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Abstract

A major drawback in optimization problems and in particular in scheduling problems is that
for every measure there may be a different optimal solution. In many cases the various measures
are different¢, norms. We address this problem by introducing the concept oflanorm
p-approximation algorithm which supplies one solution that guarantgeapproximation to all
£, norms simultaneously. Specifically, we consider the problem of scheduling in the restricted
assignment model, where there aremachines and jobs, each job is associated with a subset
of the machines and should be assigned to one of them. Previous work considered approximation
algorithms for each norm separately. Lenstra et al. [Math. Program. 46 (1990) 259-271] showed a
2-approximation algorithm for the problem with respect to e norm. For any fixedl,, norm
the previously known approximation algorithm has a performaneg pf. We provide an all-norm
2-approximation polynomial algorithm for the restricted assignment problem. On the other hand, we
show that for any giverf,, norm (p > 1) there is no PTAS unless-P NP by showing an APX-
hardness result. We also show for any giégmorm a FPTAS for any fixed number of machines.
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1. Introduction
1.1. Problem definition

A major drawback in optimization problems and in particular in scheduling problems
is that for every measure there may be a different optimal solution. Usually, different
algorithms are used for diverse measures, sagiplying its own solution. Therefore, one
may ask what is the “correct” solution far given scheduling problem. In many cases
there is no right answer to this question. We show that in some cases one can provide an
appropriate answer, especially when the measures are diffgrerrms. Specifically, we
address the optimization problem of scheduling in the restricted assignment model. We
havem parallel machines andindependent jobs, where jgbis associated with a weight
w; and a subse¥ (j) € {1, ..., m} of them parallel machines and should be assigned to
one of them. For a given assignment, the Ihaah a maching is the sum of weights of the
jobs assigned to it. We denote By: (I, ..., ln) the machines load vector corresponding
to an assignment, and further denotefbthe vectorl sorted in non-increasing order. We
may use the, norm (p > 1) to measure the quality of an assignment, namely the cost of
an assignment is thg, norm of its corresponding load vector. Thg norm of a vector,
denoted|| ,, is defined by{l||, = (X7, 17)Y/7.

Most research done so far in the various scheduling models considered the makespan
() measure. In some applications other norms may be suitable such &s rloem.
Consider for example a case where the weight of a job corresponds to its machine disk
access frequency. Then each job may see a delay that is proportional to the load on the
machine it is assigned to. Thus theeragedelay is proportional to the sum of squares
of the machines loads (hamely tlig norm of the corresponding machine load vector)
whereas thenaximundelay is proportional to the maximum load.

Simple examples illustrate that for the general restricted assignment problem, an
optimal solution for one norm is not necessarily optimal in another norm (and in fact
may be very far from being optimal). Gimethat, one may ask what is the “correct”
solution to a scheduling problem. When a solution, which is optimal in all norms, exists
we would naturally define it as the correct solution and try to obtain it. For the special
case of restricted assignment with unit jobs only, Alon et al. [1] showed tkabagly-
optimal assignment that is optimal in all norms exists, and can be found in polynomial
time. However, this is not the case in general.

1.2. Our results

1.2.1. All-norm approximation

In light of the above discussion, we introduce the concept adlenorm p-approxi-
mation algorithmwhich supplies one solution guaranteeingpproximation with respect
to the optimal solutions for all norms simultaneously. Note that an approximated solution
with respect to one norm may not guarantee any constant approximation ratio for any other
norm. This does not contradict the fact that there may be a different solution approximating
the two norms simultaneously. Simple exdewillustrate that we cannot hope for an all-
norm (14 ¢)-approximation for arbitrary for this problem (the example in [1] illustrates
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thate must be larger than.003 even for two norms), hence the best we can hope for
(independent of the computational power) is an all-ngrrapproximation, where is
constant. Moreover, from the computational point of view, we cannot expect to achieve an
all-norm approximation polynomial algorithm with ratio better thg@ 8ince Lenstra et al.

[13] proved a 32 lower bound on the approximation ratio of any polynomial algorithm for
the makespan alone (assuming:MP). Lenstra et al. [13] and Shmoys and Tardos [17]
presented a 2-approximation algorithm for the makespan, however their algorithm does not
guarantee any constant approximation ratio to optimal solutions for any other norms (it is
easy to come up with a concrete example to support that). Our main result is an all-norm
2-approximation polynomial algorithm for the restricted assignment model. Our algorithm
returns a feasible solution which is at most 2 times the optimal solution fdr, albrms

(p > 1) simultaneously. In contrast, note that for the related machines model and hence for
the more general model of unrelated machjiegeneral there is no assignment obtaining
constant approximation ratio for all norms simultaneously (this can be shown by a simple
example even when considering only theand?., norms).

A similar concept to our all-norm approximationdsbalanced assignments, that were
introduced by Goel et al. [7]. Kleinberg et al. [12] and Goel et al. [7] employed similar
notions while considering the problem of fairest bandwidth allocation, where the goal is to
maximize the bandwidth allocated to users, in contrast to minimizing the machines loads.
In[7] an on-line version of our problem has been studied, and weaker results were obtained.
Recently,«x-balanced assignments were also agptie off-line problems [5,6], and ideas
similar to ours have been explored independently. We note that the idea of approximating
more than one measure appears in [2,18] where bicriteria approximation for the makespan
and the average completion time is provided.

1.2.2. Approximation for any given norm

Recall that for the/, case Lenstra et al. [13] presented a 2-approximation algorithm
(presented for the more general modelunirelated machines, where each job has an
associatedr-vector specifying its weight on each machine). For any giggmorm the
only previous approximation algorithm for restricted assignment, presented by Awerbuch
et al. [3], has a performance 6t p) (this algorithm was presented as an on-line algorithm
for the unrelated machines model). Note that not only does our all-norm 2-approximation
algorithm provide 2-approximation to all norms simultaneously, it also improves the
previous best approximation algorithm for each fiXgdhorm separately.

1.2.3. Non-approximality for any given norm

Clearly, one may hope to get for any givennorm a better approximation ratio (smaller
than 2), or even a Polynomial Time Approximation Scheme (PTAS). However, we show
that for any givert,, norm (p > 1) the problem of scheduling in the restricted assignment
model is APX-hard, thus there is no PTAS for the problem unlessNP. Note that for
p =1 any assignment is optimal.

1.2.4. Approximation scheme
For any given{, norm it is impossible to get a PTAS for an arbitrary number
of machines. Therefore, the only possible approximation scheme for a given norm is
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for a fixed number of machines. We present for any given norm a Fully Polynomial
Time Approximation Scheme (FPTAS) for any fixed number of machines. Note that for
minimizing the makespan Horowitz and Sahni [10] presented a FPTAS for any fixed
number of machines. Lenstra et al. [13] suggested a PTAS for the same problem (i.e.,
minimizing the makespan) with better space complexity.

1.3. Techniques and related results

1.3.1. Other related results

Other scheduling models have also been studied. For the identical machines model,
where each job has an associated weight@an be assigned to any machine, Hochbaum
and Shmoys [9] presented a PTAS for the casmimimizing the makespan. Later, Alon
et al. [1] showed a PTAS for arfy, norm in the identical machines model. For the related
machines model, in which eachachine has a speed and thachine load equals the sum
of jobs weights assigned to it divided by its speed, Hochbaum and Shmoys [8] presented a
PTAS for the case of minimizing the makespan. Epstein and Sgall [4] showed a PTAS for
any£, norm in the same model.

Note that previous work discussed above showed that PTAS can be achieved for
the identical and related asehines models when considering the makespan for cost.
In contrast, only constant approximation is possible for the restricted assignment and
unrelated machines models (see [13]). Our work establishes the same phenomenon for the
£, norm, by proving that only constant approximation can exist for restricted assignment.

1.3.2. Techniques

Our main result, the all-norm 2-approximation algorithm, consists of two phases—
finding a strongly-optimal fractional assignment and rounding in to an integral assignment
which guarantees 2-approximation to the optimal assignments in all norm simultaneously.
The first phase depends on constructlimgar programs with exponential number of
constraints solved using the ellipsoidgatithm with a supplied @cle. Our algorithm
works for the more general model of unreldtmachines and finds the lexicographically
best (smallest) assignment. Hence, in this sense, it generalizes the algorithm suggested by
Megiddo [14,15], which can be used for the restricted assignment model only. Although
the second phase can employ the rounding scheme of [17], our rounding technique, based
on eliminating cycles in a bipartite graph, is considerably simpler and more suitable for our
needs. Our hardness of approximation result is reduced (ly@ealuction) from a result
by Petrank [16] concerning a variant of 3-Dimensional Matching.

1.3.3. Paper structure

In Section 2 we present our approximatiogaithm. In Section 3 we show the hardness
of approximation result for the problem. In Section 4 we show for any géyenorm a
FPTAS for any fixed number of machines.
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2. All-norm approximation algorithm

We use the notion of strongly-optimal assignmeudefined in [1] throughout this paper.
We repeat the definition in short:

Definition 2.1. Given an assignmerf denote bysS; the total load on thé most loaded
machines. We say that an assignmerdtisngly-optimalif for any other assignmeni’
and for all 1< k <m we haveS; < S;.

A strongly-optimal assignment is optimal in any norm. In the case of unit jobs
a strongly-optimal integral assignment exists (and can be found in polynomial time),
however this is not the case in general (see [1]). It turns out there always exists a strongly-
optimal fractional assignment in the general case. Our algorithm works in two stages:
in the first stage we find a strongly-optimal fractional assignment and in the second
stage we round this fractional assignment to an integral assignment which guarantees
2-approximation with respect to the optimal solutions foglhorms.

2.1. Finding a strongly-optimal fractional assignment

The following lemma can be deduced indirectly from general results in [19]. We provide
a simple direct proof for it.

Lemma 2.1. For every instance in the restricted assignment model there exists a
fractional assignment that is strongly-optimal. In particular, every fractional assignment
which induces the lexicographically smaitdoad vector is a strongly-optimal fractional
assignment.

Proof. We restrict ourselves only to rational weights. The lexicographically smallest load
vector induced by a fractional assignment émhconsidering the machines load vector
sorted in non-increasing order) is uniquely defined and consists of rational weights (since it
is a solution of a set of rational linear equations). Denote such an assignmgnsgume

by contradiction that is not strongly-optimal, thus there exist a fractional assignmgnt
and an integek, 1 < k < m, such thatS; > S; (we may assume tha{’ also consists of
rational weights by means of limit). We magade all the weights such that each assigned
fractionin H andH’ is integral. We may then translatestscaled instance to a new instance
with unit jobs only, by viewing a job with associated weight asw ; unitjobs. Clearly, the
lexicographically smallest assigmemt for the new instance is the scal@dand it is also the
strongly-optimal assignment (see [1]). However, the sc@lédontradicts this fact. O

Note that although [1] provides an algorithm to find the strongly-optimal assignment in
the unit jobs case which is polynomial in the number of jobs, we cannot use it since it is not
clear how to choose the units appropriately. Even if such units could be found, translating
our original jobs to unit jobs would not necessarily result in a polynomial number of jobs
and therefore the algorithm would not be polynomial.
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The first stage of our algorithm consists of finding this strongly-optimal assignment.
We present a more general algorithm. Owaaithm works for the more general model of
unrelated machines and finds the lexicograpty smallest fractional assignment (when
considering the machines load vectorsorted in non-increasing order). In particular,
accordingto Lemma 2.1, for the restricted gasnent model the lexicographically smallest
fractional assignment is the strongly-optimal fractional assignment. In this sense, our
algorithm generalizes the algorithm suggested by Megiddo [14,15], which can be used
only for the restricted assignment model.

Theorem 2.1. In the unrelated machines model, the lexicographically smallest fractional
assignment can be found in polynomial time.

Proof. We define the following decision problem in the unrelated machines model: given
n jobs, where jobj is associated with a weight vectar;, andk < m limits: S1 < S2 <

.-+ < S is there an assignmertf such that) ;_;/; < S (r=1,...,k) wherel is the
vector of machine loads introduced By sorted in non-increasing order. We note that
the lexicographically smallest prefix vectde= (51, . . ., S) induces the lexicographically
smallest assignmentby definingh; = S; — S;—1 (So = 0). DenotebyM (j) (j =1,...,n)

the set of machines to which jopcan be assigned, i.e¥j € M(j), w;; < oo. For the

case ofk = 1 (i.e., deciding the makespan) the decision problem can be translated to the
following linear program:

m

ZX,‘j:l forj:l,...,n,
i=1

n
Zx,-jw,-j <S5 fori=1,...,m,
Jj=1

x;20 forj=1,...,ni=1...,m,
xij=0 fOI’j=l,...,n,i¢M(j),
wherex;; denotes the relative fraction of jop placed on machine. Since we cannot

identify the machines aceding to their loads order, the general case is represented by a
linear program with number of constraints exponentiakiras follows:

m

ZX,‘j:l forj:l,...,n,
i=1

n n
inljwi1j+"'+2xizjwi,jgst, Vi<tr<k, Vli<ii<---<i;<m,
Jj=1 j=1

xij=20 forj=1,...,n,i=1....m,

We employ the ellipsoid algorithm to solvasHinear program in polynomial time (see [11]
for details). In order to use the ellipsoadgorithm we should supply a separation oracle
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running in polynomial time. We next describe the algorithm we use as the oracle for the
general linear program:

1. Given the assignment we construct the corresponding machines load vector.

2. We sort the load vector. Denote hythe sorted vector.

3. If there exists, 1< r <k, such that)_";_; h; > S, then the algorithm returns ‘not
feasible’ together with the unsatisfied constraint—the one involving thest loaded
machines (whose indices we have).

4. Otherwise the algorithm returns ‘feasible’.

Since the sorting operation (step 2) dominates the time complexity of the algorithm, its
running time is clearly polynomial. We prove its correctness:

Claim 2.1. The algorithm returns ‘feasible> the given assignment is feasible.

Proof. (=) Suppose on the contrary that the given assignment is not feasible. Then there
is an unsatisfied constraint involving< £ machines such that thiotal load is greater
than S,. In particular the constraint involving themost loaded madhes introduced by
the given schedule is not satisfied. Since our algorithm checks all the constraints involving
the 1< r < k most loaded machines, it will return ‘not feasible’.

(<) Suppose on the contrary that the algorithm returned ‘not feasible’. Thus for some
1 < r < k the total load on the most loaded machines exceefls and there is an
unsatisfied constraint. Hence the assignment is not feasite.

We use an incremental process to find the lexicographically smallest assignment.
Our algorithm hasn steps where in step we determine the total load on tliemost
loaded machines in the assignment, given the total loads ok thest loaded machines
(1< k <i—1). Each step is done by performing a binary search on the decision problems.
Consider the first step for example: we want to establish the load on the most loaded
machine. Denote for job (j = 1,..., n) its smallest possible weight by™" = min; w;;.
Letr=3"_4 w;."'”. Clearly is an upper bound on the load of the most loaded machine,
andr/m a lower bound. We can perform a binary search on the load of the most loaded
machine while starting withh = ¢ (initial upper bound) and=¢/m (initial lower bound).
Testing a bound on the most loaded machine is done by considering the decision problem
with the n jobs and limitS; = S. We can stop the binary search wher- / < ¢ and set
the load on the most loaded machine to the load obtained from the feasible solution to
the linear program. Later we show how to choesguch that the value produced by the
feasible solution is the exact one since there is at most one possible load value in the range
[Z,u]. Given thise, the number of iterations needed for the binary search to complete
is O(log(t/¢)). In theith step ( =1, ..., m) we perform the binary search on the total
load of thei most loaded machines given the total loads onitmeost loaded machines
(k=1,...,i —1). Denote byL1, ..., L;—1 the prefix loads we found. We perform the
binary search on the total load of thenost loaded madhes starting withu = L;_1 + ¢,

[ = L;_1. Testing a bounds is done by considering the decision problem with the
jobs and limitsS1 = L1, ..., Si—1 = L;_1, S; = S. Again we stop the binary search when



Y. Azar et al. / Journal of Algorithms 52 (2004) 120-133 127

u — 1 < ¢ and setL; to the total load on thé most loaded machines produced by the
feasible assignment we found for the linear program.

We now determine the value ef Each feasible solution to the linear problém; } can
be written agd;; /d} whered and{d;;} are integers smaller thaf'? for some polynomial
P in the size of the input (see [11] for example). If we choese 2-27(D) then we are
guaranteed that there is only one possible load value in the fandevhenu — [ < ¢ (see
[11]). Thusin each step=1, ..., m the binary search involve8 (P (1) +log 3 _; wT'”)
iterations, polynomial in the size of the input. Hence in polynomial time we find the desired
lexicographically smallest assignmenta

2.2. Rounding the strongly-optimal fractional assignment

We now return to the restricted assignment model. As mentioned above, the algorithm
presented in Theorem 2.1 finds the strongly-optimal fractional assignment in polynomial
time. The second stage of our algorithm consists of rounding the fractional assignment
{x;;} to an integral assignment for the problem obtaining 2-approximation for eyery
norm measure. We note that although the rounding scheme presented in [17] can be used
for this purpose, our rounding technique is considerably simpler and more suitable for our
needs.

Theorem 2.2. A strongly-optimal fractional assignment can be rounded in polynomial time
to an integral assignment which is at m@simes the optimal solution for all, norms at
the same time.

Proof. Given the fractional assignmeft;;} we will show how to construct the desired
integral assignmen{x;;} in polynomial time. We construct the bipartite grajgh=

(U, V, E) having|U| = n vertices on one side (representing the jobs)[afid= m vertices

on the other (representing the machines) while: {(i, ) | x;; > 0}. Atfirst we would like

to eliminate all cycles irG while preserving the same load on all machines. We eliminate
the cycles inG in polynomial time by performing the following steps:

1. We define a weight functio : E — R* on the edges o; such thatW(, j) =
xjjwj, i.e., the actual load of jop that is assigned to machine

2. Aslong as there are cyclesdh find a cycle, and determine the edge with the smallest
weight on the cycle (denote this edgedgnd its weight by).

3. Starting frone subtract and add from the weights on alternating edges on the cycle,
and remove fronGG the edges with weight 0. See Fig. 1 for an example.

It is clear that this method eliminates the cycles one by one (by discarding the edge
with the smallest weight on each cycle) while prasng the original load on all machines.
Denote byG the new graph obtained afteliminating the cycles and byx;;} the new
strongly-optimal fractional assignment representedGbfwhich is a forest). In the first
rounding phase consider each integral assignmgnt 1, setx;; = 1 and discard the
corresponding edge from the graph. Denote agai6 lilye resulting graph.
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3 6 6 3 6 6
machines

jobs

Fig. 1. Eliminating the cycle. Edge and job weights arathine loads are listed: (A) before eliminating the cycle,
(B) after eliminating the cycle.

In the second rounding phase we assign all the remaining fractional jobs. For this end
we construct a matching i@ that covers all job nodes using the same method presented
in [13]. We consider each connected componert jiwhich is a tree, and root that tree in
one of the job nodes. Match each job node with any one of its children. Since every node
in the tree has at most one father we get a matching and since each job node is not a leaf
(each job node has a degree at least 2) the resulting matching covers all job nodes. For each
edge(i, j) in the matching set;; = 1.

We now prove that the schedule obtained from the assignrpgyit guarantees a
2-approximation to the optimal solutions for &J) norms (forp > 1). Fix p and denote by
OPT the optimal solution for the problem usirig for cost. Denote by °Pt the strongly-
optimal fractional schedule obtained exfteliminating the cycles and denote B the
schedule returned by the algorithm. Further denotéfhythe schedule consisting of the
jobs assigned in the first rounding phase (right after eliminating the cycles) afd the
schedule consisting of the jobs assignedhi@a $econd rounding phase (those assigned by
the matching process). We have:

IHLl, < |HP , < IOPTIp,
where the first inequality follows from the fact thak is a sub-schedule off°P! and
the second inequality results from°P being a strongly-optimal fractional schedule, thus

optimal in any¢,, norm compared with any other fractidsahedule, and certainly optimal
compared withOPT which is an integral schedule. We also know that:

1 H2ll, < |OPT[,

where the inequality results from the fact that schedules onlgne job per machinghus
optimal integral assignment in ay norm for the subset of jobs it assigns and certainly
has cost smaller than any integral assignment for the whole set of jobs. We can now show:

IHlp = |H1+ Hzllp < [|1Hillp + | Hzllp < |OPT, + [[OPT|, = 2| OPT|

which concludes the proof that the schedHlave constructed guarantees a 2-approxima-
tion to optimal solutions for alf,, norms and can be found in polynomial timeQ
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3. APX-hardnessfor an arbitrary number of machines

In this section we describe ah-reduction from the APX-hard Maximum Bounded
3-Dimensional Matching problem (Mk-3DM) to the minimization of sum of squared
machine loads for the restricted assignment problem. This clearly implies APX-hardness
of £2 norm minimization for restricted assignment (since a PTAS for approximating
yields a PTAS for approximating). The proof can be easily modified and extended to the
other¢, norms withp > 1. Our construction draws some ideas from Lenstra, Shmoys and
Tardos [13]. The problem kix-3DM is defined as follows:

Instance Three setsA = {a1,...,a4}, B = {b1,...,by}, and C = {c1,..., ¢4},
together with a subsét of A x B x C. Any element inA, B, C occurs in one, two,
or three triples irf"; note that this implieg < |T'| < 3g.

Goal Find a subsef” of T of maximum cardinality such that no two triples Bf
agree in any coordinate.

Measure The measure of a feasible solutidhis the cardinality off”’.

Petrank [16] has shown thatAt-3DM is APX-hard even if one only allows instances
where the optimal solution consistsgpt |A| = |B| = |C| triples; in the following we will
only consider this additionally restricted version oAkl-3DM.

For theL-reduction we specify a functioR that maps instancasof MAX-3DM into
scheduling instance®(7), and a functiors that maps feasible solutions 8{(7) back into
feasible solutions of. Given any instancé of MAX-3DM, the instance (/) contains 3
machines.

e For every tripleT; in T, there is a corresponding triple machib&T;).
e Moreover, there areg3— |T'| so-called dummy machines.

The instanceR (/) contains g jobs.

e Foreverya;, b;, andc; (j =1,...,q) there are corresponding element job®: ),
J(bj),andJ(c;). An element job cannot be assigned to dummy machines; an element
job can only be assigned to a triple machibgT;) if its underlying element is
contained in the tripld;. Every element job has processing time 1.

e Moreover there areg2so-called dummy jobs. Dummy jobs have processing time 3 on
all machines.

This completes the description of the scheduling insta@@. Since we only consider
instances of Mx-3DM where the optimal solution consists gf triples, we have
OPT(I) = q. Now consider the following schedule for instangé/): For each triple
T; = (aj, b, c;) in the optimal solution td, we schedule the three element jab@:;),

J (br), and J (¢;) on machineM (7;). The 27 dummy jobs are assigned to the remaining
2q empty machines so that each machine receives exactly one dummy job. In the resulting
schedule every machine has load 3, and héine@bjective value of this schedule isg27
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Therefore,OPT(R(I)) < 27¢ = 270PT(I) and the first condition orL-reductions is
satisfied withy = 27.

Next we specify the functiofS. Let s be a feasible schedule for a scheduling instance
R(I). A machineM(T;) in the schedule is calledgood if it processes three jobs of
length 1. Note that these three jobs can only be the jblag), J(by), and J(c;) with
T; = (aj, by, ¢;). We define the feasible solutidi{(s) for the instancd of MAX-3DM to
consist of all triplesT; for which the machind/ (7;) is good.

Consider a feasible scheduefor an instancer (/) of the scheduling problem. For
k=0,1,2, 3 letm; denote the number of machines in scheduthat process exactly
jobs of length 1. Then the total number of machines equals

mo +my +mz+m3=3q, 1)
and the total number of processed element jobs of length 1 equals
m1+ 2my + 3mz = 3q. )

Note that by our definition of the functio$, the objective value(S(s)) of the feasible
solution S(s) equalsmz. In Lemma 3.1 we will prove that(s) > 29 — 2m3 holds.
Altogether, this then yields that

1 1
lc(S(s)) —OPT(I)| =q —m3= 5(2% —2m3 —27q) < 5|c(s) — OPT(R(D))

’

and that the second condition dareductions is satisfied with = 1/2. Since the functions

R and S are computable in polynomial time, we hasstablished all necessary properties
of an L-reduction. Hence, minimizing the sum of squared machine loads for the restricted
assignment problem indeed is an APX-hard problem.

Lemma 3.1. The objective value(s) of the feasible solutiom of the scheduling instance
R(I) satisfiesc(s) > 29 — 2ms.

Proof. Let us remove all dummy jobs from schedul@and then add them again in the
cheapest possible way, such that the resulting new schedhbes the smallest possible
objective value that can be reached by this procedure. Site> c(s’), it will be
sufficient to establish the inequalitys’) > 29 — 2m3. What is the cheapest way of adding
the 27 dummy jobs of length 3 te:p empty machines, te1 machines with load 1, te;
machines with load 2, and t@3 machines with load 3?&h machine should receive
at most one dummy job, and the dummy jobs should be added to the machines with the
smallest loads. The inequality (2) implies < ¢, and then (1) yieldsig +m1+m2 > 2q.
Hence, thenz machines of load 3 will not receive any dummy job. The inequality (2)
impliesm1 4+ mo + m3 > ¢, and then (1) yields:ig < 2¢. Hence, theng empty machines
all will receive a dummy job. For the rest of the argument we will distinguish two cases.

In the first case we assume thag + m1 > 2q. In this case there is sufficient space to
accommodate all dummy jobs on the madsinvith load at most 1. Then schedulewill
havemg + m3 machines of load 372 machines of load 29 + m1 — 2¢g machines of
load 1, and 2 — mg machines of load 4. From (1) and (2) we get that= m> + 2m3
and thatn1 = 3¢ — 2m2 — 3m3. Moreover, our assumptiong + m1 > 2q is equivalent to
my + m3 — g < 0. We conclude that
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c(s’) > 9(m2 4+ 3m3) +4dmo + (@ —mo — m3) + 16(2g — mp — 2m3)
=339 —4my—6m3z > 339 —4my — 6mz+ 4(ma+m3 —q) =29 — 2ms3.

In the second case we assume that+ m1 < 2q. In this case there is not sufficient space
to accommodate all dummy jobs on the madsimith load at most 1, and some machines
with load 2 must be used. Then scheds/levill have mg 4+ m3 machines of load 3p1
machines of load 4,2— mo — m1 machines of load 5, andg + m1 + m2 — 2¢g machines

of load 2. As in the first case we usey = mz + 2m3 andmi = 3¢ — 2m2 — 3ms. Our
assumptionng + m1 < 2q is equivalent tag — mp — m3 < 0. We conclude that

c(s’) > 9(m2 4 3m3) + 16(3q — 2mo — 3m3) + 25(mo + m3 — q) + 4(qg — m3)
=27qg 4+ 2mp > 27 + 2mo + 2(q — mo2 — m3) = 29 — 2ms3.

This completes the proof of the lemmar

4. FPTASfor any fixed number of machinesand a given £, norm

For a given¢, norm and any fixed number of machines we describe a FPTAS for
the restricted assignment problem, i.e(lat+ ¢)-approximation algorithm for any > 0
running in time polynomial im and J/e. Recall that there is no approximation scheme
supplying the same solution for @}, norms since the optimal solutions for different norms
can vary significantly. By the hardness of approximation result we showed, there is no
approximation scheme (PTAS or FPTAS) for a given norm and any humber of machines
unless P= NP. Hence the only possible approximation scheme is for a given norm and any
fixed number of machines. Our FPTAS is a modification of the method presented initially
by Horowitz and Sahni in [10]. Our algorithm works for all scheduling models: identical,
related, restricted assignnteemnd unrelated machines, andtigerefore presented in the
most general model, i.e., unrelated machines. Forsaoyr algorithmA, consists of the
following steps:

1. Given the job weight§w;;}, we denote for each job its smallest possible weight
by w; = min; w;;. Given that there is a feasiblssignment placing each job on the
machine where its weight is minimal, we know that in any optimal assignment the
load on each machine is at mds};_, w;. For this reason we can replace all weights
wij > Z’}zl w; by oo, since no optimal assignment will ever use them. Denot@By
the machines load vector corresponding to the optimal assignment. By the convexity of
the norm function we get thati®|| , > QO f_ywj)/m- m/P. Assume for simplicity
of notation that(}~}_; w;)/m =1, hencd|I°P!, > m'/? and the maximum load on
any machine in any optimal assignment is at mostVe divide the intervalll, m] into
m/§ equal parts of sizé each (wherg is a function ofs chosen later) and round each
weightw;; to wlfj = k& for the maximak > 0 such tha’wl’.j < wjj.
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2. Using dynamic programming we would like to find all possible load vectors
corresponding to legal assignments. We define the following states fgthhayer

(j=1,...,n)
Ti(y,....lm), li=k-8, k=0,...,m/8,

whereT;(ly,...,1,) = 1 if and only if the load vecto(ly, ..., I,) corresponds to
any legal assignment of the firgtjobs (T';(I1, . .., I») = O otherwise). The dynamic
program computes each value in the following way:

m
Ti(l.....lw)=\/ Tj-a(la. ...l —wj. ... ).
i=1

For eachT;(l;,, ..., 1, ) = 1 we can store the assignment of tfta job, thus for any
legal load vector we can trace back the corresponding assignment (one of the possible
corresponding assignments, to be accurate).

3. After the completion of the dynamic program we choose among all possible load
vectors (all load vector;,, ..., [;,) forwhich 7, (;,, ..., ;) = 1) the one obtaining
the minimal value for the given norm. We return the assignment corresponding to
this load vector. The real cost corresponding to the returned assignment is obtained by
considering thé, norm of the load vector when substituting the rounded weights with
the original ones.

Denote byi4 the load vector corresponding to the assignment returned by the algorithm
with the original job weights and by the load vector corresponding to the assignment
with the rounded weights. Analogously denotd Y and/’ °Pt the optimal assignment with
the original and rounded weights, respectively. We first prove that the suggested algorithm
returns an assignment which guaranteles ¢)-approximation to the optimal solution.

Lemma 4.1. For anye > 0 choosingS = ¢/n for the algorithm yields

1A N, = 1P
t
129PH1

X ¢.

Proof.
HIAHp <A +on - 1||p <A Hp +on-mYP < Hl/Opth S on.mi/p
<[, +m-m.

The first inequality follows from the fact #t the rounding procedure decreases each job
weight by at mosé thus/ < /A +8n (i =1, ..., m). The third inequality results fromt*

1

being optimal for the rounded weights. Recall the#Y|, > m'/?, thus:

AN, — 1P, 8n-mY/P
joey, T omle
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By the choices = ¢/n we get:

A
[ P L .
t ~ 9
I2°PYl

as required. O

We now analyze the algorithm time complexity. There aréayers ¢ jobs) in the
dynamic program and the number of states in each layémjs$)” since there aren
machines and each machine load h&s possibilities. Calculating the value for a certain
state requires looking at the values of at masbther states. Hence the algorithm time
complexity is: O (mn(m/8)™). By substitutingd with its chosen value the complexity is:
O (mn(mn/e)™), which is polynomial i and 1/e. Hence the family of algorithm4; is
a FPTAS.
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