. The
 necessary data was directly gathered from the
case study project by a method reported in
 Chivata Cardenas et al., (2012a). 

As output of the analysis described in the previous
section tornado graphs were developed and are
shown in figure 2a and 2b. In the tornado graphs
the numbers at the upper horizontal axis indicates
the estimated value of the Borgonovo’s impor-
tance measure. A relative higher value of  Bor go-
novo’s importance measure implies that an
increase in the value of the risk variable will have
an increase in the output uncertainty. If this
 measure is relatively low for a factor, such factor
will result in a lower contribution of uncertainty
in the output. In the tornado graphs risk factors
are ordered according to importance measure
value. 
In figure 2a and 2b the items with asterisks are the

project specific risk factors incorporated into the
model.

In figures 2a-b, a curve is added to indicate the
change of probability (measured in terms of
change of evidence against) of the occurrence of
each of the major failures under study that occurs
due to successively setting in place controls on the
ranked factors from the less important variables
towards the more important ones. In the model,
this is achieved by successively removing variables
from the model, starting with the least important
one, such that, once a variable is removed, the
change in the proportion of evidence against the
failure event under analysis can be observed in the
output distribution. This procedure can be viewed
as an evaluation of different potentially relevant
models. If n is the number of variables in the basic
model, n-1 different models are run and evalua-
ted. In this way a practitioner can observe the im-
pact of the mitigations. More significant however
is, that along these curves, it is possible to identify
substantial shifts and their associated variables.
This helps identify the most effective opportuni-
ties to reduce the probability of failure.  For the
case of excessive deformation of excavation (Fi-
gure 2a) significant reductions of chance can be
obtained for the 8 best ranked risk factors but the
mitigation of risk factors such as ‘insufficient fro-
zen soil strength/stiffness (3)’, ‘insufficient strut-
ting system strength/stiffness (4)’, ‘suboptimal
design (frozen ground thickness)  (5)’; substanti-
ally contributes to the reduction of chance of ex-
cessive deformation of excavation. With this
information specialists at the project might decide
to focus their resources to attend primarily these
risk factors. 

The specialists can further use the graph in figure
2a and the fragment of the developed model in
 figure 3, to determine, for instance, how to
 efficiently reduce the chance of an insufficient
 frozen soil strength/stiffness (3) event. In the
model the risk best ranked factors directly asso -
ciated with insufficient frozen soil strength/ -
stiffness (3) are respectively ‘suboptimal  design-
frozen ground thickness (5)’, ‘strength variation
not detected by temperature monitoring (9)’,
 ‘unexpected ground water salt concentration’ (10)
and ‘flow/seepage of water through soil’ (14).
Equivalent information can be drawn for the event
of water inflow into the excavation in figure 2b.

In addition, by means of a questionnaire addres-
sed to the four experts involved in the case study
project the value added by the analysis conducted
was further assessed. According to the results of
a questionnaire using a 5-point scale, the experts
fully agreed in that the developed Bayesian Belief
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Networks-based risk model provide valuable
 information to assess risks in tunneling projects
(score 4.0). Unanimously,  the added value of
the use of tornado graphs was also highly valued
as means to set priorities of risk management
 measures (score 4.0). The added value to the
 process of risk management and the balance
 between the time needed to apply the BBN-based
risk model and the expected output were scored
within the interval 3 to 5.  Conversely, there was
high disagreement in relation to the models’
added value to the traditional risk registers: the
scores range from 2 to 5. The models’ added value
for risk identification was scored from 3 to 4. One
expert indicated that in terms of risk identifica-
tion, the use of models will be more helpful to less
experienced professionals.

It is worth mentioning that information provided
by the model can be analysed together with other
criteria, such as the cost of the risk measures or the
controllability of risk factors enabling better infor-
med decision making. Likewise, note that the
above analysis results only hold for the case study
project under scrutiny and correspond to the
 current state of knowledge at the project. In other
words, the model was enabled to yield infor -
mation to risk management on a case-by-case
basis while considering the project specific set-
tings and available knowledge at a point in time.

Conclusion
This paper has reported on risk factors associated
with the construction of cross-passages in soft
soils using freezing technologies. By modelling
such factors a ranking of the most relevant ones
for the case study project were obtained. The
 modelling process consisted of using scarce histo-
rical data in combination with expert judgement
to characterise the risk factors. Expert judgement
is used to augment available probabilistic risk-
 related information which is encoded into a
 Bayesian Belief Network. Bayesian Belief Network
powered critical factors to be determined while
providing reliability to probability estimates
 provided by the experts. The paper has shown how
critical factors can be derived from the developed
model on a case-by-case basis. This constitutes
a novel contribution to the standard practice in
construction which merely uses simplistic methods
or judgement to set priorities.

Borgonovo’s measure proved to be a suitable
 measure for determining relevant risk factors, and
particularly so if combined with the Bayesian
 inference computation. These two tools allowed
relevant factors to be identified based on a com-
bination of the relative probability, influence, and
contribution of each risk factor to the occurrence

and uncertainty of the output variable under
 consideration.
Based on the modelling results the case study
 project has increased its awareness of the relevant
risk factors in the construction of cross-passages
and further optimized the associated mitigation
measures.
To make the approach more useful in real projects,
more models on critical risks ought to be develo-
ped to encompass a great proportion of the major
risks usually identified in underground construc-
tion projects. The paper concludes that, despite
the complex and uncertain nature of construction
risks, the developed model can produce useful re-
sults which could guide the allocation of resources
to specific risk remedial measures. 
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