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In two body abrasion processes hard asperities plough through a soft surface. If the asperities can resist

the forces that act on it, scratches will develop in the soft material. If the asperities cannot withstand

these forces, they will break off and not cause direct abrasion damage. The same is the case for galling,

where lumps develop on one of the surfaces because of material transfer. These lumps will abrade the

counter surface, if the lumps are strong enough to withstand the forces that act on it. In order to

describe these phenomena, simple criteria are desired to describe the mechanical stability of asperities

and lumps.

In this work, an analytical model is presented for the mechanical stability of asperities. In the

analysis, a pyramidal asperity shape will be assumed. Given the pyramidal asperity shape, several cases

will be studied: the load is carried by a pyramid with a triangular base, a pyramid with a triangular base

and an extended backside and the case where a crack has developed. Based on these models stability

criteria of ploughing pyramidal asperities will be developed. Important results of the model will be

discussed in the context of abrasion and adhesive wear processes.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Two body abrasion is a very common wear process in which
harder asperities plough through a softer surface. Also in some
adhesive wear processes harder asperities plough through a softer
counter surface. Here, in time, ploughing asperities can grow and
develop into larger lumps due to adhesion or mechanical locking
of soft material into the surface roughness of the harder surface.
The transferred material work hardens and can cause scratches in
the countersurface. In particular when high lumps can develop,
scratches will be formed on the product due to abrasion. An
example of such an adhesive wear process followed by subse-
quent abrasion, is galling in a deep drawing process. In the case of
galling, the geometry of the developing lumps will determine the
depth and width of the scratches which develop due to ploughing.
Because galling can be detrimental for the surface quality of the
products being made, it is important to control it in industrial
practice. The main difference with two body abrasion is that in
this case the shape of the ploughing asperity is not fixed before-
hand, but dependent on the growth behaviour of the transferred
material on the asperity.
ll rights reserved.

: þ31 534894784.

. de Rooij).
Modelling of abrasive wear has often started with analysing a
single asperity ploughing through a soft and flat substrate.
Analysis of single ploughing asperities is then extended to rough
surfaces by summing up these unit events, see e.g. [1,2]. In such
models, single asperity behaviour as discussed above is typically
used and applied to multi asperity contacts. Further, it is typically
assumed that the asperities are rigid, so strong enough to with-
stand the forces that act on them during ploughing. Several
reasons exist which limit the validity of the assumption of a rigid
asperity and therefore neglect failure of the asperity. Single
asperity ploughing has been extensively studied in experiments
as well as in models. An overview of many studies is given in [3].
Much of the work on ploughing asperities has been restricted to
2D situations. Important is the work described in [4] where
ploughing of 2D wedges is modelled by means of slipline models.
Using these models, three slipline fields have been defined,
identified with the names: wave formation, wave removal and
cutting. Depending on the attack angle of the wedge and the
strength of the interface between the wedge and the deforming
material, the wedge will operate in a certain mode. The transi-
tions between these regimes have been related to wear modes of
spherical asperities by Hokkirigawa and Kato [5]. There, on the
basis of experiments and a comparison with the slipline models of
Challen and Oxley [4] a wear mode diagram is constructed in
which three wear modes are distinguished: ploughing, wedging
and cutting. This diagram is schematically depicted in Fig. 1 and
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Fig. 1. Wear mode diagram according to Hokkirigawa and Kato [5].

Fig. 2. Tip geometry with its dimension and flow lines on BDC of plastic deforming

material.
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will be discussed further. The transitions between the cutting
regime and the other regimes are approximately given by the
following equations, see also [6]:

y¼ 0:25ðp�arccosf HK Þ ð1Þ

And the boundary between the ploughing and wedging regime
is given by:

y¼ 0:5arccosf HK ð2Þ

In these equations, y is the attack angle of the sliding wedge and
fHK¼t/k, where t is the shear strength of the interface at the
ploughing wedge and k is the shear strength of the soft plastically
deforming counter surface. These equations are represented by
the solid lines in Fig. 1. The dotted line is the exact boundary
between the regimes which follows from [7]. It can be seen that
the approximate relation is indeed very close to the exact
solution. Next to ploughing wedges and spherical tips, ploughing
cones [8] and pyramidal indenters [9,10] have also been analysed
using the upper bound method. However, slipline models have
some restrictions originating from the model assumptions. The
most important restrictions are the neglect of elastic effects and
the assumption of pure plastic material behaviour. So, at very
small contact angles no ploughing is expected but elastic beha-
viour. In [16,17] limits due to elasticity have been analysed when
indenting a plastically deforming substrate with a symmetric
rigid wedge. If the criterion is applied to steel, elastic effects can
be expected at attack angles lower than 181 for wedge shaped
indenters. The criterion in fact represents the strain in the
material due to indenting. When the results in the ploughing
regime are compared with elastic–plastic FEM calculations,
slipline solutions only give good results for attack angles higher
than approximately 51 see [11]. The reason is that much higher
strains than predicted by the slipline models develop close to the
surface in the case of a ploughing wedge.

Secondly, failure of the ploughing tip itself can occur when
sliding against a softer surface due to mechanical overloading
despite its higher hardness. In [18,19] criteria are derived in terms
of a critical tip angle for the sliding wedge and the hardness ratio
between the sliding wedge and the softer flat.

Some of the basic assumptions like ideal plasticity of the soft
surface and rigid behaviour of the hard asperity can be avoided
using FEM models of ploughing asperities, one of the first being
[11]. Later a single asperity moving over a countersurface has
been simulated using meshless methods [12–15]. In these simu-
lations, aspects like deformation of the ploughing asperity and
material transfer to the ploughing asperity have been observed.

In this work, stability of pyramidal shapes will be investigated
when ploughing through a plastically deforming material, using
analytical models.
2. Modelling failure of asperities

2.1. Stress analysis for a simple triangular pyramid

Starting from a pyramidal asperity with a four sided base, only
the front half will be in contact with the plastically deforming soft
surface. The resulting geometry is a simple triangular pyramid
loaded with forces due to the ploughing action of faces BCD and
ACD as depicted in Fig. 2. If, only the front half of the four sided
base supports the ploughing asperity, the asperity is supported by
face ABC. Before discussing more complex situations, first this
simple geometry will be analysed further.

The points B and D are respectively the extremes of the width
w and the height h. The velocity vector of the moving soft counter
surface relative to the fixed asperity is assumed to be acting in the
negative x-direction. If a scratch is formed due to the ploughing
action, behind the plane ADB no contact is expected. In reality the
internal stress distribution is also dependent on the rear part of
the asperity as will be discussed later. In the following, it will be
assumed that the asperity is stationary and rigid with a plane of
symmetry in the xz-plane. The asperity is loaded on face BCD (and
because of the symmetry on face ACD) because of the ploughing
action. Further, the rigid asperity is supported by face OBC (and
because of the symmetry face OAC). In the analysis, the pressure
pBCD acting on face BCD will be called ppl. ppl is assumed to be
constant over the whole contact area and directed inward normal
to plane BCD. The tangential shear stress tpl is calculated using a
Coulomb friction law, so tpl ¼ mppl

.
The geometry of the asperity is completely defined by w, h and

the length l or in the dimensionless form, normalizing by l, two
geometrical quantities remain

h¼
h

l
ð3Þ

w¼
w

l
ð4Þ

The coordinates of three points B, D and C are respectively given
by (0, w, 0), (0, 0, h) and (l, 0, 0). These points describe a plane,
which has the unit normal vector which will be denoted by nBCD.
The area of the triangle BCD is called ABDC, and the area of triangle
ABC is called AABC are given by

ABDC ¼ 1=29BD� BC9¼ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwhÞ2þðhlÞ2þðlwÞ2

q
ð5Þ

n
!

BDC ¼
ðwh, hl, lwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðwhÞ2þðhlÞ2þðlwÞ2
q ð6Þ

AABC ¼wl ð7Þ

In the far field, the velocity vector is directed into the negative
x-direction. The vector t

!
is the tangent vector of BDC as close as

possible to the direction of the plastic flow in the far field, so
x
!

U t
!

has to be minimum. To minimize x
!

U t
!

, vector t
!

has to be



Fig. 3. Tip geometry with the extended base AC0BC. The grey quadrilateral AEBC is

the region that (mainly) carries the plastic forces.

Fig. 4. Part of tip geometry with crack at vertex C.
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in the plane that is described by the vectors x
!

and n
!

BDC . This
results in

t
!
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

ðwhÞ2þðhlÞ2þðlwÞ2

s
�l, h

wh

w2þh2
, w

wh

w2þh2

� �
ð8Þ

This tangent is illustrated in Fig. 2 by the lines with arrows on
face BDC. The connection of the asperity to the bulk material at
face ABC is assumed to be an elastic spring, normal to face ABC.
This results in a constant tangential stress tABC in the x-direction
and a linear function in terms of x for the normal stress sABC. Of
importance for sABC is the spring stiffness C2, the deformation d0

at x¼0 and the angle y between plane ABC and the support. In
summary, the following expressions for the stresses acting at face
ABC are used:

tABC ¼ C1 ð9Þ

sABC ¼�C2ðd0þyxÞ ð10Þ

The forces in y-direction cancel out because of symmetry.
Force equilibrium in respectively the x-direction and z-direction
and moment equilibrium around the y-axis givesX

Fx ¼ 0) �

Z
ppl n
!

U x
!

dAþ

Z
tpl t
!

U x
!

dAþ

Z
tABC dA¼ 0

ð11Þ

X
Fz ¼ 0) �

Z
ppl n
!

U z
!

dAþ

Z
tpl t
!

U z
!

dA

þ

Z
sABC xð Þ n

!
U z
!

dA¼ 0 ð12Þ

X
Myy ¼ 0)

Z
r
!
� d F
!

� �
U y
!
¼

Z
z dFx�

Z
x dFz ¼ 0 ð13Þ

This can be shown to result in the following expressions for
sABC and tABC, see also Appendix A:

tABC

ppl

¼
1

AABC

whþm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
þh

2
q !

ð14Þ

sABC

ppl

¼�
w

AABC

1�
mwhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
þh

2
q

0
B@

1
CAþ 1
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2
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�3xcw2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
þh

2
q

0
B@

1
CAðx�xcÞ ð15Þ

In these expressions, dimensionless geometrical properties are
used. Lengths, areas and area moments are normalized by
respectively l, l2 and l4. This results in a dimensionless width w,
dimensionless height h, x-coordinate of the centroid xc dimen-
sionless area AABC and area moment of inertia Icyy. This formula-
tion makes the equations more general when applied to other
geometries as will be shown below.

In the analysis presented above, the emphasis is on an accurate
description of the stresses on the faces of the ploughing asperity
rather than an accurate description of the flow field as is done in a
more conventional upperbound analysis. Although the direction
of the shear stresses according to Eq. (8) is approximate, the flow
field has realistic characteristics. For blunt asperities the flow of
material will be underneath the ploughing asperities while for
sharp asperities, the material will flow along the sides of the
ploughing asperity. For intermediate situations, there will be a
gentle transition from one extreme to the other extreme situa-
tion. These results are in agreement with the reality of a plough-
ing asperity. The direction of the shear stress acting on the
ploughing faces is therefore considered to be a good
approximation and is considered to be sufficiently accurate to
analyse the failure behaviour of the ploughing asperity.

2.2. Stress analysis for a triangular pyramid including an extended

base at the back side and a crack at the front side

Although only the front part of the pyramid will be loaded
because of ploughing, the tip can also experience support from
material at the back of plane ABD. In order to model support by
this area the geometry will be extended with the triangular
support area ABE, see Fig. 3. If this area also contributes to the
support, area ABE will be likely to experience compressive normal
stresses due to the tilting moment caused by the loaded faces BCD

(and ACD).
It can be shown that Eqs. (14) and (15) remain valid with new

expressions for the terms xc , AABCand Icyy [6] and are given by

AABC ¼wðlþ lbÞ ð16Þ

xc ¼
w

3AABC
ðl2�lb

2
Þ ð17Þ

Iyy ¼
w

6
ðl3þ lb

3
Þ ) Icyy ¼

Z
ðx�xcÞ

2dA¼

Z
x2dA�xc

2AABC

¼ Iyy�xc
2AABC ð18Þ

In this equation xc is the x-coordinate of the centroid and AABC is
the area of the face ABC. In order to further generalize the
approach, also a crack will be assumed in the front part of the
sliding asperity, so close to point C. The crack is supposed to be in
the face ABC and starts at vertex C and has length lcr, see Fig. 4.

The plastic forces on the faces BDC and ACD are not changed,
but only the internal bearing area of face ABC (or AEBC). Also in
this case, the same expressions as in Eqs. (14) and (15) can be
used, but again with different expressions for AABC, xc and Iyy

according to, see [6]

AABC ¼w l 1�
lcr

l

� �
1þ

lcr

l

� �
þ lb

� �
ð19Þ



Fig. 6. Normal stress over plastic pressure as a function of normalized asperity

height on face ABC at x¼0 (dashed lines) and x¼1 (solid lines) for w¼0.25, 0.5,

1 and lim w-N for two different plastic shear strengths: m¼0.1 (a) and m¼0.18

(b). The arrows give the order of the graphs for increasing w.
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To illustrate the stresses at the interface ABC, first the stresses
for the simple pyramidal geometry as depicted in Fig. 2 will be
discussed. In Figs. 5 and 6 the normalized stresses tABC/ppl and
sABC/ppl will be shown as a function of the normalized asperity
height h by varying the normalized asperity width w. The stress
ppl, which is the normal stress on face BCD, will be assumed to be
equal to H, which is the hardness of the plastically deforming
material. According to Tabor, the relation between hardness and
yield strength is given by HE2.8sy. As mentioned above, the
normal pressure ppl equals to H in the analysis. According the
Tresca criterion a material fails as the shear stress exceeds a value
equal to 0.5sy. So, it follows that the shear stress acting on the
ploughing faces has a maximum value according to the situation
where the shear stress equals the shear strength of the bulk
material

tpl_max � 0:18ppl ð22Þ

From this analysis it follows that m has a maximum value of
0.18. The maximum value of m will only occur in the case of a very
good adhesion of the plastic material to the asperity.

The stress component tABC is given by Eq. (14) and shown in
Fig. 5. From Fig. 5 it becomes clear that tABC is strongly related to
h. The influence of w is limited. Although the values of h and w

contribute in the same amount to the plastic forces, a higher value
of w results in a larger area AABC over which the plastic forces can
be distributed. So speaking in terms of stresses, the increasing
amount of plastic forces due to the increase of w is almost
Fig. 5. Mean shear stress over plastic pressure as a function of normalized asperity

height on face ABC for w¼0.25, 0.5, 1 and lim w-N for two different plastic shear

strengths: m¼0.1 (a) and m¼0.18 (b). The arrows give the order of the graphs for

increasing w.

Fig. 7. Normal stress over plastic pressure as a function of normalized asperity

height on faces ABC and AC0BC. The conditions are: x¼1 for w¼1 and m¼0.1.
cancelled out by the larger bearing area of ABC. The effect of m
is of importance for values of h51. If h¼0 only adhesive forces
act on the asperity, so tXppl¼m for h¼0. For higher values of, h

the effect of the frontal area, and so the ploughing effect,
dominates the plastic forces.

The stress component sABC is given by Eq. (15) and shown in
Fig. 6. Eq. (15) is a linear function of the x-coordinate, so the
extremes of sABC can be found on the extreme x-coordinates x¼0
and x¼1. For a number of situations, graphs of sABC are given for
these points in Fig. 6. For h51, from x¼0 to x¼1 sABC is about
equal to the contact pressure. For larger values of h, the effect of
the bending moment with respect to x¼ xc becomes more and
more dominant. In Fig. 6, this effect follows from the lines of x¼0
and x¼1 that diverge for increasing h.

The results for the asperity with the extended base, as depicted
in Fig. 3 is shown in Fig. 7. From the graphs it becomes clear that
the ratio sABC/ppl gets a value in the order of �1 for a wide range
of h. That means that at values of h of about 1, using AC’BC as the
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base of the asperity, the stresses are much lower than in the case
that ABC is used as base. But for values of h, let say ho0.2, ABC

will give better results than AC0BC as the asperity base. The reason
is that in the case of small values of h the stress state should be
close to the contact stress, so sABC/ppl should be close to �1. Using
AC’BC results in a higher compressive stress, namely sABC/
pplE�1.5 for h51. This stress is the result of the lever effect of
the extended rigid asperity. This lever effect is not realistic in the
case of low values of h. A low value of h gives not enough stiffness
to justify the assumption of a rigid asperity. From Fig. 7 it can be
concluded that the part of the base that carries the load is
influencing the stresses significantly.

So far, the size of the extended base is unknown. Therefore, FEM
calculations will be performed in order to estimate the load carrying
area. The asperity is build from elastic tetrahedral elements and
calculations are performed for both a rigid and an elastic support of
the asperity. The faces BDC and ACD are loaded with a unit normal
pressure that represents the plastic normal load. The plastic shear
stress gets the value m. This way of loading corresponds to normal-
izing the plastic stresses by ppl. Calculations are performed for
different values of w and h and in Fig. 8 the normalized shear stress
at face ABC is depicted.

From Fig. 8. it follows that the area that actually carries the
load is a function of h. The stresses in the figure given for the three
asperities with the same height (h¼ 0:2) distribute the load in
almost the same manner over the face AC0BC. The lower asperity
(h¼ 0:1) has a lower shear stress on this face and less distributed
in backwards direction. From these calculation it is concluded
that the area on the xy-plane that carries (mainly) the load is the
quadrilateral AEBC, see Fig. 3. Vertex E has coordinates (� lb, 0, 0).
The value of lb as a function of h can be approximated by lb¼ch,
where c is a constant that has a value of about 2. The stress level is
low beyond xoch and the shear stress tABC is approximated well
by Eq. (14) as is shown by the dashed lines in Fig. 8. The value of c

has been obtained from FEM simulations for ho0:3 which is a
reasonably high value for the height of the asperity. The value of lb
has the geometrical restriction that E remains within the base
AC0BC. For approximating the internal stresses in the asperity,
the focus is fully on the pyramid AEBCD. The role of AC0BED is
negligible.

2.3. Modelling asperity failure

To define a fail criterion relations like Von Mises or Tresca
could be used. These relations need the complete stress state.
Fig. 8. Shear stress over plastic pressure along the x-axis on face AC0BC. Compar-

ison of the analytical model (dashed lines) and FEM calculation (lines with

markers). The sign of FEM calculations is changed in the plot, in fact, in the plot

is given (�sxzXppl). The presented situations that are: h¼0.1, w¼1 (a); h¼0.2,

w¼0.5 (b); h¼0.2, w¼1 (c) and h¼0.2, w¼2 (b).
However, here a simplified approach is taken. The stress components
szz and txz are relatively easy to obtain as mentioned above.
According the FEM analyses the values of sxx and syy are about a
half of the value of szz. Shear stress txy has a relative small value,
about a tenth of txz, while tyz has values in the order of txz [6]. Both,
txy and tyz are zero on the xz-plane due to symmetry. Though, four of
the six components are only described qualitatively, a stress criterion
can still be given. If a plastic failure is assumed, plastic deformation
can be described using the relation of Prandl-Reuss [20] which is valid
for the situation that the Von Mises stress exceeds sy. In index
notation, this relation is given as

deij ¼
1

E
ð1þnÞdsij�ndijdskk

� �
þðsij�1=3skkdijÞ dl ð23Þ

In Eq. (23), the deviation of strain is given as a function of the
deviation of stresses (elastic effect) and the stresses itself (plastic
effect). In this relation E is Young’s modulus, n is Poisson’s ratio and
d is the Kronecker delta. The term dl relates the plastic deforma-
tion velocity to the stresses and is here only used as a constant
without further explanation. According this relation, shear strain
with indices ij is only related to other tensor components with
indices ij, so independent of tensor components with different
indices. That makes the three shear strain equations independent
relations. The normal strains are coupled by the effect of the
hydrostatic pressure, as given by the terms with dij.

To formulate the normal strain relations, the following is
assumed:
–

Fig
dire
The material in the surface is fixed in the x and y directions by
its surrounded material. Therefore: de11¼de22¼0. In z-direc-
tion the material can be pressed into the contact.
–
 The load in z-direction is constant: s33¼ppl. Therefore:
ds33¼0.

(To remain close to the index notation as given in Eq. (23), the
indices x, y and z are temporarily replaced by 1, 2 and 3.)

Now, the following set of equations can be derived:

ds11

ds22

( )
¼�

Edl
3ð1�n2Þ

1 n
n 1

� �
2 �1

�1 2

� � s11

s22

( )
þ

ppl

ppl

( ) !

ð24Þ

The amplitude of Eq. (24), is not known, because of the unknown
dl, but still the direction of the deformation can be determined, as
is given in the vector plot of Fig. 9. In this figure only the stresses
. 9. Vector plot of the stress deviation as a function of the stresses in x and y

ctions in the case of plastic deformation in the contact zone of an asperity.
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are given that are in the range �1osXpplo0, because the
stresses are, according the FEM calculations, in this range before
plastic deformation. According to Fig. 9, the deformation is
directed to a pure hydrostatic pressure situation. The strain before
the hydrostatic pressure situation is reached is very small. In the
case of the hydrostatic pressure only, the stresses are fully elastic.
Contact pressures are in the order of 1 GPa (a typical hardness
value), E is in the order of 200 GPa, so the hydrostatic situation is
already reached after a deformation in the order of one per cent.

The next step is the effect of the shear strain components.
According to Eq. (23), a strain component eij, with ia j, is only a
function of the stress components sij and dsij and is not coupled
to stresses with other indices. So, the equations for the shear
strain components form a set of uncoupled equations and the
effect of every separate shear stress component can be discussed
on its own, as will be done below.
–
 The deformation due to s12 is relatively small, because
its value is much smaller as the other components, so its
relevance is limited.
–
 The deformation due to s13 is of importance, because its value
is not small related to the other stresses and there is no
stabilization after plastic deformation, because shearing
in backwards direction of the asperity does not give a
fundamental change in the load situation.
–
 In case of s23 the stress is negative for positive y-coordinates
and positive for negative y-coordinates. That means that the
material is compressed, so this stress causes a stabilizing
action.

From the analysis as described above it follows that most stress
components generate a plastic deformation into the direction of a
more stable situation. This stabilization is already realized after
small deformations. This statement does not hold for s13. There-
fore, this stress will used as the failure criterion for an asperity or a
lump on an asperity. The stress field at failure is in fact similar to
the stress field at the shakedown limit when analysing shakedown
problems, see [21]. Also in such cases this shear stress will be
limiting because other stresses can be reduced by residual stresses.
So, when according to s13 the asperity deforms plastically, it is
stated that it fails. This stress will be calculated using Eq. (14).
Table 1
Solutions of inequality (27) for different situations.

cTo1 cT ¼ 1 cT41

m¼ 0 hrhmax No maximum of h No maximum of h

moð1�lcr
2
ÞT hrhmax hrhmax

See Table 2

mZð1�lcr
2
ÞT h¼ 0 h¼ 0 See Table 2

Table 2
Solutions of inequality (27), detail of Table 1 for cT41 and m40.

moð1�lcr
2
ÞT mZð1�lcr

2
ÞT

m=wrcT�1 No

maximum

of h

hZhmin

ðcT�1Þ2 oðm2=w2
ÞrðcT�1Þ2þðð1�lcr

2
Þ
2T2=w2

Þ hrhmax hmin rhrhmax

ðm2=w2
Þ4 ðcT�1Þ2þðð1�lcr

2
Þ
2T2=w2

Þ hrhmax h¼ 0
3. Modelling shearing of the lump

In the previous section it is concluded that Eq. (14) is a good
estimator for asperity failure. Therefore, it will be used as a fail
criterion in the analysis. The implementation of this criterion will
be discussed in this section.

In the following, the general case for a pyramidal asperity
including an extended base and a crack close to point C will be
studied. This means that:

AABC ¼ ð1þch�lcr
2
Þw ð25Þ

Using Eq. (25) in Eq. (14), the following inequality can be
constructed:

TZ
1

1þch�lcr
2

hþm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðh=wÞ2

q
Þ

�
ð26Þ

In this equation, m is defined as the dimensionless shear strength
of the ploughing face of the asperity and T is the dimensionless
shear strength of the asperity itself. In both cases these shear
strengths have been normalized with the normal pressure ppl, so

m¼ tint

ppl

ð27Þ

T ¼
tasperity

ppl

ð28Þ

The structure of inequality (26) is derived from the plastic force
divided by a bearing area. Rewriting this inequality to a form that
gives a more direct insight in the dependency of h results in

ð1�lcr
2
ÞTþðcT�1ÞhZm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðh=wÞ2

q
ð29Þ

The formulation of inequality (27) gives at the left hand side the
force that can be carried at the adapted area of AABC minus the
force due to the plastic normal pressure. At the right hand side
remains the force due to the plastic shear stress at the interface
between the tip and plastic deforming material. This reformula-
tion gives a linear function of h crossing a square root function of
h and shows better the effect of c, lcr and m. Treating Eq. (29) as an
equality, it can have at most two solutions, called here as hmin

and hmax

hmin ¼
Tð1�cTÞð1�lcr

2
Þþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
ð1�lcr

2
Þ
2=w2

þð1�cTÞ2�m2=w2
q
ð1�cTÞ2�m2=w2

ð30Þ

hmax ¼
Tð1�cTÞð1�lcr

2
Þ�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
ð1�lcr

2
Þ
2=w2

þð1�cTÞ2�m2=w2
q
ð1�cTÞ2�m2=w2

ð31Þ

The limit situation for 91�cT9¼ m=w reads

hmax ¼
w

2

ð1�lcr
2
ÞT

m
�

m

ð1�lcr
2
ÞT

					
					 ð32Þ

The possible solutions of inequality (29) for several cases are
given in Tables 1 and 2.

For the situation that lb ¼ ch exceeds the value of 1, Eq. (25) is
not valid anymore, because AABC is limited by the area of AC’BC.
This results in a limitation of h to

hr
Tð2�lcr

2
Þ�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
ð2�lcr

2
Þ
2=w2

þ1�m2=w2
q

1�m2=w2
ð33Þ
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As long as the inequalities (29) and (33) are met, the asperity will
resist the plastic forces, otherwise it fails. This gives a criterion of
the maximum possible value of h for the pyramidal asperity.
Fig. 11. Maximum possible values of h as a function of the plastic coefficient of

friction for different properties of the asperity. The default values are T¼0.27,

lcr¼0, c¼2 and w¼ 1. The varied variables increase in the direction of the arrows.

The dashed lines show the graphs in the case that the constraint of inequality (31)

was not used. The variations are: (a) c¼1.5, 1.75, 2, 2.25 and 2.5. (b) w¼0.25, 0.5,

1, 2 and 4.
4. Results

In Figs. 10 and 11 a number of results are shown. The dotted
lines in the figures show the transitions between different wear
regimes as described, for reference, in the wear mode diagram of
Hokkirigawa and Kato [5], also shown in Fig. 1, but now presented
in terms of m and hmax instead of the original variables y and fHK

using the relations m¼0.18 fHK and h¼tany. From Figs. 10 and 11
the effect of the T and m on the maximum height hmax is shown.
The effect of m becomes clear in all graphs. An increasing value of
m results in an increasing force on the tip, so the maximum height
of the asperity at which no failure occurs, reduces.

Parameter T which is the shear strength of the asperity over
the hardness of the soft counter surface, is another quantity that
has a strong effect on the maximum tip height. From Table 1 it
follows that for the case that the tip material has the same
strength as the plastic material through which it ploughs, so
T¼0.18, the asperity will shear immediately if m40.18, so
hmax¼0. This is an obvious result, since this case corresponds to
a ploughing asperity with a shear strength of the tip that is equal
to the shear strength of the soft counter surface loaded by a shear
stress at the ploughing faces equal to the shear strength of the
soft counter surface. So in fact, this case is the case of internal
shear in the bulk, see also Eq. (22). Further, if m is decreased, e.g.
by boundary layers, this has a strong effect on the maximum
height at which the asperity is still stable.

In case that cTZ1 and m¼0, h has no maximum, according to
Table 1. However, if inequality of Eq. (33) is taken into account, h
Fig. 10. Maximum possible values of h as a function of the plastic coefficient of

friction for different properties of the asperity. The default values are T¼0.27,

lcr¼0, c¼2 and w¼1. The varied variables increase in the direction of the arrows.

The dashed lines show the graphs in the case that the constraint of inequality (31)

was not used. The variations are: (a) T¼0.18, 0.27, 0.36 and 0.45. The ‘free’ dashed

line belongs to T¼0.36 and the dashed line of T¼0.45 is omitted, because it lies far

above the other graphs. (b) Results for lcr¼0, 0.2, 0.4 and 0.6.
has always a maximum. The effect of inequality according to Eq.
(33) is visible in Figs. 10 and 11 as the difference in the dashed
and solids graphs. From the graphs in Fig. 10a the significant
effect of T becomes clear, but the effect is weakened by inequality
of Eq. (33). Below T¼0.2 the cutting and wedging regimes will, for
the assumed values, not be entered because the asperity
will shear.

The effect of the crack size is shown in Fig. 10b. For the given
situation, An increasing crack length lcr reduces the maximum
value of h. An almost linear relation exists between the crack area
size and the maximum tip height.

In Fig. 11a the effect of the factor c, describing the extend of
load carrying area, is presented. In fact this factor is a constant
that is determined by FEM-calculations as discussed above. The
figure shows the sensitivity of this estimation. As long as inequal-
ity (31) has no effect, the factor c has a clear effect. In the case that
inequality (31) restricts h, c has a minor effect.

The width w of the asperity has a weak effect on the maximum
value of h. In Fig. 11b a large range of w is presented. Only for
small values of w, so, wo1, the effect of w is clearly visible. In
inequality (27) w is incorporated in the term h=w. The effect of
this term is shown in Fig. 11b by the sets of graphs for different
values of T. A higher value of T result in a higher value of h and so
in a stronger effect of w. For even higher values of T as presented
in Fig. 11b, the effect of w would be stronger according to
inequality (27), but is mostly restricted by the constraint of
inequality (31). This means that the width of the ploughing
pyramid will not affect it sensitivity for yielding strongly. From
the graphs and the analysis it can be concluded that m and T are
the most important variables for using the model.

In Fig. 12, results are presented that are comparable with
Figs. 10 and 11. Two values of m have been chosen, respectively
0,05 and 0.18 where 0.05 would correspond to a well lubricated
contact and 0.18 to an unlubricated contact. The choice of the



Fig. 12. Maximum possible values of h as a function of w for different values of T

(given by the values on the graphs) and lcr¼0 and c¼2 for: (a) m¼0.05 and (b)

m¼0.18.
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axes is such that they are comparable with the presentation of
experimental results in [22]. An individual graph can be inter-
preted as representing a tribological contact, so a given hardness
difference between the contacting bodies as represented by T and
a given value of m. The graph gives the maximum value of h for all
asperities, each with each their own value of w. From this figure,
again, it follows that the maximum value of h of an asperity is
strongly related to T. It can be seen that at lower values of T, the
height is also dependent on m. For wo0.5, w has a strong
influence on the maximum value of h. For higher values of T,
the effect of w is negligible.
5. Discussion

Based on the results describe above, some consequences can
be discussed in the context of adhesive and abrasive wear
processes. According to [23] material transfer from the sheet to
the tool in a deep drawing process occurs in the wedge regime.
Combining the results of the maximum h of lumps on the tool
surface and the wear mode diagram, some things can observed.
For entering the wedge formation regime, m should be higher than
0.09, which corresponds to fHK40.5. From Fig. 10a it follows that
h cannot exceed 1 due to lump growth in the wedge formation
regime. For values of m a bit higher than 0.09, lump growth takes
place in a very narrow band of h-values. For values of m of about
0.18, lump growth can occur in a large range of h and for m¼0.18
for ho1 (so, practically for every asperity) lump growth will
occur. So, a higher value of m gives more risk of galling as does a
higher roughness of the tool, which corresponds to a higher value
of h. Further, lumps will harden on the tool surface due to
excessive plastic deformation. If the resulting hardness of the
lump is much higher than the original hardness of the counter
surface, high lumps can develop because of high values of T. So
higher lumps are expected for materials which are more able to
work harden. Further, in the case of plastic (tensile) bulk
deformation of the sheet in a deep drawing process, the effective
hardness of the sheet (so the soft counter surface) decreases, see
e.g. [24]. So, in areas of e.g. a deep drawing process where the
in-plane strains are high, the value of T will increase, lumps can
increase more in height, and a potentially higher damage to the
sheet may occur. These effects are in agreement with industrial
experience, see. e.g. [25].

In the case of abrasion processes, a rule of thumb is that above
20% hardness difference between the surfaces abrasive action
occurs. A hardness difference of 20% between the ploughing
asperity and the soft counter surface results in a T�0.22. From
Fig. 10a it follows that for a certain value of m say 0.05, the
maximum value of h is around 0.2. So, according to the model, any
asperity with an attack angle larger than about 121 will shear.
This critical angle is almost independent of the width of the
ploughing asperities, as can be seen in Fig. 11b. It can be seen that
this model is in agreement with the rule of thumb at only at
sufficient hardness difference around 20% between contacting
surfaces abrasion occurs, meaning that the abrasive itself is
mechanically stable and will not fail. The 20% is a rule of thumb,
so it should not be strongly dependent on the geometry of the
ploughing asperities. This is in agreement with the model where,
given a certain attack angle, the width of the asperity is also not at
large influence.
6. Conclusions

A model has been developed describing plastic failure of
ploughing asperities with a four sided base. Simple criteria have
been derived which describe limits to the geometry of ploughing
the asperities. Above these limits, failure of the asperity by the
ploughing forces will occur. In the analysis, it has been shown
that shear of ploughing asperities will be predominantly deter-
mined by the lateral shear stress in the asperity only.

For failure, in particular the shear strength of the asperity as
related to the hardness of the soft surface, has a high influence.
Also, the coefficient of friction, so the shear strength at the
ploughing face as related to the hardness of the soft surface, has
an important influence. Contrary to this, the width of the asperity
has a minor influence on failure of the asperity. The developed
criteria can be used to determine stable lump shapes which are
building up on surfaces due to material transfer in adhesive wear
situations. Further, the results can be used to analyse asperity
failure in two body abrasive wear processes.
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Appendix A

Here, expressions for sABC and tABC will be derived for the
geometry shown in Fig. 2. The equation of equilibrium in the x-
direction results in the following equation:

X
Fx ¼ 0) �

Z
ppl n
!

U x
!

dAþ

Z
tpl t
!

U x
!

dAþ

Z
tABC dA¼ 0

3�pplwh�tpll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

q
þtABCAABC ¼ 0 ðA:1Þ

www.m2i.nl
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From these equations follows the value of tABC

tABC ¼
1

AABC
ðpplwhþtpll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

q
Þ ¼

ppl

AABC
ðwhþml

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

q
Þ ðA:2Þ

Equilibrium in the z-direction results inX
Fz ¼ 0) �

Z
ppl n
!

U z
!

dAþ

Z
tpl t
!

U z
!

dA

þ

Z
sABCðxÞ n

!
U z
!

dA¼ 0

3�pplwlþtpl
w2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

p þCdcAABC ¼ 0 ðA:3Þ

Here, the symbol dc represents the value of the virtual displace-
ment d at location x¼xc, where xc is the x-coordinate of the
centroid of face ABC. From equilibrium in the z-direction sABC

cannot be determined over the whole face ABC, but using Eq. (10)
it can be derived that dc is proportional to the mean value of sABC.
This gives the following:

dc ¼
1

CAABC
pplwl�tpl

w2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

p
 !

¼
ppl

CAABC
wl�m w2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2þh2
p

 !

ðA:4Þ

The equation of moment equilibrium around to the y-axis results
in

Myy ¼
R

r
!
� d F
!
 �

U y
!
¼
R

z dFx�
R

x dFz ¼ 0

) �

Z
zppl n
!

U x
!

dAþ

Z
xppl n
!

U z
!

dAþ

Z
ztpl t
!

U x
!

dA

�

Z
xtpl t
!

U z
!

dA�

Z
xsABC n

!
U z
!

dA¼ 0

31
3pplwðl

2
�h2
Þ�

tpll

3
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

q
þ

w2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2

p
 !

�CðdcxcAABCþ IcyyyÞ ¼ 0 ðA:5Þ

In (A.5) r
!

and F
!

are respectively the location and the force
vector. In the last equation Icyy means the area moment of inertia
of face ABC with respect to the line x¼xc. From vertical and
moment equilibrium, so Eqs. (A.4) and (A.5), it follows:

y¼
ppl

3CIcyy
wðl2�h2

�3xclÞþ
mhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2þh2
p ð3xcw2�lð2w2þh2

ÞÞ

 !

ðA:6Þ

The normal stress sABC can be found by substituting Eq. (A.4)
and (A.6) in Eq. (10). In dimensionless form the final result is
obtained

tABC

ppl

¼
1

AABC

whþm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
þh

2
q !

ðA:7Þ

sABC

ppl

¼�
w

AABC

1�
mwhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
þh

2
q

0
B@

1
CAþ 1

3Icyy

� wðh
2
�1þ3xcÞþ

mhð2w2
þh

2
�3xcw2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
þh

2
q

0
B@

1
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