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We have developed a decision support application for the Dutch Aviation Police and Air Support unit for
routing their helicopters in anticipation of unknown future incidents. These incidents are not known in
advance, yet do require a swift response. A response might include the dispatch of a police helicopter to
support the police on the ground. If a helicopter takes too long to arrive at the crime scene, it might be too
late to assist. Hence, helicopters have to be proximate when an incident happens to increase the likeli-
hood of being able to support the police on the ground in apprehending suspects. We propose the use
of a forecasting technique, followed by a routing heuristic to maximize the number of incidents where
a helicopter provides a successful assist. We have implemented these techniques in a decision support
application in collaboration with the Dutch Aviation Police and Air Support. Using numerical experi-
ments, we show that our application has the potential to improve the success rate with a factor nine.
The Dutch Air Support and Aviation Police are now using the application.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Police and criminals are in an ongoing race to outsmart each
other. In this race, the Dutch Aviation Police and Air support
(LVP) has recently renewed it’s fleet of helicopters with state-of-
the-art police equipment. Having good equipment is one step for-
ward, using it effectively and efficiently will make a real difference.
Because police helicopters are expensive and subject to strict avia-
tion rules for maintenance, only a limited number of helicopters is
available. As this number is insufficient to have a helicopter ready
at any time at any location, the positioning of the helicopters is key
to efficient usage of the available flying hours.

Incidents happen over time, are unknown in advance, and re-
quire a swift response. This makes efficient usage of a limited num-
ber of police helicopters complicated. In this research, the bases of
the helicopters are considered as input as the choice for a location
is a long term decision. As the number of helicopters is not suffi-
cient to cover all incidents, i.e., being sufficiently close to the loca-
tion of the incident when they occur, a solution has to come from
operational decisions to maximize the number of successful
assists.

The total flight duration per helicopter is considered fixed, as
this is given by tactical decisions. Therefore we reformulate the
problem to a maximization problem, in which we maximize the
weighted expected number of covered incidents, where the proba-
bility of covering an incident depends on the proximity of a heli-
copter, and where the weight represents the priority given to
such an incident.

In this paper, we propose a forecasting technique, followed by a
routing heuristic to maximize the weighted expected number of
covered incidents. We believe this approach can be used for effi-
cient positioning of any type of emergency vehicle, with minor
modifications to account for the difference in freedom of move-
ment. Furthermore, the approach could also be applied to for
example taxis in New York City, where the ‘incident’ would be a
passenger requiring a taxi and who takes the first one that be-
comes available at close proximity. As with police helicopters, cov-
ering a passenger’s demand requires a swift response.

To the best of our knowledge, the combination of forecasting
incidents and scheduling the routes of the helicopters on a few
minutes basis has not yet been researched. The scientific contribu-
tion of our research is filling this gap, as well as proposing algo-
rithms and models to support a planner of emergency vehicles to
route the vehicles in anticipation of emergencies in such a way that
the total expected success rate of the emergency vehicles is maxi-
mized. Furthermore, our research combines the Dynamic Vehicle
Routing Problem with the Location Covering Problem, and com-
bines vehicle positioning with incident forecasting.

The practical contribution of our research is a decision support
application that enables the Dutch Aviation Police and Air Support
to improve their success rate by proactively positioning their heli-
copters. The application can be used on a daily basis. Furthermore,
it allows for rerouting a single helicopter within a minute. This al-
lows adjusting the route of a police helicopter after it has assisted
the ground police.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.06.044&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.06.044
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http://www.sciencedirect.com/science/journal/09574174
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The remainder of this paper is structured as follows. Section 2
describes the related literature. The formal problem definition is
given in Section 3. Forecasting of incidents is discussed in Section 4,
followed by the routing of helicopters in Section 5. Section 6 con-
tains an overview of the instrument developed for the LVP. We end
with conclusions in Section 8.
2. Literature

In this research, we focus on the positioning of vehicles in antic-
ipation of unknown requests which require a quick presence.
Among other vehicle types, this applies to emergency vehicles.
These emergency vehicles can be ambulances, police cars, and heli-
copters. Although various vehicle types have different restrictions
on their movement, the concept behind the models to solve these
problems can be used for any vehicle.

The problem of the positioning of police helicopters to cover
(unknown) incidents is related to the Vehicle Routing Problem
(VRP) and the Location Covering Problem (LCP). The VRP is about
routing one or more vehicles to fulfill demand, whereas the LCP
is about locating a unit (e.g., a gas station) to cover the demand
of an area. Our problem is on the edge of both problems, as we
aim to route helicopters to maximize the coverage they give.

Among the first proposed models suitable for solving the prob-
lem of positioning emergency vehicles are the Location Set Cover-
ing Problem (LSCP) by Toregas et al. (1971), and the Maximal
Covering Location Problem (MCLP) by Church and ReVelle (1974).
In the LSCP, a set of locations is given where a facility might be
opened. A facility is an object that gives coverage to a given area
around it. Furthermore, a set of demand points is given as well
as the distance from each possible facility location to the demand
points. The objective of the LSCP is to minimize the number of re-
quired facilities such that each demand point is at most a prede-
fined distance away from the closest facility. Like the LSCP, the
MCLP also has a set of locations where facilities might be opened,
and a set of demand points. However, in the MCLP, a fixed number
of facilities is given. Therefore, the objective function is to maxi-
mize the number of demand points lying within a predefined dis-
tance from their closest facility.

As Gendreau et al. (2006) state, both the LSCP and the MCLP
make sense in practice for use with emergency vehicles: the LSCP
can be used to determine the required number of emergency vehi-
cles to cover all demand, whereas the MCLP can be used to opti-
mally position emergency vehicles when insufficient vehicles are
available to cover every demand point. Schilling et al. (1979) pro-
pose an extension to take different types of facilities into account
in the context of the Baltimore City Fire Protection System. How-
ever, they argue their findings are general and can be used for
other emergency vehicles as well. Daskin and Stern (1981) added
a second objective to the LSCP to measure the number of times a
point is covered above its required coverage. Hogan and Revelle
(1986) continued on this work by introducing the backup coverage
problem. For an overview of extensions, we refer to Li et al. (2011).

The LSCP and the MCLP are static models. In order to account for
a vehicle being dispatched to a call, probabilistic models have been
developed. Larson (1974) was among the first to research the con-
cept of emergency vehicles being a server in a region with demand.
The demand arrives over time and enters the queue of uncovered
demand of the emergency vehicle. As soon as the emergency vehi-
cle has finished one request, it will start handling the next request.
A request might also leave the queue when it cannot be handled in
time. Daskin (1983) developed an integer programming formula-
tion for the probabilistic covering problem, the Maximal Expected
Covering Location Problem (MEXCLP). Batta et al. (1989) made an
extension to the MEXCLP, the Adjusted Maximal Expected Cover-
ing Location Problem (AMEXCLP), which relaxes the assumptions
that servers operate independently, servers have the same busy
probabilities and are invariant with respect to their locations. Re-
pede and Bernardo (1994) also made an extension to the MEXCLP
by adding time variation, known as the TIMEXCLP. For situations
with insufficient data on the travel times to make a statistical dis-
tribution, Davari et al. (2011) presented a Fuzzy Maximal Covering
Location Problem (FMCLP) to take into account the variation esti-
mated by experts. We refer to Owen and Daskin (1998) for a de-
tailed review of probabilistic covering models.

Availability after a vehicle has been dispatched is ignored by
static models (Brotcorne et al., 2003), and probabilistic models
only take this into account to some extent. In order to really take
dispatches into account, dynamic models have been developed in
which vehicles are relocated after a dispatch or when new infor-
mation arrives. Kolesar and Walker (1974) note that in case of a
large fire or multiple smaller fires, a new positioning of fire trucks
will yield a better coverage. They have developed a model for the
New York City Fire Department; however, they state their algo-
rithm should be applicable to other cities as well. Gendreau et al.
(2001) propose a dynamic model that uses Tabu Search and is
based on the model of Gendreau et al. (1997). Furthermore, they
note that more challenging problems can be solved with the use
of parallel processing. Rajagopalan et al. (2008) propose the use
of a reactive Tabu Search algorithm for relocation of emergency
vehicles. Boctor et al. (2011) define the Emergency Vehicle Reloca-
tion Problem in which the cost of relocation is taken into account.
Furthermore, they propose two heuristics to solve this problem.

The aforementioned methods have in common that they re-
quire some forecast. A forecast is an estimate of what future obser-
vations will be if the underlying process continues as it has in the
past (Brown, 2004). Gorr and Harries (2003) note that conventional
forecasting methods are not or hardly effective for forecasting the
moment an individual will commit a crime. They question whether
crime forecasting is possible due to the uniqueness of crimes. Their
answer on this question is that patterns can be recognized on a
aggregated level. Sherman et al. (1989) discuss the phenomenon
of hot spots, areas that have relatively much overall criminal activ-
ity. Block (1995) proposes a statistical tool for law enforcement
decisions named Spatial and Temporal Analysis of Crime (STAC).
STAC aims at discovering and describing hot spot areas. Felson
and Poulsen (2003) discuss that crime varies by time of the day.
Liu and Brown (2003) propose the use of a point-pattern-based
density model, which uses criminal preferences obtained from past
crimes. Deadman (2003) reviews forecasts made by Dhiri and
Great Britain (1999). These forecasts were made in 1999 and were
for the years 1998–2001. Deadman (2003) notes that time series
models perform reasonably well. It can be concluded that from
an aggregated level, it is possible to make probabilistic statements
on the occurrence of crimes depending on time and place.

Corcoran et al. (2003) note that a continuous updating forecast-
ing tool will help the real-time allocation of police resources. As
discussed by Gorr et al. (2003), the forecasting errors become
acceptable when the number of crimes used for a forecast is at
least in the order of thirty or more. Field (1999) shows a correlation
between the expenditure in the last four years by real consumers
and the number of incidents. For every percent increase in the
expenditure, incidents increase with two percent. Furthermore,
Field (1999) shows there is a positive correlation between the
number of incidents in an area and the number of young males
in this area. An increase of one percent in the number of males
in the age of fifteen to twenty, results in an increase of incidents
of one percent in that area. It can be concluded that there are
dependencies when looking at the characteristics on an aggregated
level. These dependencies allow for use in forecasting. The chal-
lenge here is to generalize from specific events (e.g., an incident
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at a specific time and day, at a specific location by a specific group
of criminals) to a criminal intensity factor for an area. For this,
there are many generalization methods available. We refer to Sut-
ton and Barto (1998) for an overview.

Anticipatory decision-making is the concept of making deci-
sions in anticipation of future events that are unknown at the time
of decision-making. In the field of vehicle routing, this is known as
anticipatory routing. Anticipatory routing is often used to route
trucks, as carriers know only part of their orders when the initial
plan is made, or to avoid traffic jams (Claes et al., 2011). In this sec-
tion, we focus on routing in anticipation of future demand, as traf-
fic jams do not apply to the police helicopters.

Anticipatory routing is part of the larger domain of the Dynamic
Vehicle Routing Problems (DVRP). DVRP is a generalization of the
Vehicle Routing Problem (VRP), which is the problem where multi-
ple vehicles are available to fulfill known requests (Laporte, 1992).
For DVRP, these future request are unknown. Many extensions and
special cases of this problem exist. Proposed methods include (i)
rolling horizon approaches, (ii) replanning when new information
becomes available, and (iii) including forecasted orders in the ini-
tial plan. We refer to Eksioglu et al. (2009) for an extensive over-
view of vehicle routing.

In anticipatory vehicle routing, routes are made for vehicles, in
which the vehicles drive around and wait in anticipation of future
demand. When and where to drive and wait is based on forecasts
of future demand. Examples of anticipatory routing can be found
in Branke et al. (2005), where additional customer requests are
being scheduled in otherwise fixed tours; Ichoua et al. (2006),
where dummy orders are included in the plan; Thomas (2007),
where the number of customers served by a single incapacitated
truck is maximized; and Mes et al. (2010), where look-ahead strat-
egies are considered for full truckload pick up and deliveries. Once
the anticipated demand becomes known, real-time rerouting is re-
quired, see e.g., Liao and Hu (2011).

Our problem of positioning police helicopters such that the
number of successful assists is maximized can be described as a
DVRP with soft time windows. In our problem, there are no hard
time windows, as it is allowed not to send air support. There is a
soft time window, which starts at the moment the incident hap-
pens. Although describing our problem as a DVRP is straightfor-
ward, proposed models to solve the DVRP are less suitable for
our problem due to the short available time for decision making.
Furthermore, it is sufficient to be approximate to incidents. There-
fore, the problem is better described as a combination of the DVRP
and the Location Covering Problem. This allows to route police
helicopters in such a way that they cover as many future incidents
as possible. We propose to name this special case the Anticipatory
Emergency Vehicle Routing Problem (AEVRP).

The scientific contribution of our research is the combination of
forecasting incidents and scheduling the routes of the helicopters
on a few minutes basis. Specifically, we propose a model to support
a planner of emergency vehicles to route the vehicles in anticipa-
tion of emergencies in such a way that the total expected success
rate of the emergency vehicles is maximized. Furthermore, our re-
search combines the Dynamic Vehicle Routing Problem with the
Location Covering Problem, and combines vehicle positioning with
incident forecasting.
3. Problem definition

The AEVRP has two aspects: where will incidents happen and
where to position the helicopters. The first aspect is described in
Section 4, the latter is described in detail in Section 5. As the inci-
dent forecasts made by the model in Section 4 will be used for
positioning helicopters, the requirements implied by the position-
ing model have to be taken into account. Therefore we first give a
formal definition of the problem.

In order to give air support, the LVP has a homogeneous fleet of
helicopters H. Each helicopter h 2 H has a location w 2 W at any
time interval t 2 T . A location w 2 W is defined as a single con-
nected area of any shape or size, and a time interval is a duration
specified in time. The movement of a helicopter h 2 H is restricted
by its speed and other air traffic. Helicopters are either flying,
standby on the ground, or out of order due to, for example, main-
tenance. When a helicopter is standby on the ground, it takes pw

time intervals to get airborne depending on its location w. Here,
there is a difference due to presence of other air traffic, which dif-
fers per location due to, for example, the proximity of an airport.
Each helicopter h 2 H has a set of attributes. These attributes are
(i) cruising speed, (ii) remaining fuel level, (iii) attached equip-
ment, (iv) maximum flight duration before the next scheduled
maintenance to comply with aviation rules, and (v) time windows
for which crew is available.

In this research, we chose to not explicitly take into account the
preventive effect coming from the presence of a police helicopter,
which has not been studied yet. As incidents are not known in ad-
vance, we define the objective to maximize the total weighted ex-
pected coverage. To compute this, we need (i) the fraction of
coverage Gwt for location w during time interval t, and (ii) the crim-
inal intensity factor iwt. The value of Gwt can be seen as the proba-
bility a successful assist will be made if an incidents happen at
location w during time interval t. Intuitively, iwt depends on inci-
dents that happened in the past at or approximate to the location
w during or approximate to time interval t. In Section 4, we discuss
iwt in more detail. We define weighted expected coverage of a loca-
tion w 2 W during time interval t 2 T as Gwt � iwt.

We give a formal definition of the AEVRP as a Mixed Integer Lin-
ear Program (MILP). We assume a forecast is available for use in
this mathematical model, and is made for the set of locations W
and the set of time intervals T . This leads to the MILP given by
Eqs. (1)–(11). Eq. (1) is the objective function, which maximizes
the total weighted expected coverage.

max
X

w2W;t2T
ðGwt � iwtÞ ð1Þ

Eqs. (2) and (3) restrict the fraction of coverage per area and per
time interval to at most the minimum of 1 and the sum of all cov-
erage Gwt. As iwt are the nonnegative criminal intensity factors, the
objective function is bounded by the minimum of Eqs. (2) and (3).
The availability of a helicopter in time interval t is represented by
the parameter dht, and the coverage a helicopter at location a gives
to a location w is cwa. This coverage is based on a decreasing prob-
ability function g(w,a), proposed by experts from the LVP, and de-
pends on the distance between two locations w and a. In this
function, support within ten minutes is considered to be always
successful, the probability of success decreases between ten and
fifteen minutes, and support after fifteen minutes is considered
unsuccessful. The binary variable Lwht indicates whether helicopter
h is at location w in time interval t.

Gwt 6
X

a2W;h2H
ðLaht � cwa � dhtÞ w 2 W; t 2 T ð2Þ

Gwt 6 1 w 2 W; t 2 T ð3Þ

Eqs. (4) and (5) restrict the movement of a helicopter to exactly
one area in the subset W 0

wht , which contains the locations that can
be reached within one time interval from the location w of helicop-
ter h in the time interval t � 1. The subset W 0

wht can be computed
upfront and used as input for the algorithm.

Lwht 6 Lah;t�1 w 2 W; h 2 H; t 2 T ; a 2 W0wht ð4Þ
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X

w2W
Lwht ¼ 1 h 2 H; t 2 T ð5Þ

The duration of flights is limited by the fuel capacity. We define
fh to be the maximum flight duration in time intervals. The remain-
ing flight duration is represented by Fht. When being refueled, a
helicopter h gains remaining duration worth gh time intervals per
time interval it is being fueled. The remaining flight duration eh

represents the starting fuel level in time intervals. Eqs. (6)–(9) take
the fuel consumption into account. As helicopters can only be refu-
eled when on the ground, we introduce binary variables Aht that
indicate whether helicopter h is airborne at time interval t.

Fh;tþ1 6 Fht � Aht þ gh � ð1� AhtÞ h 2 H; t 2 T ð6Þ

Fht 6 fh h 2 H; t 2 T ð7Þ

Fht ¼ eh h 2 H; t ¼ 0 ð8Þ

Aht 6 Fht h 2 H; t 2 T ð9Þ

Eq. (10) restricts the movement of a helicopter such that it can
only move when airborne. Eq. (11), restrict the total time a helicop-
ter is allowed to fly during the planning horizon, due to for exam-
ple regulations on time between maintenance.

Lwh;tþ1 P Lwht � Aht w 2 W; h 2 H; t 2 T ð10Þ

X

t2T
Aht 6 nh h 2 H ð11Þ

The police sometimes has intelligence about potential future
incidents, which is obtained, for example, via an undercover oper-
ation. This intelligence can be taken into account, by setting lwht

equal to 1 for a helicopter h during time interval t such that loca-
tion w is covered during this time interval. We may set multiple
adjacent lwht to 1 to allow for longer coverage. This is done using
Eq. (12).

Lwht P lwht w 2 W; h 2 H; t 2 T ð12Þ

Often, it is undesired to hover over a single location for a longer
period, as this leads to too much noise for citizens. To take this into
account, we added Eq. (13). This constraint restricts the total dura-
tion above a location to be at most m time intervals during a single
flight.
X

h2H;t2T
Lwht 6 m w 2 W ð13Þ

In this section we have defined the problem of routing the po-
lice helicopters as a MILP. Solving this MILP will yield the optimal
positioning of all helicopters. However, solving this MILP is not
possible for problems of practical size. We propose a solution to
this problem in Section 5, but first we propose a method to come
up with the incident forecast iwt in Section 4.

4. Incident forecasting

We propose to split the problem as defined in Section 3 into
a forecast problem, and a routing problem. The latter is dis-
cussed in Section 5. As the forecasting problem and routing
problem are related, we first define the relation between these
problems.

The input we have is the historic data about incidents. These
incidents have the attributes (i) location, (ii) date, (iii) time, and
(iv) weight. The weight given to an incident is relative to other
weights, where a higher value means a higher weight. The input
we require for the routing problem is a criminal intensity factor
iwt for each location w 2W and time interval t 2 T . To reduce the
forecast error, sufficient data has to be available to create a reliable
forecast iwt for each w 2 W and t 2 T . In Section 4.2, we propose
doing this by generalization for the time and location, and by con-
version as explained for the seasonality observed in months and
weekdays. However, we first discuss the forecast area classification
in Section 4.1.
4.1. Forecast area classification

As the forecast for the Netherlands as a whole does not give any
insight on where to fly, we have to divide the Netherlands in smal-
ler areas w 2 W. We define a grid of areas to use for forecasting.
The use of circles is a natural first choice, as it represents the area
a helicopter can reach in during a given period. However, equally
sized circles will either not cover the entire area or have overlap.
Uncovered areas are not favorable, as incidents in such an area
are not covered. Overlap is not favorable either, as it leads to the
possibility of being in multiple areas at the same time. Therefore,
we use an alternative shape. For each point in an area, we want
the closest center to be the center of that area. Therefore, only con-
vex shapes are considered. Grunbaum and Shephard (1977) note
there are only three regular convex polygons that give an edge-
to-edge tiling. These shapes are the equilateral triangle, the square,
and the regular hexagon.

During routing, we allow helicopters to move from one area to
another area only if the two areas share an edge. It can be verified
that the hexagonal tiling has the best worst-case distance error,
which is defined as the maximum difference between the shortest
travel time and the travel time when moving over the edges of
adjacent areas. Besides the smaller distance error, hexagons also
allow for more flight directions each step. Therefore, we propose
the use of a hexagonal grid. In this research, we assume all helicop-
ters have an identical cruising speed of two nautical miles per min-
ute. This assumption corresponds with the use of helicopters of the
type Eurocopter 135. In this research, we set the inner radius of the
hexagon to 1 min or 2 nautical miles. This implies the distance be-
tween the centers of two neighboring hexagons is 2 min or 4 nau-
tical miles.
4.2. Forecasting algorithm

Although more incidents happen than desired, the number of
incidents that took place within an hexagon of size 4 nautical miles
will be relatively low. As helicopters are considered to be the fast-
est emergency vehicle, this also applies to other emergency vehi-
cles. Therefore, we use generalization techniques, and use all
historic data to reduce the forecast error. To use all historic data,
we have to convert each incident, such that it can be used for the
date under consideration. The generalization techniques extrapo-
lates an incident at one specific location and time to neighboring
areas and some time periods around the incidents.

As crime rates differ between moments of the day, days of the
week, and months of the year, we have to take this into account.
In order to do so, we have defined two conversion factors: a Factor-
Weekday(weekday,hour) and a FactorMonth(month,hour). The Fac-
torMonth converts the month of an incident into the month of
the day to be forecasted. This conversion is done for each hour of
the day, such that the percentage of weighted incidents in an hour
is equal for both months. This is done by Algorithm 1, with Target-
Month the month for which we create a forecast. For this algorithm,
we introduce the set I as the set of historic incidents. Based on the
attributes date and time, we can derive for each incident its year,
month, day of the week, and hour.
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Algorithm 1: Generate FactorMonth for a given TargetMonth.

1: for each incident in I do
2: Hourly[incidentmonth, incidenthour] + = incidentweight

3: Total[incidentmonth] + = incidentweight

4: end for
5: for month = January to December do
6: for hour = 0 to 23 do
7: Fraction(month,hour) =

Hourly[month,hour]/Total[month]
8: end for
9: end for
10: for month = January to December do
11: for hour = 0 to 23 do

12: FactorMonthðmonth;hourÞ¼ Fraction½TargetMonth;hour�
Fraction½month;hour�

13: end for
14: end for

The algorithm gives the FactorMonth for each combination of

month and hour with the TargetMonth. By replacing all references
to month with weekday, Algorithm 1 gives the FactorWeekday for
each combination of weekday and hour with the TargetWeekday.
This enables us to use all historic incidents from all months and
weekdays to generate a forecast.

In order to generate iw,t for all w and t, we use Algorithm 2. As
we move forward in time, older incidents in I are likely to become
a less accurate predictor of future incidents. Therefore we propose
the use of a forget factor a that represents the percentage of weight
an incident loses every month. The calculation can be found on
lines 2–3 of Algorithm 2. Lines 4–7 of this algorithm apply the Fac-
torMonth and FactorWeekday. Line 8 creates the forecast without
any generalization. Lines 10–11 generalize in space and time and
are discussed after Algorithm 2. In line 11, /z;r2 represents the
probability density function of the normal distribution with aver-
age z and variance r2.
Algorithm 2: Generate iwt.
1: for each incident in I do

2: MonthsOld = 12 ⁄ (TargetYear � incidentyear) +

TargetMonth � incidentmonth
3: incidentweight = (1 � a)MonthsOld
4: end for

5: Execute Algorithm 1

6: Execute Algorithm 1 for Weekdays

7: for each incident in I do

8: incidentweight⁄ = FactorMonth[incidentmonth, incidenthour]

9: incidentweight⁄ = FactorWeekday[incidentweekday,

incidenthour]
y

10: i00incidentlocation;incidenttimeInterval

þ ¼ incidentweight
11: end for
12: i0wt ¼
P

ai00at=distanceðw; aÞ2
13: iwt ¼
P

zi0wz � /z;r2 ðt � zÞ
We assume generalization in the space dimension is justified as
x

Fig. 1. Hexagonal coordinate system developed for this research.
data about one location gives information about its surrounding
area, similar to a thermometer in one room, which gives an indica-
tion about the temperature in the room next to it. We assume gen-
eralization in time is justified in a similar way as space. The current
temperature in a room gives information about what it could have
been fifteen minutes ago or in half an hour. This also applies to the
second room mentioned in the space dimension example, although
this indication might become less reliable.

In order to generalize in the time and space dimensions, we pro-
pose to first generalize in space for each time interval. Next, the re-
sult of the forecast in the space dimension can be used as input for
the generalization in the time dimension. This yields a forecast that
is suitable for helicopter routing.

The assumptions for the space generalization distribution and
time generalization distribution are based on expert opinions. As
can be seen in the algorithm, all data can be used and scaled based
on various attributes, such that we learn about the entire history.

Although we believe the hexagonal grid is the best solution for
police helicopters, we are aware this is not the case for land or
water vehicles as roads and waterways have to be followed. In or-
der to overcome this problem, the functions used to calculate
whether a hexagon can be reached within one time interval can
be substituted by a parameter dij indicating whether area j is at
most one time interval away from area i. This also gives the oppor-
tunity to take different travel speeds for different streets into
account.

After the incidents have been converted and generalized in
space and time, we have obtained the criminal intensity factor
iwt for each location w 2W and time interval t 2 T, which is more
reliable than the criminal intensity factor i00wt , given the relative
small number of data points.

5. Helicopter routing

In this section, we consider the forecast obtained in Section 4 as
a fact. This allows us to use the earlier defined MILP to solve the
problem. However, as the problem becomes too complicated for
solving practical sized problems, we have to resort to a heuristic.
In this section, we propose two heuristics to tackle this problem.
First, we propose a heuristic that uses Random Search for finding
a good departure time, and runs for the maximum available dura-
tion. Second, we propose a heuristic that makes use of a algorithm
to find the most promising start time for each flight.

In order to derive the neighbors of a location without an addi-
tional parameter, we define a hexagonal coordinate system. With
this system we define a location w 2 W from now on as a location
ðx; yÞ 2 ðX ;YÞ. Fig. 1 shows the hexagonal coordinate system we
use for this research. As can be seen, a hexagon at location
ðx; yÞ 2 ðX ;YÞ is surrounded by the hexagons with coordinates
{(x,y + 1), (x + 1,y + 1), (x + 1,y), (x,y � 1), (x � 1,y � 1), (x � 1,y)}.
This enables us to refer to the six neighbors of any location with
a single function.

5.1. RDDT heuristic

The first heuristic is the Randomly Determined Departure Time
(RDDT) heuristic. As shown in Fig. 2, it starts with the forecast ob-
tained in Section 4 as input, as well as a list of available helicopters,
the number of flights, and the duration, start, and end location of



Fig. 2. Graphical representation of the RDDT heuristic.

Fig. 3. Graphical representation of the MPDT heuristic.
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each flight. Flights are scheduled one at a time and the departure
time is chosen randomly, where the probability a time interval is
chosen is given by the criminal intensity of the time interval di-
vided by the criminal intensity of all time intervals. The chosen dis-
tribution corresponds with the relative density of the incidents.

After a departure time is chosen, a MILP is solved to optimize
the single flight. This MILP is based on the MILP defined in Sec-
tion 3. We defined the locations w 2 W to be of hexagonal shape,
and redefined the set of locations to ðx; yÞ 2 ðX ;YÞ. All variables
and parameters formerly indexed with w are now indexed with
(x,y). Furthermore, we simplify some constraints and consider
some decisions to be made in advance, such as the departure time.

The objective (Eq. (14)) is to maximize the total weighted cov-
erage of all areas. Gxyt is the total coverage obtained by the area
ðx; yÞ 2 ðX ;YÞ at time interval t2 T .

max
X

ðx;yÞ2ðX ;YÞ;t2T
ðGxyt � ixytÞ ð14Þ

The coverage each area receives depends on the location of the
helicopter and the coverage an area receives from another location
(Eq. (15)). The variable Labt is binary and represents whether the
helicopter is at location (a,b)2 ðX ;YÞ at time interval t2 T . The
parameter cxyab represents the fraction of coverage a helicopter
delivers to location ðx; yÞ 2 ðX ;YÞ when flying at location
ða; bÞ 2 ðX ;YÞ.

Gxyt ¼
X

ða;bÞ2ðX ;YÞ
Labt � cxyab ðx; yÞ 2 ðX ;YÞ; t 2 T ð15Þ

Eq. (16) restricts the movement of the helicopter. and replaces Eq.
(4). A helicopter can only be at a location at which it was in the pre-
vious time interval or in one of the surrounding locations. The seven
terms on the right hand side of the equation correspond with the
same location and its six neighbors.

Lxyt 6 Lxy;t�1 þ Lx�1;y�1;t�1 þ Lx�1;y;t�1 þ Lx;yþ1;t�1 þ Lxþ1;yþ1;t�1

þ Lxþ1;y;t�1 þ Lx;y�1;t�1 ðx; yÞ 2 ðX ;YÞ; t 2 T ð16Þ

Eq. (17) forces a helicopter to be at exactly one location at every
time interval t2 T . Together, Eqs. (16) and (17) ensure the helicop-
ter either stays at a location or moves to one of the surrounding
locations.

X

ðx;yÞ2ðX ;YÞ
Lxyt ¼ 1 t 2 T ð17Þ

We added Eq. (18) to restricts the number of visits to each loca-
tion to at most m.

X

t2T
Lxyt 6 m ðx; yÞ 2 ðX ;YÞ ð18Þ

After the single flight is solved, the forecast is updated to take
into account locations that are already covered. A location is up-
dated by removing a fraction of the criminal intensity equal to
the fraction of the coverage gained in the current flight. Further-
more, the covered amount and the scheduled flight are added to
the current overall solution. The RDDT heuristic runs until the time
limit is reached, such that the result of the best iteration can be
used.

Currently, the decision to do the next iteration is only based on
the time available. However, any stopping condition can be imple-
mented in this step such as, for example, after a number of itera-
tions without an improved result.



Fig. 5. Graphical representation of the interaction between the user and the
application.

Fig. 4. Graphical representation of the areas that are reachable in a flight.

Table 1
Comparison results for the two heuristics.

Date RDDT heuristic MPDT heuristic Difference (%)

1 Jan 2012 103,195 107,435 +4.1
2 Jan 2012 434,658 456,029 +4.9
3 Jan 2012 307,957 337,612 +9.6
4 Jan 2012 415,742 423,615 +1.9
5 Jan 2012 1,648,512 1,722,670 +4.5
6 Jan 2012 751,551 764,920 +1.8
7 Jan 2012 851,376 869,265 +2.1
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5.2. MPDT heuristic

The second heuristic, which we denote by the Most Promising
Departure Time (MPDT) heuristic, is shown in Fig. 3. The MPDT
heuristic is similar to the RDDT heuristic but differs on the method
to define a departure time. Instead of randomly defining a starting
time, the most promising starting time is calculated. Due to this
calculation, which requires no random numbers, only a single iter-
ation is required. Therefore, the MPDT heuristic is quicker than the
RDDT heuristic.

The calculation of the most promising departure time is based
on the concept that given a certain starting time, the reachable
area of an helicopter is limited. When a helicopter leaves from a
heliport at time t, it can be at most u minutes flying away from
the heliport at time t + u. Similarly, when considering the end loca-
tion, the helicopter should be at most w minutes flying away at
time t + v � w, where v is the flight duration. Let us define the set
RðzÞ as the set of locations and times that can be reached from
the start location and end location, represented by combination z.

The total cover value for a departure time can be calculated by
taking the sum over all locations at all time intervals that can be
reached from the start location, and reach the end location. Taking
the maximum over the set T � of all possible departure times yields
the most promising departure time. This leads to Eq. (19), which
can be seen as the double sum over i0xyt in the space dimension
and time dimension. A graphical representation is given in Fig. 4.

Most promising departure time ¼ arg max
t2T �

Xtþv

z¼t

X

ðx;yÞ2RðzÞ
i0xyz ð19Þ
The input in for the calculation of the most promising departure
time is the criminal activity indicator i0xyt , which is the criminal
activity indicator ixyt adjusted for the area already covered by pre-
vious scheduled flights (See Fig. 5).

5.3. Comparison

Obviously, the MPDT heuristic is faster, because we consider
only one possible starting time for each helicopter. The RDDT heu-
ristic is designed to run as long as possible. In practice this means a
running time of around 23 h, as it is likely to be used today for
tomorrows schedule. The computation time of the MPDT heuristic
is linear dependent on the number of flights scheduled. When
scheduling for one day, which typically consists of ten flights for
five different helicopters, we observed the calculation time of the
MPDT heuristic is a fraction of those 23 h.

Although at first glance, one might expect the RDDT heuristic to
give a better result, this turned out to be incorrect. In a preliminary
comparison run we did for one week, we obtained the results of
Table 1. These results show with 99% confidence that the MPDT
heuristic outperforms the RDDT heuristic when scheduling a total
of 10 flights for five different helicopters with the running time for
the RDDT heuristic capped at 23 h. Therefore, we propose the use
of the MPDT heuristic, or start with the MPDT heuristic, and then
use the RDDT heuristic to search for improvements.

6. Application

In order to enable the LVP to use the techniques proposed in
this paper, we developed an application in the AIMMS software
package. The intended use of the application is to route the heli-
copters on a daily basis. As the LVP is among the units in the Dutch
police that see a clear benefit of using new techniques to make bet-
ter use of available data, we developed the application in such a
way that it can be used relatively easy to study multiple scenarios.
We developed this application in AIMMS as the LVP was already
familiar with this software. Furthermore, AIMMS allowed us to
easily combine programming, graphical user interface building,
and the power of MILP solvers such as CPLEX.

Our application consists of three major parts:

HELI Heuristic Expected Location of Incidents
COP Coverage Optimization Process
TER Tool for Express Rerouting
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The HELI part is where we implemented the forecasting tech-
niques. The user can give the required input for forecasting and
the resulting forecast will be shown here. The COP part is where
the routes are generated. When the HELI part is already done,
the user gives the input related to the routing and the resulting
routes will be shown here. The TER part allows to take intelligence
into account after the COP part is finished. The user enters the
intelligence and is shown the updated route.

The first part of the application we discuss here is the HELI part,
for which a screen capture is shown in Fig. 6. A conversion file from
zipcodes to the hexagonal coordinate system is required first. This
conversion file is not built into the application to enable the LVP to
update the list of zipcodes, without requiring modification of the
application. Next, the file with historic incidents has to be loaded.
This file contains the date, time, zipcode, and weight of each inci-
dent. After the target day is set, the forecast is generated. This
yields the map in the center of Fig. 6. The graphical representation
of the forecast of the time interval shown on the map can be chan-
ged with the slider on the right.

After the forecast is generated, the user continues to the COP
part as shown in Fig. 7. The user enters the crew shifts, and the
available flights with the required details. after the maximum
number of visits per location is entered, the routing process can
be started. This process works as shown in Fig. 3. All routes are
scheduled within approximately 60–90 s per flight. When all
routes are scheduled, the map in the middle shows one of the
flights. The slider on the right can be used to switch between
planned flights. The flight information is shown below the slider.
For a more detailed view, the routes can be exported to the KML
format, which can be loaded in GIS software.

When required, the user can add points of interest in the TER
part as shown in Fig. 8. The main difference between the two
graphical user interfaces is the ability to enter intelligence instead
of entering crew information. The latter can be done by entering
the zipcode and time interval, or by looking up the hexagonal coor-
dinates at the correct time interval. Rescheduling a flight takes
approximately 60–90 s. This enables the LVP to dispatch a helicop-
ter to an incident, and schedule the remainder of the flight when
the helicopter is about to move away from that incident.
7. Validation

We have verified the outcome of both the forecasting technique
and the MPDT heuristic with experts of the LVP. These experts con-
Fig. 6. Screen capture of the H
firmed that the forecast was in line with their expectations, and
that the observed routes (covering criminal hotspots) were also
in line with their expectations. Furthermore, an expert from Para-
gon Decision Technology, the company behind the AIMMS soft-
ware, has verified both the code and the modeling techniques in
our application.

To validate our heuristic and application quantitatively, we sim-
ulated the working of our algorithm and compared the results with
the realization of the LVP in the same period. For this experiment,
we used two years of data from the period October 2010 until and
including September 2012. We used the first year of data only as
initial input for our forecasting method. We used the second year
of data (running from October 1, 2011) to simulate what would
have happened when our application was used by the LVP during
that year. For each day in the second year, we used all historic data
available at the start of that day. This way, we used all available
data, without using the data of the evaluated day to generate the
flights. We used a crew planning similar to the one used by the
LVP in this period, resulting in ten flights per day.

After generating the routes for a given day, we compared the
routes with the incidents that happened on that day. When an inci-
dent happened, no helicopter is dispatched when the travel time
was more than fifteen minutes. In other cases, we dispatched the
helicopter with the highest expected success rate, or lowest heli-
copter identifier number in case of a tie. We limited the number
of assists of a helicopter to at most one assist per flight, which im-
plies a helicopter returns to base after it has been dispatched to an
incident. When a helicopter was not flying, we assume it was
standby to take off and took the appropriate time into account to
become airborne.

The resulting computation times were in the order of five to six
minutes for every day, apart from a single day, where it took
10 min. This was due to an exceptional situation where it turned
out it was hard to find a near optimal route for a single flight.
The generation process of this route was automatically ended after
five minutes to ensure an upper bound on the running time. The
results of our experiment are shown in Table 2. To maintain confi-
dentiality, all values are normalized, where the realized number of
successful assists of the LVP in the second year is normalized to 1.
The indicators are based on the different parts of the success rate
formula g(w,a) discussed in Section 3.

When we compare the results of the LVP with our results, we
see a clear difference in the number of successful assists of around
a factor nine. We are aware of the fact that our results are based on
a success rate formula based on expert opinions, which might have
ELI part of the application.



Table 2
Validation results. The numbers are normalized such that 1.0 equals the number of
successful assists of the LVP in the same period.

Indicator Result

Uncovered incidents 24.8
Incidents with a helicopter within 10 min 6.3
Incidents with a helicopter 10–15 min away 3.8
Expected number of successful assist 9.0
Average covered incidents 25.8%

Fig. 7. Screen capture of the COP part of the application.

Fig. 8. Screen capture of the TER part of the application.
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influenced the results. However, our results are on the pessimistic
side, as (i) we cannot take intelligence into account in this simula-
tion, which is possible in practice, and (ii) we cannot simulate the
assist and therefore we assumed the helicopter will abort it’s route
and head back to base, whereas in practice it can fly a new route,
based on remaining fuel and location. Considering the size of the
gap between practice and our results, it is safe to state that our
application is a valuable addition to the tool set of the Dutch Avi-
ation Police and Air Support.

Besides the technical validation, we also made sure our applica-
tion is comfortable to work with, using an appropriate Graphical
User Interface (GUI). In order to give a good experience to the user,
the application was built iteratively. This allows us to take user
feedback into account in the next iteration. The final application
is now used in practice by the LVP.

An extensive validation of the proposed instrument in practice
is currently carried out by the Dutch Aviation Police and Air Sup-
port. Besides the extensive validation, we also propose to research
which events and conditions have impact on the quality of the
forecast as well as on the coverage given. For example, weather
conditions and type of incidents might have an impact on the suc-
cess rate or the effect on neighboring areas.
8. Conclusion

In this paper, we defined a special case of both the Location Cov-
ering Problem and the Vehicle routing problem, which we called
the Anticipatory Emergency Vehicle Routing Problem. We pro-
posed a combination of two techniques to tackle this problem: a
forecasting technique to cope with the uncertainty about future
incidents, and a routing technique to maximize the weighted total
expected coverage of incidents.

The proposed forecasting technique allows to make a forecast
for a large number of locations with a relative low number of inci-
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dents with a relative small forecast error. This is achieved using
generalization techniques in both the time and space dimensions.
Furthermore, we proposed conversion techniques to convert inci-
dents in any month or on any weekday, to the target month and
weekday. We propose to take a forget factor into account such that
recent data has a higher weight. Finally, incidents can be given dif-
ferent priorities to take the nature of the incident into account.

In the proposed routing technique, instead of solving the entire
routing problem at once, it is solved sequentially. In each step, only
a single helicopter has to be routed, with a known departure loca-
tion, end location, and flight duration. This significantly reduced
the complexity of the problem. For the departure time, we pro-
posed a formula to calculate the most promising departure time
for a helicopter. The solution of the MPDT heuristic is good and
is directly usable. If sufficient calculation time is available, itera-
tions of the RDDT heuristic can be used to search for an improved
schedule.

We have performed validation of our methods and application
qualitatively by the use of experts, and quantitatively by an simu-
lation study. In this simulation study, we used one year of data so-
lely as input, and a second year of data to simulate the use of our
application during one year. Based on this simulation study, we
conclude that number of successful assist can be increased by a
factor nine.

We have implemented both the forecasting technique and the
routing technique in an application. This application is considered
to be a valuable addition to the tools of the Dutch Aviation Police
and Air Support (LVP). The application is currently used and tested
in practice by the LVP in the Netherlands.
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