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Abstract

A major drawback in optimization problems and in particular in scheduling problems is
for every measure there may be a different optimal solution. In many cases the various m
are different�p norms. We address this problem by introducing the concept of anall-norm
ρ-approximation algorithm, which supplies one solution that guaranteesρ-approximation to all
�p norms simultaneously. Specifically, we consider the problem of scheduling in the res
assignment model, where there arem machines andn jobs, each job is associated with a sub
of the machines and should be assigned to one of them. Previous work considered approx
algorithms for each norm separately. Lenstra et al. [Math. Program. 46 (1990) 259–271] sh
2-approximation algorithm for the problem with respect to the�∞ norm. For any fixed�p norm
the previously known approximation algorithm has a performance ofθ(p). We provide an all-norm
2-approximation polynomial algorithm for the restricted assignment problem. On the other ha
show that for any given�p norm (p > 1) there is no PTAS unless P= NP by showing an APX-
hardness result. We also show for any given�p norm a FPTAS for any fixed number of machines
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1. Introduction

1.1. Problem definition

A major drawback in optimization problems and in particular in scheduling prob
is that for every measure there may be a different optimal solution. Usually, diff
algorithms are used for diverse measures, eachsupplying its own solution. Therefore, on
may ask what is the “correct” solution fora given scheduling problem. In many cas
there is no right answer to this question. We show that in some cases one can pro
appropriate answer, especially when the measures are different�p norms. Specifically, we
address the optimization problem of scheduling in the restricted assignment mod
havem parallel machines andn independent jobs, where jobj is associated with a weigh
wj and a subsetM(j) ⊆ {1, . . . ,m} of them parallel machines and should be assigne
one of them. For a given assignment, the loadli on a machinei is the sum of weights of th
jobs assigned to it. We denote by�l = (l1, . . . , lm) the machines load vector correspond
to an assignment, and further denote by�h the vector�l sorted in non-increasing order. W
may use the�p norm (p � 1) to measure the quality of an assignment, namely the co
an assignment is the�p norm of its corresponding load vector. The�p norm of a vector�l,
denoted‖�l‖p , is defined by:‖�l‖p = (

∑m
i=1 l

p
i )1/p.

Most research done so far in the various scheduling models considered the ma
(�∞) measure. In some applications other norms may be suitable such as the�2 norm.
Consider for example a case where the weight of a job corresponds to its machin
access frequency. Then each job may see a delay that is proportional to the load
machine it is assigned to. Thus theaveragedelay is proportional to the sum of squar
of the machines loads (namely the�2 norm of the corresponding machine load vect
whereas themaximumdelay is proportional to the maximum load.

Simple examples illustrate that for the general restricted assignment proble
optimal solution for one norm is not necessarily optimal in another norm (and in
may be very far from being optimal). Given that, one may ask what is the “correc
solution to a scheduling problem. When a solution, which is optimal in all norms, e
we would naturally define it as the correct solution and try to obtain it. For the sp
case of restricted assignment with unit jobs only, Alon et al. [1] showed that astrongly-
optimal assignment that is optimal in all norms exists, and can be found in polyno
time. However, this is not the case in general.

1.2. Our results

1.2.1. All-norm approximation
In light of the above discussion, we introduce the concept of anall-norm ρ-approxi-

mation algorithm, which supplies one solution guaranteeingρ-approximation with respec
to the optimal solutions for all norms simultaneously. Note that an approximated so
with respect to one norm may not guarantee any constant approximation ratio for an
norm. This does not contradict the fact that there may be a different solution approxim
the two norms simultaneously. Simple examples illustrate that we cannot hope for an a
norm (1+ ε)-approximation for arbitraryε for this problem (the example in [1] illustrate
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that ε must be larger than 0.003 even for two norms), hence the best we can hope
(independent of the computational power) is an all-normρ-approximation, whereρ is
constant. Moreover, from the computational point of view, we cannot expect to achie
all-norm approximation polynomial algorithm with ratio better than 3/2 since Lenstra et a
[13] proved a 3/2 lower bound on the approximation ratio of any polynomial algorithm
the makespan alone (assuming P�= NP). Lenstra et al. [13] and Shmoys and Tardos [
presented a 2-approximation algorithm for the makespan, however their algorithm do
guarantee any constant approximation ratio to optimal solutions for any other norm
easy to come up with a concrete example to support that). Our main result is an al
2-approximation polynomial algorithm for the restricted assignment model. Our algo
returns a feasible solution which is at most 2 times the optimal solution for all�p norms
(p � 1) simultaneously. In contrast, note that for the related machines model and he
the more general model of unrelated machines, in general there is no assignment obtain
constant approximation ratio for all norms simultaneously (this can be shown by a s
example even when considering only the�1 and�∞ norms).

A similar concept to our all-norm approximation isα-balanced assignments, that we
introduced by Goel et al. [7]. Kleinberg et al. [12] and Goel et al. [7] employed sim
notions while considering the problem of fairest bandwidth allocation, where the goa
maximize the bandwidth allocated to users, in contrast to minimizing the machines
In [7] an on-line version of our problem has been studied, and weaker results were ob
Recently,α-balanced assignments were also applied to off-line problems [5,6], and idea
similar to ours have been explored independently. We note that the idea of approxim
more than one measure appears in [2,18] where bicriteria approximation for the ma
and the average completion time is provided.

1.2.2. Approximation for any given norm
Recall that for the�∞ case Lenstra et al. [13] presented a 2-approximation algor

(presented for the more general model ofunrelated machines, where each job has
associatedm-vector specifying its weight on each machine). For any given�p norm the
only previous approximation algorithm for restricted assignment, presented by Awe
et al. [3], has a performance ofθ(p) (this algorithm was presented as an on-line algorit
for the unrelated machines model). Note that not only does our all-norm 2-approxim
algorithm provide 2-approximation to all norms simultaneously, it also improves
previous best approximation algorithm for each fixed�p norm separately.

1.2.3. Non-approximability for any given norm
Clearly, one may hope to get for any given�p norm a better approximation ratio (small

than 2), or even a Polynomial Time Approximation Scheme (PTAS). However, we
that for any given�p norm (p > 1) the problem of scheduling in the restricted assignm
model is APX-hard, thus there is no PTAS for the problem unless P= NP. Note that for
p = 1 any assignment is optimal.

1.2.4. Approximation scheme
For any given�p norm it is impossible to get a PTAS for an arbitrary num

of machines. Therefore, the only possible approximation scheme for a given no
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for a fixed number of machines. We present for any given norm a Fully Polyno
Time Approximation Scheme (FPTAS) for any fixed number of machines. Note tha
minimizing the makespan Horowitz and Sahni [10] presented a FPTAS for any
number of machines. Lenstra et al. [13] suggested a PTAS for the same problem
minimizing the makespan) with better space complexity.

1.3. Techniques and related results

1.3.1. Other related results
Other scheduling models have also been studied. For the identical machines

where each job has an associated weight and can be assigned to any machine, Hochba
and Shmoys [9] presented a PTAS for the case of minimizing the makespan. Later, Alo
et al. [1] showed a PTAS for any�p norm in the identical machines model. For the rela
machines model, in which eachmachine has a speed and themachine load equals the su
of jobs weights assigned to it divided by its speed, Hochbaum and Shmoys [8] prese
PTAS for the case of minimizing the makespan. Epstein and Sgall [4] showed a PTA
any�p norm in the same model.

Note that previous work discussed above showed that PTAS can be achiev
the identical and related machines models when considering the makespan for
In contrast, only constant approximation is possible for the restricted assignmen
unrelated machines models (see [13]). Our work establishes the same phenomeno
�p norm, by proving that only constant approximation can exist for restricted assignm

1.3.2. Techniques
Our main result, the all-norm 2-approximation algorithm, consists of two phas

finding a strongly-optimal fractional assignment and rounding in to an integral assign
which guarantees 2-approximation to the optimal assignments in all norm simultane
The first phase depends on constructinglinear programs with exponential number
constraints solved using the ellipsoid algorithm with a supplied oracle. Our algorithm
works for the more general model of unrelated machines and finds the lexicographica
best (smallest) assignment. Hence, in this sense, it generalizes the algorithm sugge
Megiddo [14,15], which can be used for the restricted assignment model only. Alth
the second phase can employ the rounding scheme of [17], our rounding technique
on eliminating cycles in a bipartite graph, is considerably simpler and more suitable f
needs. Our hardness of approximation result is reduced (by anL-reduction) from a resul
by Petrank [16] concerning a variant of 3-Dimensional Matching.

1.3.3. Paper structure
In Section 2 we present our approximation algorithm. In Section 3 we show the hardne

of approximation result for the problem. In Section 4 we show for any given�p norm a
FPTAS for any fixed number of machines.
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2. All-norm approximation algorithm

We use the notion of astrongly-optimal assignmentdefined in [1] throughout this pape
We repeat the definition in short:

Definition 2.1. Given an assignmentH denote bySk the total load on thek most loaded
machines. We say that an assignment isstrongly-optimalif for any other assignmentH ′
and for all 1� k � m we haveSk � S′

k .

A strongly-optimal assignment is optimal in any norm. In the case of unit
a strongly-optimal integral assignment exists (and can be found in polynomial t
however this is not the case in general (see [1]). It turns out there always exists a str
optimal fractional assignment in the general case. Our algorithm works in two sta
in the first stage we find a strongly-optimal fractional assignment and in the se
stage we round this fractional assignment to an integral assignment which guar
2-approximation with respect to the optimal solutions for all�p norms.

2.1. Finding a strongly-optimal fractional assignment

The following lemma can be deduced indirectly from general results in [19]. We pro
a simple direct proof for it.

Lemma 2.1. For every instance in the restricted assignment model there exis
fractional assignment that is strongly-optimal. In particular, every fractional assignm
which induces the lexicographically smallest load vector is a strongly-optimal fractiona
assignment.

Proof. We restrict ourselves only to rational weights. The lexicographically smallest
vector induced by a fractional assignment (when considering the machines load vec
sorted in non-increasing order) is uniquely defined and consists of rational weights (s
is a solution of a set of rational linear equations). Denote such an assignment byH . Assume
by contradiction thatH is not strongly-optimal, thus there exist a fractional assignmenH ′
and an integerk, 1� k � m, such thatSk > S′

k (we may assume thatH ′ also consists o
rational weights by means of limit). We may scale all the weights such that each assig
fraction inH andH ′ is integral. We may then translate the scaled instance to a new instan
with unit jobs only, by viewing a job with associated weightwj aswj unit jobs. Clearly, the
lexicographically smallest assignment for the new instance is the scaledH and it is also the
strongly-optimal assignment (see [1]). However, the scaledH ′ contradicts this fact. �

Note that although [1] provides an algorithm to find the strongly-optimal assignme
the unit jobs case which is polynomial in the number of jobs, we cannot use it since it
clear how to choose the units appropriately. Even if such units could be found, trans
our original jobs to unit jobs would not necessarily result in a polynomial number of
and therefore the algorithm would not be polynomial.
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The first stage of our algorithm consists of finding this strongly-optimal assignm
We present a more general algorithm. Our algorithm works for the more general model
unrelated machines and finds the lexicographically smallest fractional assignment (wh
considering the machines load vector�h sorted in non-increasing order). In particul
according to Lemma 2.1, for the restricted assignment model the lexicographically smalle
fractional assignment is the strongly-optimal fractional assignment. In this sens
algorithm generalizes the algorithm suggested by Megiddo [14,15], which can be
only for the restricted assignment model.

Theorem 2.1. In the unrelated machines model, the lexicographically smallest fracti
assignment can be found in polynomial time.

Proof. We define the following decision problem in the unrelated machines model:
n jobs, where jobj is associated with a weight vector�wj , andk � m limits: S1 � S2 �
· · · � Sk is there an assignmentH such that

∑r
i=1 li � Sr (r = 1, . . . , k) where�l is the

vector of machine loads introduced byH sorted in non-increasing order. We note t
the lexicographically smallest prefix vector�S = (S1, . . . , Sm) induces the lexicographicall
smallest assignment�h by defininghi = Si −Si−1 (S0 = 0). Denote byM(j) (j = 1, . . . , n)
the set of machines to which jobj can be assigned, i.e.,∀i ∈ M(j), wij < ∞. For the
case ofk = 1 (i.e., deciding the makespan) the decision problem can be translated
following linear program:

m∑

i=1

xij = 1 for j = 1, . . . , n,

n∑

j=1

xijwij � S1 for i = 1, . . . ,m,

xij � 0 for j = 1, . . . , n, i = 1, . . . ,m,

xij = 0 for j = 1, . . . , n, i /∈ M(j),

wherexij denotes the relative fraction of jobj placed on machinei. Since we canno
identify the machines according to their loads order, the general case is represented
linear program with number of constraints exponential inm, as follows:

m∑

i=1

xij = 1 for j = 1, . . . , n,

n∑

j=1

xi1jwi1j + · · · +
n∑

j=1

xit jwit j � St , ∀1 � t � k, ∀1 � i1 < · · · < it � m,

xij � 0 for j = 1, . . . , n, i = 1, . . . ,m,

xij = 0 for j = 1, . . . , n, i /∈ M(j).

We employ the ellipsoid algorithm to solve this linear program in polynomial time (see [1
for details). In order to use the ellipsoidalgorithm we should supply a separation ora
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running in polynomial time. We next describe the algorithm we use as the oracle f
general linear program:

1. Given the assignment we construct the corresponding machines load vector.
2. We sort the load vector. Denote by�h the sorted vector.
3. If there existsr, 1 � r � k, such that

∑r
i=1 hi > Sr then the algorithm returns ‘no

feasible’ together with the unsatisfied constraint—the one involving ther most loaded
machines (whose indices we have).

4. Otherwise the algorithm returns ‘feasible’.

Since the sorting operation (step 2) dominates the time complexity of the algorith
running time is clearly polynomial. We prove its correctness:

Claim 2.1. The algorithm returns ‘feasible’⇔ the given assignment is feasible.

Proof. (⇒) Suppose on the contrary that the given assignment is not feasible. Then
is an unsatisfied constraint involvingr � k machines such that their total load is greate
thanSr . In particular the constraint involving ther most loaded machines introduced by
the given schedule is not satisfied. Since our algorithm checks all the constraints inv
the 1� r � k most loaded machines, it will return ‘not feasible’.

(⇐) Suppose on the contrary that the algorithm returned ‘not feasible’. Thus for
1 � r � k the total load on ther most loaded machines exceedsSr , and there is an
unsatisfied constraint. Hence the assignment is not feasible.�

We use an incremental process to find the lexicographically smallest assign
Our algorithm hasm steps where in stepi we determine the total load on thei most
loaded machines in the assignment, given the total loads on thek most loaded machine
(1� k � i −1). Each step is done by performing a binary search on the decision prob
Consider the first step for example: we want to establish the load on the most l
machine. Denote for jobj (j = 1, . . . , n) its smallest possible weight bywmin

j = mini wij .
Let t = ∑n

j=1 wmin
j . Clearly t is an upper bound on the load of the most loaded mach

and t/m a lower bound. We can perform a binary search on the load of the most lo
machine while starting withu = t (initial upper bound) andl = t/m (initial lower bound).
Testing a boundS on the most loaded machine is done by considering the decision pro
with then jobs and limitS1 = S. We can stop the binary search whenu − l < ε and set
the load on the most loaded machine to the load obtained from the feasible solu
the linear program. Later we show how to chooseε such that the value produced by t
feasible solution is the exact one since there is at most one possible load value in th
[l, u]. Given thisε, the number of iterations needed for the binary search to com
is O(log(t/ε)). In the ith step (i = 1, . . . ,m) we perform the binary search on the to
load of thei most loaded machines given the total loads on thek most loaded machine
(k = 1, . . . , i − 1). Denote byL1, . . . ,Li−1 the prefix loads we found. We perform th
binary search on the total load of thei most loaded machines starting withu = Li−1 + t ,
l = Li−1. Testing a boundS is done by considering the decision problem with then

jobs and limitsS1 = L1, . . . , Si−1 = Li−1, Si = S. Again we stop the binary search wh
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u − l < ε and setLi to the total load on thei most loaded machines produced by
feasible assignment we found for the linear program.

We now determine the value ofε. Each feasible solution to the linear problem{xij } can
be written as{dij /d} whered and{dij } are integers smaller than 2P(I) for some polynomia
P in the size of the input (see [11] for example). If we chooseε = 2−2P(I) then we are
guaranteed that there is only one possible load value in the range[l, u] whenu− l < ε (see
[11]). Thus in each stepi = 1, . . . ,m the binary search involvesO(P(I)+ log

∑n
j=1 wmin

j )

iterations, polynomial in the size of the input. Hence in polynomial time we find the de
lexicographically smallest assignment.�
2.2. Rounding the strongly-optimal fractional assignment

We now return to the restricted assignment model. As mentioned above, the alg
presented in Theorem 2.1 finds the strongly-optimal fractional assignment in polyn
time. The second stage of our algorithm consists of rounding the fractional assig
{xij } to an integral assignment for the problem obtaining 2-approximation for eve�p

norm measure. We note that although the rounding scheme presented in [17] can
for this purpose, our rounding technique is considerably simpler and more suitable f
needs.

Theorem 2.2. A strongly-optimal fractional assignment can be rounded in polynomial
to an integral assignment which is at most2 times the optimal solution for all�p norms at
the same time.

Proof. Given the fractional assignment{xij } we will show how to construct the desire
integral assignment{x̂ij } in polynomial time. We construct the bipartite graphG =
(U,V,E) having|U | = n vertices on one side (representing the jobs) and|V | = m vertices
on the other (representing the machines) whileE = {(i, j) | xij > 0}. At first we would like
to eliminate all cycles inG while preserving the same load on all machines. We elimi
the cycles inG in polynomial time by performing the following steps:

1. We define a weight functionW :E → R+ on the edges ofG such thatW(i, j) =
xijwj , i.e., the actual load of jobj that is assigned to machinei.

2. As long as there are cycles inG, find a cycle, and determine the edge with the sma
weight on the cycle (denote this edge bye and its weight byt).

3. Starting frome subtractt and addt from the weights on alternating edges on the cy
and remove fromG the edges with weight 0. See Fig. 1 for an example.

It is clear that this method eliminates the cycles one by one (by discarding the
with the smallest weight on each cycle) while preserving the original load on all machine
Denote byG the new graph obtained after eliminating the cycles and by{xij } the new
strongly-optimal fractional assignment represented byG (which is a forest). In the firs
rounding phase consider each integral assignmentxij = 1, set x̂ij = 1 and discard the
corresponding edge from the graph. Denote again byG the resulting graph.
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Fig. 1. Eliminating the cycle. Edge and job weights and machine loads are listed: (A) before eliminating the cyc
(B) after eliminating the cycle.

In the second rounding phase we assign all the remaining fractional jobs. For th
we construct a matching inG that covers all job nodes using the same method prese
in [13]. We consider each connected component inG, which is a tree, and root that tree
one of the job nodes. Match each job node with any one of its children. Since every
in the tree has at most one father we get a matching and since each job node is no
(each job node has a degree at least 2) the resulting matching covers all job nodes. F
edge(i, j) in the matching set̂xij = 1.

We now prove that the schedule obtained from the assignment{x̂ij } guarantees a
2-approximation to the optimal solutions for all�p norms (forp � 1). Fix p and denote by
OPT the optimal solution for the problem using�p for cost. Denote byH opt the strongly-
optimal fractional schedule obtained after eliminating the cycles and denote byH the
schedule returned by the algorithm. Further denote byH1 the schedule consisting of th
jobs assigned in the first rounding phase (right after eliminating the cycles) and byH2 the
schedule consisting of the jobs assigned in the second rounding phase (those assigne
the matching process). We have:

‖H1‖p �
∥∥H opt

∥∥
p

� ‖OPT‖p,

where the first inequality follows from the fact thatH1 is a sub-schedule ofH opt and
the second inequality results fromH opt being a strongly-optimal fractional schedule, th
optimal in any�p norm compared with any other fractional schedule, and certainly optim
compared withOPT which is an integral schedule. We also know that:

‖H2‖p � ‖OPT‖p,

where the inequality results from the fact thatH2 schedules onlyone job per machine, thus
optimal integral assignment in any�p norm for the subset of jobs it assigns and certa
has cost smaller than any integral assignment for the whole set of jobs. We can now

‖H‖p = ‖H1 + H2‖p � ‖H1‖p + ‖H2‖p � ‖OPT‖p + ‖OPT‖p = 2‖OPT‖p,

which concludes the proof that the scheduleH we constructed guarantees a 2-approxim
tion to optimal solutions for all�p norms and can be found in polynomial time.�
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3. APX-hardness for an arbitrary number of machines

In this section we describe anL-reduction from the APX-hard Maximum Bounde
3-Dimensional Matching problem (MAX -3DM) to the minimization of sum of square
machine loads for the restricted assignment problem. This clearly implies APX-har
of �2 norm minimization for restricted assignment (since a PTAS for approximating

√
x

yields a PTAS for approximatingx). The proof can be easily modified and extended to
other�p norms withp > 1. Our construction draws some ideas from Lenstra, Shmoys
Tardos [13]. The problem MAX -3DM is defined as follows:

Instance: Three setsA = {a1, . . . , aq}, B = {b1, . . . , bq}, and C = {c1, . . . , cq},
together with a subsetT of A × B × C. Any element inA, B, C occurs in one, two
or three triples inT ; note that this impliesq � |T | � 3q .
Goal: Find a subsetT ′ of T of maximum cardinality such that no two triples ofT ′
agree in any coordinate.
Measure: The measure of a feasible solutionT ′ is the cardinality ofT ′.

Petrank [16] has shown that MAX -3DM is APX-hard even if one only allows instanc
where the optimal solution consists ofq = |A| = |B| = |C| triples; in the following we will
only consider this additionally restricted version of MAX -3DM.

For theL-reduction we specify a functionR that maps instancesI of MAX -3DM into
scheduling instancesR(I), and a functionS that maps feasible solutions ofR(I) back into
feasible solutions ofI . Given any instanceI of MAX -3DM, the instanceR(I) contains 3q
machines.

• For every tripleTi in T , there is a corresponding triple machineM(Ti).
• Moreover, there are 3q − |T | so-called dummy machines.

The instanceR(I) contains 5q jobs.

• For everyaj , bj , andcj (j = 1, . . . , q) there are corresponding element jobsJ (aj ),
J (bj ), andJ (cj ). An element job cannot be assigned to dummy machines; an ele
job can only be assigned to a triple machineM(Ti) if its underlying element is
contained in the tripleTi . Every element job has processing time 1.

• Moreover there are 2q so-called dummy jobs. Dummy jobs have processing time
all machines.

This completes the description of the scheduling instanceR(I). Since we only conside
instances of MAX -3DM where the optimal solution consists ofq triples, we have
OPT(I) = q . Now consider the following schedule for instanceR(I): For each triple
Ti = (aj , bk, cl) in the optimal solution toI , we schedule the three element jobsJ (aj ),
J (bk), andJ (cl) on machineM(Ti). The 2q dummy jobs are assigned to the remain
2q empty machines so that each machine receives exactly one dummy job. In the re
schedule every machine has load 3, and hencethe objective value of this schedule is 27q .
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Therefore,OPT(R(I)) � 27q = 27OPT(I) and the first condition onL-reductions is
satisfied withα = 27.

Next we specify the functionS. Let s be a feasible schedule for a scheduling insta
R(I). A machineM(Ti) in the schedules is calledgood, if it processes three jobs o
length 1. Note that these three jobs can only be the jobsJ (aj ), J (bk), andJ (cl) with
Ti = (aj , bk, cl). We define the feasible solutionS(s) for the instanceI of MAX -3DM to
consist of all triplesTi for which the machineM(Ti) is good.

Consider a feasible schedules for an instanceR(I) of the scheduling problem. Fo
k = 0,1,2,3 let mk denote the number of machines in schedules that process exactlyk
jobs of length 1. Then the total number of machines equals

m0 + m1 + m2 + m3 = 3q, (1)

and the total number of processed element jobs of length 1 equals

m1 + 2m2 + 3m3 = 3q. (2)

Note that by our definition of the functionS, the objective valuec(S(s)) of the feasible
solution S(s) equalsm3. In Lemma 3.1 we will prove thatc(s) � 29q − 2m3 holds.
Altogether, this then yields that

∣∣c
(
S(s)

) − OPT(I)
∣∣ = q − m3 = 1

2
(29q − 2m3 − 27q) � 1

2

∣∣c(s) − OPT
(
R(I)

)∣∣,

and that the second condition onL-reductions is satisfied withβ = 1/2. Since the function
R andS are computable in polynomial time, we haveestablished all necessary propert
of anL-reduction. Hence, minimizing the sum of squared machine loads for the rest
assignment problem indeed is an APX-hard problem.

Lemma 3.1. The objective valuec(s) of the feasible solutions of the scheduling instanc
R(I) satisfiesc(s) � 29q − 2m3.

Proof. Let us remove all dummy jobs from schedules and then add them again in th
cheapest possible way, such that the resulting new schedules′ has the smallest possib
objective value that can be reached by this procedure. Sincec(s) � c(s′), it will be
sufficient to establish the inequalityc(s′) � 29q−2m3. What is the cheapest way of addi
the 2q dummy jobs of length 3 tom0 empty machines, tom1 machines with load 1, tom2
machines with load 2, and tom3 machines with load 3? Each machine should receiv
at most one dummy job, and the dummy jobs should be added to the machines w
smallest loads. The inequality (2) impliesm3 � q , and then (1) yieldsm0 +m1 +m2 � 2q .
Hence, them3 machines of load 3 will not receive any dummy job. The inequality
impliesm1 + m2 + m3 � q , and then (1) yieldsm0 � 2q . Hence, them0 empty machines
all will receive a dummy job. For the rest of the argument we will distinguish two cas

In the first case we assume thatm0 + m1 � 2q . In this case there is sufficient space
accommodate all dummy jobs on the machines with load at most 1. Then schedules′ will
havem0 + m3 machines of load 3,m2 machines of load 2,m0 + m1 − 2q machines of
load 1, and 2q − m0 machines of load 4. From (1) and (2) we get thatm0 = m2 + 2m3
and thatm1 = 3q − 2m2 − 3m3. Moreover, our assumptionm0 + m1 � 2q is equivalent to
m2 + m3 − q � 0. We conclude that
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(
s′) � 9(m2 + 3m3) + 4m2 + (q − m2 − m3) + 16(2q − m2 − 2m3)

= 33q − 4m2 − 6m3 � 33q − 4m2 − 6m3 + 4(m2 + m3 − q) = 29q − 2m3.

In the second case we assume thatm0 + m1 < 2q . In this case there is not sufficient spa
to accommodate all dummy jobs on the machines with load at most 1, and some machin
with load 2 must be used. Then schedules′ will have m0 + m3 machines of load 3,m1

machines of load 4, 2q − m0 − m1 machines of load 5, andm0 + m1 + m2 − 2q machines
of load 2. As in the first case we usem0 = m2 + 2m3 andm1 = 3q − 2m2 − 3m3. Our
assumptionm0 + m1 < 2q is equivalent toq − m2 − m3 < 0. We conclude that

c
(
s′) � 9(m2 + 3m3) + 16(3q − 2m2 − 3m3) + 25(m2 + m3 − q) + 4(q − m3)

= 27q + 2m2 > 27q + 2m2 + 2(q − m2 − m3) = 29q − 2m3.

This completes the proof of the lemma.�

4. FPTAS for any fixed number of machines and a given �p norm

For a given�p norm and any fixed number of machines we describe a FPTAS
the restricted assignment problem, i.e., a(1 + ε)-approximation algorithm for anyε > 0
running in time polynomial inn and 1/ε. Recall that there is no approximation sche
supplying the same solution for all�p norms since the optimal solutions for different nor
can vary significantly. By the hardness of approximation result we showed, there
approximation scheme (PTAS or FPTAS) for a given norm and any number of mac
unless P= NP. Hence the only possible approximation scheme is for a given norm an
fixed number of machines. Our FPTAS is a modification of the method presented in
by Horowitz and Sahni in [10]. Our algorithm works for all scheduling models: ident
related, restricted assignment and unrelated machines, and istherefore presented in th
most general model, i.e., unrelated machines. For anyε our algorithmAε consists of the
following steps:

1. Given the job weights{wij }, we denote for each job its smallest possible we
by w̄j = mini wij . Given that there is a feasibleassignment placing each job on t
machine where its weight is minimal, we know that in any optimal assignmen
load on each machine is at most

∑n
j=1 w̄j . For this reason we can replace all weig

wij >
∑n

j=1 w̄j by ∞, since no optimal assignment will ever use them. Denote bylopt

the machines load vector corresponding to the optimal assignment. By the conve
the norm function we get that:‖lopt‖p � (

∑n
j=1 w̄j )/m · m1/p. Assume for simplicity

of notation that:(
∑n

j=1 w̄j )/m = 1, hence‖lopt‖p � m1/p and the maximum load o
any machine in any optimal assignment is at mostm. We divide the interval[1,m] into
m/δ equal parts of sizeδ each (whereδ is a function ofε chosen later) and round ea
weightwij to w′ = kδ for the maximalk � 0 such thatw′ � wij .
ij ij
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2. Using dynamic programming we would like to find all possible load vec
corresponding to legal assignments. We define the following states for thej th layer
(j = 1, . . . , n):

Tj (l1, . . . , lm), li = k · δ, k = 0, . . . ,m/δ,

whereTj (l1, . . . , lm) = 1 if and only if the load vector(l1, . . . , lm) corresponds to
any legal assignment of the firstj jobs (Tj(l1, . . . , lm) = 0 otherwise). The dynami
program computes each value in the following way:

Tj (l1, . . . , lm) =
m∨

i=1

Tj−1
(
l1, . . . , li − w′

ij , . . . , lm
)
.

For eachTj (li1, . . . , lim) = 1 we can store the assignment of thej th job, thus for any
legal load vector we can trace back the corresponding assignment (one of the p
corresponding assignments, to be accurate).

3. After the completion of the dynamic program we choose among all possible
vectors (all load vectors(li1, . . . , lim) for whichTn(li1, . . . , lim) = 1) the one obtaining
the minimal value for the given norm. We return the assignment correspondi
this load vector. The real cost corresponding to the returned assignment is obtai
considering the�p norm of the load vector when substituting the rounded weights
the original ones.

Denote bylA the load vector corresponding to the assignment returned by the algo
with the original job weights and byl′A the load vector corresponding to the assignm
with the rounded weights. Analogously denote bylopt andl′opt the optimal assignment wit
the original and rounded weights, respectively. We first prove that the suggested alg
returns an assignment which guarantees(1+ ε)-approximation to the optimal solution.

Lemma 4.1. For anyε > 0 choosingδ = ε/n for the algorithm yields:

‖lA‖p − ‖lopt‖p

‖lopt‖p

� ε.

Proof.

∥∥lA
∥∥

p
�

∥∥l′A + δn · �1∥∥
p

�
∥∥l′A

∥∥
p

+ δn · m1/p �
∥∥l′opt

∥∥
p

+ δn · m1/p

�
∥∥lopt

∥∥
p

+ δn · m1/p.

The first inequality follows from the fact that the rounding procedure decreases each
weight by at mostδ thuslAi � l′Ai + δn (i = 1, . . . ,m). The third inequality results froml′A
being optimal for the rounded weights. Recall that‖lopt‖p � m1/p, thus:

‖lA‖p − ‖lopt‖p

‖lopt‖p

� δn · m1/p

m1/p
.
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By the choiceδ = ε/n we get:

‖lA‖p − ‖lopt‖p

‖lopt‖p

� ε,

as required. �
We now analyze the algorithm time complexity. There aren layers (n jobs) in the

dynamic program and the number of states in each layer is(m/δ)m since there arem
machines and each machine load hasm/δ possibilities. Calculating the value for a certa
state requires looking at the values of at mostm other states. Hence the algorithm tim
complexity is:O(mn(m/δ)m). By substitutingδ with its chosen value the complexity i
O(mn(mn/ε)m), which is polynomial inn and 1/ε. Hence the family of algorithmsAε is
a FPTAS.
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