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Abstract

In Seiberg–Witten theory the solutions to these equations comein certain classes according to the gauge group. We show
the duality transformations transform solutions within a class to another solution within the same class, by using a sub
Picard–Fuchs equations on the Seiberg–Witten family of Riemann surfaces. The electric–magnetic duality transformations
be thought of as changes of a canonical homology basis on the surfaces which in our derivation is clearly responsib
covariance of the generalized WDVV system.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1994, Seiberg and Witten[1] solved the low energy behaviour of pureN = 2 super-Yang–Mills theory by
giving the solution of the prepotentialF . The essential ingredients in their construction are a family of Riem
surfacesΣ , a meromorphic differentialλSW on it and the definition of the prepotential in terms of period integ
of λSW

(1.1)aI =
∫
AI

λSW,
∂F
∂aI

=
∫
BI

λSW.
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The cyclesAI andBI belong to a subset of a canonical homology basis on the surfaceΣ and theaI are the moduli
parameters of the family of surfaces. These formulae define the prepotentialF(a1, . . . , ar ) implicitly, where r

denotes the rank of the gauge group under consideration.
A link between the prepotential and the Witten–Dijkgraaf–Verlinde–Verlindeequations[2,3] was proven to exis

in [4] where it was found that the prepotentialF(a1, . . . , ar) for pureN = 2 SYM theory for classical Lie algebra
(those of typeA,B,C,D) satisfies the generalized WDVV equations

(1.2)FI

[∑
M

γMFM

]−1

FJ =FJ

[∑
M

γMFM

]−1

FI ∀I, J,K = 1, . . . , r,

where theFI are matrices given by(FI )JK = ∂3F
∂aI ∂aJ ∂aK

and theγM may depend on theaI . If F satisfies(1.2)for
some set ofγM it will automatically satisfy them for any other setγ̃M as long as

∑
M γ̃MFM is invertible. These

equations are indeed a generalization of the original WDVV equations, since we no longer demand the∑
M γMFM to be flat and constant.
In an alternative approach to[4], Ito and Yang[5] give a proof which is valid1 for Lie algebras of typeA,D,E6

and it was shown in[6] that this method can be adapted to give a proof also in the case of Lie algebras of typB,C.
The approach used by Ito and Yang consists of two main ingredients: an associative algebra with structure
CK

IJ , together with a relation between the structure constants and the third order derivatives of the functionF

(1.3)FI = CI ·
(

r∑
M=1

γMFM

)

for someγM . To derive this relation they used a subset of the Picard–Fuchs equationson the Riemann surface
If the matrix

∑r
M=1 γMFM is invertible then we can substitute(1.3) into the WDVV equations(1.2) which then

express associativity of the algebra through a relation on the structure constants:[CI ,CJ ] = 0.
In the physical context of Seiberg–Witten theory, electric–magnetic duality transformations are very import

and therefore it is a natural question if these are symmetries of the generalized WDVV equations. The
transformations form a subgroup ofSp(2r,Z) acting as linear transformations on the vector(�a, �∇F). These trans
formations are indeed symmetries, as was shown in[7] for a pure S-duality transformation and recently in[8] for
general symplectic transformations.

We will show in this Letter that the classes of solutions of the WDVV system coming from Seiberg–W
theory are invariant under duality transformations, by giving the duality transformations their natural interpretation
in the Seiberg–Witten context. The reason for the invariance is that the Picard–Fuchs equations leadin
relation(1.3) have solutions in terms of period integrals ofλSW. We require of our solutions(1.1) only that the
cycles be canonical, so they are invariant under symplectic transformations of the cycles. These are prec
duality transformations. In the derivation of(1.3) we will rely heavily on the connection between the Seibe
Witten and Landau–Ginzburg theories which is quite straightforward in the simply laced(ADE) cases. ForB and
C Lie algebras this connection is less clear[6] but we will show that one can use the same method as in the
cases. ForF4 it is not rigorously proven that the prepotential satisfies the WDVV equations, so we cannot s
anything definite about duality in this case.2

2. Duality transformations

Duality transformations play an important role inN = 2 super-Yang–Mills theory, where in the classical the
they exchange the Bianchi identity and the equationsof motion of the Yang–Mills field strength. In the quantu

1 AlgebrasE7 andE8 are not considered in[5] because of computational difficulty, but they are expected to follow the same pattern.
2 SinceG2 has rank 2, the prepotential depends only on 2 variables and it trivially satisfies the WDVV equations.
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field theory, these transformations were studied extensively in the context of supergravity (for a review,[9])
and they turn out to form a subgroup ofSp(2r,Z) wherer is the rank of the gauge group. The action on(aI ,FI )

of (1.1) is given by

(2.1)

( �a
�F
)

→
[

U Z

W V

]( �a
�F
)

,

[
U Z

W V

]
∈ Sp(2r,Z).

There is some terminology used by physicists for some special transformations

• An example ofS-duality is a transformation for which( �a
�F
)

→
[

0 I

−I 0

]( �a
�F
)

and in generalS-duality transformations exchange the strong and weak coupling regimes of the physical theo
• An example ofT -duality is a transformation for which( �a

�F
)

→
[

I 0
W I

]( �a
�F
)

and in generalT -duality transformations are perturbative,so they go from weak coupling to weak coupling

Seiberg and Witten used the fact that duality transformations can be thought of as changes of a canonical bas
of a family of auxiliary Riemann surfaces inthe following way. Let a canonical basis{AI ,BI } of homology on
a Riemann surface be given. The transformations that take this canonical basis into another one are kno
(see, e.g.,[10]) symplectic transformationsSp(2g,Z) acting like

(2.2)

( �A
�B

)
→

[
U Z

W V

]( �A
�B

)
.

For Lie algebraAr the genus of the curves taken in Seiberg–Witten theory equals the rank of the gauge gr
(2.2)generate transformations onaI ,FI since for example∫

A1+A2

λSW =
∫
A1

λSW +
∫
A2

λSW = a1 + a2

so ( �a
�F
)

=
(∫

�A λSW∫
�B λSW

)
→

( ∫
U �A+Z �B λSW∫
W �A+V �B λSW

)
=

[
U Z

W V

]( �a
�F
)

.

In other words, electric–magnetic duality transformations in the Seiberg–Witten context can be thought o
changes of canonical bases of homology on families of Riemann surfaces.

For other gauge groups, the rank is always less than the genus of the curve and we have to take a
the homology basis in such a way that this subset has canonical intersection numbersAI ◦ AJ = BI ◦ BJ = 0,
AI ◦BJ = δIJ . If we call the linear subspace ofH 1(Σ,Z) spanned by these cyclesX, then duality transformation
are generated by changes of the canonical homology basis which leaveX invariant.

3. Picard–Fuchs equations and duality

In our derivation of the generalized WDVV equations, we consider a system of differential equations for
periods

∮
Γ λSW (Picard–Fuchs like equations) and then substituteaI = ∮

AI
λSW andFI = ∮

BI
λSW in them. This

way, the derivation of the WDVV equations is manifestly invariant under changes of the canonical homology b
and therefore under electric–magnetic duality transformations.
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The Riemann surfaces for theADE cases read[11]

(3.1)z + 1

z
= W(x,ui),

whereW can be though of as the one-dimensional version of the Landau–Ginzburg superpotential. In deri
Picard–Fuchs equations, use is made of the flat coordinates of the corresponding Landau–Ginzburg theories.
theB,C Lie algebras, the methods of[5] are no longer directly applicable: we have to ‘twist’ the affine Lie alge
to construct the surfaces.3 This leads to surfaces

(3.2)z + 1

z
= W̃ (x,ui)

whereW̃ need not have a direct relation to Landau–Ginzburg theory. For theB,C cases, where the relation with th
corresponding superpotential is still quite straightforward, it is shown in[6] that the method of using Picard–Fuc
equations can be adapted in order to give the WDVV equations.

In the next sections we will review the derivation of the WDVV equations in order to see that duality tra
mations are symmetries of them.

3.1. The ADE cases

The family of Riemann surfaces associated with Seiberg–Witten theory with Lie algebras ofA,D,E type is
given by[11]

(3.3)z + 1

z
= W(x,ui).

HereW can be thought of as a one variable Landau–Ginzburg superpotential for the corresponding Lie
For instance,WAr (x,ui) = xr+1 − ∑r−1

i=1 uix
r−i is the superpotential for Lie algebraAr . HoweverWE6 contains

a square root of a polynomial, but the structure constants of the chiral ring are the same as in the three
situation[12]. From the Landau–Ginzburg theory it is known (see, e.g.,[13] and references therein) that we c
pass from the moduliui to flat coordinatesti in terms of which the Gauss–Manin connection is set to zero.
Landau–Ginzburg product structure reads

(3.4)
∂W

∂ti

∂W

∂tj
=

r∑
k=1

Ck
ij (t)

∂W

∂tk

∂W

∂tr
+ Qij

∂W

∂x

which leads to the algebra

(3.5)
∂W

∂ti

∂W

∂tj
=

r∑
k=1

Ck
ij (t)

∂W

∂tk

and the flat coordinates4 satisfy

(3.6)
∂Qij

∂x
= ∂2W

∂ti∂tj
.

3 TheADE algebras are invariant under this twisting.
4 The ti are flat coordinates for themultivariable Landau–Ginzburg superpotentials. In the cases ofA,D Lie algebras these superpotentia

are respectively not and not much different from the one variable case presented here. For the Lie algebras of typeE6 it was shown explicitly
in [12] that the known flat coordinates are indeed a solution to(3.6) for the one-variable superpotential,and that the algebra is the same as
the multivariable case.
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Now that the Riemann surfaces(3.3)are introduced, we need a meromorphic differential on them

(3.7)λSW = x
dz

z

whose derivatives with respect to the moduli are

(3.8)
∂λSW

∂ti
= d[· · ·] − ∂W

∂ti

dx

z − 1
z

.

It is stated often in the literature that the forms

−∂W

∂ti

dx

z − 1
z

are holomorphic and linearly independent. For all classical Lie algebras, the Riemann surfaces are hypere
and this statement can be easily checked. For all exceptional Lie algebras however, the Riemann surfaces are
hyperelliptic and it is still not proven that the forms are holomorphic.

As a final ingredient for the Seiberg–Witten theory, we introduce a third set of coordinatesaI on the moduli
space of the family of surfaces and objectsFI

(3.9)aI =
∮
AI

λSW, FI =
∮
BI

λSW,

where we take a subset of a canonical basis for the homology. The holomorphic parts of the differentials∂λSW
∂aI

are

canonical with respect to the cycles and therefore∂FI

∂aJ
is a submatrix of the period matrix, which is symmetric.

FI is a gradient and there exists a functionF(aI ) with derivativesFI and this so-called prepotential solves the l
energy behaviour ofN = 2 super-Yang–Mills theory.

The product structure(3.4)can also be expressed in terms of theaI as follows

(3.10)
∂W

∂aI

∂W

∂aJ

=
r∑

K=1

CK
IJ (a)

∂W

∂aK

[
r∑

M=1

∂aM

∂tr

∂W

∂aM

]
+ Q̃IJ

∂W

∂x
,

where the structure constants are related throughCK
IJ (a) = ∑

i,j,k
∂ti
∂aI

∂tj
∂aJ

Ck
ij (t) ∂aK

∂tk
. Here we assume that th

transformation fromti to aI is invertible, which can be justified: in the case of typeA Lie algebras, the number o
moduli equals the genus and therefore the Jacobian

(3.11)
∂aI

∂tj
=

∮
AI

∂λSW

∂tj
, I, j = 1, . . . , g

is indeed invertible, since∂λSW
∂tj

form a basis of holomorphic forms (modulo exact forms). For the other Lie alge

we have to take a subset of a canonical basis. Suppose we supplement the forms∂λSW
∂tj

with more formsωi to form
a basis of holomorphic forms, then we know that theg × g matrix


∮
A1

∂λSW
∂t1

. . .
∮
A1

∂λSW
∂tr

∮
A1

ω1 . . .
∮
A1

ωg−r

. . . . . .

. . . . . .∮
Ag

∂λSW
∂t1

. . .
∮
Ag

∂λSW
∂tr

∮
Ag

ω1 . . .
∮
Ag

ωg−r
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∮
A1

∂λSW
∂t1

. . .
∮
A1

∂λSW
∂tr

. . .

. . .∮
Ag

∂λSW
∂t1

. . .
∮
Ag

∂λSW
∂tr




has rankr, and we can always find a square submatrix of rankr by choosing the proper cycles. Therefore we c
always choose cycles in such a way that the transformation fromti to aI is invertible. In Seiberg–Witten theor
there is a specific prescription[11] of what cycles one has to take and inevitability of the corresponding submatrix
should be checked.

Following [5] we write down a subset of the Picard–Fuchs5 equations

(3.12)

(
∂2

∂ti∂tj
−

r∑
k=1

Ck
ij (t)

∂2

∂tk∂tr

)∮
Γ

λSW = 0

which hold for integrals along any closed cycleΓ .
We will now prove the following theorem

Theorem 1. The following formula holds: FIJK = ∑r
L=1 CL

IJ (a)
[∑r

M=1
∂aM

∂tr
FMKL

]
.

Proof. Making a change of coordinates in(3.12)from ti to aI we get(
∂aI

∂ti

∂aJ

∂tj

∂2

∂aI ∂aJ

−
r∑

k=1

Ck
ij (t)

∂aK

∂tk

∂aM

∂tr

∂2

∂aK∂aM

)∮
Γ

λSW = 0,

where we made use of the fact that theaI themselves are solutions to(3.12). Now we can substituteΓ = BK and
find

(3.13)
∂3F

∂aI ∂aJ ∂aK

=
r∑

L=1

CL
IJ (a)

[
r∑

M=1

∂aM

∂tr
FMKL

]

which is the relation(1.3)between the third order derivatives ofF(aI ) and the structure constantsCL
IJ (a). �

To obtain the generalized WDVV equations for the functionF(aI ) we need the matrix
∑r

M=1
∂aM

∂tr
FM to be

invertible, which is generically true. Otherwise small perturbations can make it so. Since the derivation
theorem does not depend on the specific choice of canonical homology basis we started with, and since dua
transformations are changes of canonical homology, we have the following

Corollary 2. Take a set of solutions of the WDVV system coming from Seiberg–Witten theory with gauge group of
ADE type. Duality transformations leave the set of solutions invariant.

5 If a basis of cohomology on a family of Riemann surfaces is given by{ωi} wherei = 1, . . . ,2g then the Picard–Fuchs equations expre

∂

∂ti

∮
Γ

ωj =
∑
k

Ak
ij

∮
Γ

ωk,

whereΓ is some closed cycle and theti are the moduli of the family. By a subset of Picard–Fuchs equations, we mean that we can
derivatives of some (not all) period integrals into a linear combination of some others.
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In other words, after a duality transformation there exists a functionF̃(ãI ) which is in general different6 from
F(aI ) but still satisfies the generalized WDVV system.

3.2. The B and C cases

Let us stress that forB,C Lie algebras, we no longer have

z + 1

z
= W

with W a one variable version of the Landau–Ginzburg superpotential. This will be reflected in the Picard
equations. In fact, if we still work with the flat coordinates of the Landau–Ginzburg superpotentialWBC one can
derive the Picard–Fuchs equations[5]

(3.14)

(
∂2

∂ti∂tj
−

r∑
k=1

Ck
ij

∂2

∂tk∂tr
−

r∑
k=1

r∑
n=1

dntn

h∨ Dk
ij

∂2

∂tk∂tn
+

r∑
k=1

Dk
ij

1

h∨ (1− dk)
∂

∂tk

)∮
Γ

λSW = 0,

where theCk
ij are structure constants of theWBC Landau–Ginzburg theory, thedn are so-called degrees of th

Lie algebra (the exponents+1), Dk
ij depend on theti andh∨ is the dual Coxeter number. Making a change

coordinates to theaI just like we did forADE algebras and using the fact that theaI satisfy(3.14), we get

(3.15)

[
∂aI

∂ti

∂aJ

∂tj
−

∑
k

Ck
ij

∂aI

∂tk

∂aJ

∂tr
−

∑
k,n

Dk
ij

dntn

h∨
∂aI

∂tn

∂aJ

∂tk

]
∂2

∂aI ∂aJ

∮
Γ

λSW = 0.

These equations are not of such a form that we can derive a relation betweenFIJK and the structure constantsCk
ij

in the same way as before. However, in[6] it was shown that some other constantsC̃k
ij form structure constants o

an associative algebra and are related toCk
ij through

(3.16)Ck
ij = C̃k

ij −
r∑

l,n=1

Dl
ij

2ntn

h∨ C̃k
nl , Ci = C̃i − Di ·

(
r∑

n=1

2ntn

h∨ C̃n

)
,

where the second line is in matrix form. Substituting this into(3.15)we get[
∂aI

∂ti

∂aJ

∂tj
−

∑
k

C̃k
ij

∂aI

∂tk

∂aJ

∂tr

]
∂2

∂aI ∂aJ

∮
Γ

λSW

(3.17)+
∑
n

Dl
ij

2ntn

h∨

[
∂aI

∂tn

∂aJ

∂tl
−

∑
l

C̃k
nl

∂aI

∂tk

∂aJ

∂tr

]
∂2

∂aI ∂aJ

∮
Γ

λSW = 0

and in[6] further information about theDl
ij was used to conclude

(3.18)

[
∂aI

∂ti

∂aJ

∂tj
−

∑
k

C̃k
ij

∂aI

∂tk

∂aJ

∂tr

]
∂2

∂aI ∂aJ

∮
Γ

λSW = 0.

From this point we can proceed with the same reasoning as in theADE case and conclude that the followin
theorem holds

6 The transformations are often too difficult to perform explicitly.
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Theorem 3. The following formula holds: FIJK = ∑r
L=1 C̃L

IJ (a)
[∑r

M=1
∂aM

∂tr
FMKL

]
.

Corollary 4. Take a set of solutions of the WDVV system coming from Seiberg–Witten theory with gauge group of
B,C type. Duality transformations leave the set of solutions invariant.

4. Conclusion and outlook

It was shown in[8] that elements of thecontinuous symplectic groupSp(2n,C) are symmetries of the gene
alized WDVV system. Because of the relation between Seiberg–Witten theory and Riemann surfaces, th
naturally to the study of thediscrete subgroupSp(2n,Z) in the Seiberg–Witten context, and we have shown h
the interpretation of this discrete subgroup as changes of a canonical homology basis leads automatica
invariance of classes of solutions to the WDVV system.

Other solutions of the generalized WDVV system found so far either come from the original WDVV equ
or from the context of tau functions of conformal mappings[14]. Interpretations of the symplectic transformatio
can be looked for in both contexts. This might show whether the discrete subgroup is a natural object there

Other interesting symmetries of the WDVV system have been found[15,16], but no systematic investigation o
symmetries has been undertaken. We believe such an investigation would be interesting.
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