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Abstract

In Seiberg—Witten theory the solutions to these equations @owertain classes according to the gauge group. We show that
the duality transformations transform solutions within a class to another solution within the same class, by using a subset of the
Picard—-Fuchs equations on the Seiberg—Witten family of Riensanfaces. The electric—magnetic duality transformations can
be thought of as changes of a canonical homology basis on the surfaces which in our derivation is clearly responsible for the
covariance of the generalized WDVV system.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1994, Seiberg and Witteji] solved the low energy behaviour of puke= 2 super-Yang—Mills theory by
giving the solution of the prepotentidl. The essential ingredients in their construction are a family of Riemann
surfacesY’, a meromorphic differentialsy on it and the definition of the prepotential in terms of period integrals
of Asw
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The cyclesA; andB; belong to a subset of a canonical homology basis on the suHfaoed thez; are the moduli
parameters of the family of surfaces. These formulae define the prepotéidigl.. ., a,) implicitly, where r
denotes the rank of the gauge group under consideration.

A link between the prepotential and the Witten—Dijkgraaf—\Verlinde—Verlinde equdf¢ijsvas proven to exist
in [4] where it was found that the prepotenti@das, . . ., a,) for pureN =2 SYM theory for classical Lie algebras
(those of typeA, B, C, D) satisfies the generalized WDVV equations

-1 -1
Fi [Z nyM} Fr=F, [Z nyM} Fi VILJ,K=1,...r, (1.2)

M M
where theF; are matrices given bF;) ;x = % and theyy; may depend on the; . If F satisfieq1.2)for

some set of it will automatically satisfy them for any other sgi; as long asy ", yum Fu is invertible. These
equations are indeed a generalization of the original WDVV equations, since we no longer demand the matrix
> v ymFu to be flat and constant.

In an alternative approach [4], Ito and Yand5] give a proof which is valiifor Lie algebras of typet, D, Eg
and it was shown if6] that this method can be adapted to give a proof also in the case of Lie algebras Bf type
The approach used by Ito and Yang consists of two main ingredients: an associative algebra with structure constants
Cf,, together with a relation between the structure constants and the third order derivatives of the féinction

Fr=Cy- ( Z VMJ’:M> (1.3)
M=1

for somey,,. To derive this relation they used a subset & Hicard—Fuchs equations the Riemann surfaces.
If the matrix )_',_, ymuFu is invertible then we can substituf#.3) into the WDVV equationg1.2) which then
express associativity of the algebra through a relation on the structure congfants;] = 0.

In the physical context of Seiberg—Witten theory, elieetmagnetic duality transformations are very important
and therefore it is a natural question if these are symmetries of the generalized WDVV equations. The duality
transformations form a subgroup 86(2r, Z) acting as linear transformations on the veciarv F). These trans-
formations are indeed symmetries, as was showii]ifior a pure S-duality transformation and recently&h for
general symplectic transformations.

We will show in this Letter that the classes of solutions of the WDVV system coming from Seiberg—Witten
theory are invariant under duality transformations, by givime duality transformationseir natural interpretation
in the Seiberg—Witten context. The reason for the invariance is that the Picard—Fuchs equations leading to the
relation(1.3) have solutions in terms of period integralsigfy. We require of our solutiongl.1) only that the
cycles be canonical, so they are invariant under symplectic transformations of the cycles. These are precisely the
duality transformations. In the derivation @f.3) we will rely heavily on the connection between the Seiberg—
Witten and Landau—Ginzburg theories which is quite straightforward in the simply (aded’) cases. FoB and
C Lie algebras this connection is less clgirbut we will show that one can use the same method as in the other
cases. ForFy it is not rigorously proven that the prepotentiatisfies the WDVV equations, so we cannot say
anything definite about duality in this ca%e.

2. Duality transformations
Duality transformations play an important roledh= 2 super-Yang—Mills theory, where in the classical theory
they exchange the Bianchi identity and the equatmi®otion of the Yang—Mills field strength. In the quantum

1 AlgebrasE7 and Eg are not considered if5] because of computational difficulty, but they are expected to follow the same pattern.
2 SinceG, has rank 2, the prepotential depends only on 2 vaehhd it trivially satisfies the WDVV equations.
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field theory, these transformations were studied extensively in the context of supergravity (for a revi@}) see
and they turn out to form a subgroup §§(2r, Z) wherer is the rank of the gauge group. The action(ep, F;)
of (1.1)is given by

(f%)_)["l‘]’ \Z/K;) [Vl;]/ ‘Z/}GSO(ZV,Z) 2.1)

There is some terminology used by physicists for some special transformations

e An example ofS-duality is a transformation for which

()= 5)(3)

and in genera$-duality transformations exchange the strond eseak coupling regimes of the physical theory.
e An example of7 -duality is a transformation for which

a I 0](a
F) 7w 1]\ F
and in general’-duality transformations are perturbatige, they go from weak coupling to weak coupling.

Seiberg and Witten used the fact that duality transftions can be thought of asariges of a canonical basis
of a family of auxiliary Riemann surfaces the following way. Let a canonical basjg,;, B;} of homology on
a Riemann surface be given. The transformations that take this canonical basis into another one are known to be
(see, e.g[10]) symplectic transformatior§(2¢g, 7Z) acting like

-

(5)-T 71G) @2

For Lie algebraA, the genus of the curves taken in Seiberg—Witten theory equals the rank of the gauge group, so
(2.2)generate transformations ep, F; since for example

/ ksw=/)»sw+f)»sw=al+az
Az

A1t+A2 A1

SO
(5)=() = (i) =[w 1(3)

In other words, electric-magnetic duality transfotioas in the Seiberg—Witten context can be thought of as
changes of canonical bases of homology on families of Riemann surfaces.

For other gauge groups, the rank is always less than the genus of the curve and we have to take a subset of
the homology basis in such a way that this subset has canonical intersection numbeds = B; o By =0,
Ajo By =6;;. Ifwe call the linear subspace #f1( X, Z) spanned by these cyclé&s then duality transformations
are generated by changes of the canonical homology basis whichXeiavariant.

3. Picard-Fuchsequationsand duality

In our derivation of the generalized WDVV equationg wonsider a system of differential equations for the
periods¢ Asw (Picard—Fuchs like equations) and then substiitte: 9§A1 Asw andF; = fB, Asw in them. This
way, the derivation of the WDVV equations is manifgsnvariant under changes of the canonical homology basis
and therefore under electric—greetic duality transformations.
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The Riemann surfaces for thieD E cases reafll1]
1
Z+;=W(x,u,'), 3.1)

whereW can be though of as the one-dimensional version of the Landau—Ginzburg superpotential. In deriving the
Picard—Fuchs equations, use is made of the flat coartiraf the corresponding Landau—Ginzburg theories. For
the B, C Lie algebras, the methods [&] are no longer directly applicable: we have to ‘twist’ the affine Lie algebra

to construct the surfacésThis leads to surfaces

z+%=W(x,u,-) (3.2)

whereW need not have a direct relation to Landau—Ginzburg theory. FaB tliecases, where the relation with the
corresponding superpotential is still quite straightforward, it is shov@]ithat the method of using Picard—Fuchs
equations can be adapted in order to give the WDVV equations.

In the next sections we will review the derivation of the WDVV equations in order to see that duality transfor-
mations are symmetries of them.

3.1. The ADE cases

The family of Riemann surfaces associated with Seiberg—Witten theory with Lie algebAadxfE type is
given by[11]

1
z+E=W(x,u,-). (3.3)
Here W can be thought of as a one variable Landau—Ginzburg superpotential for the corresponding Lie algebra.
For instanceWgu, (x, u;) = X'+l {;lluix’—’ is the superpotential for Lie algebrs.. HoweverWg, contains

a square root of a polynomial, but the structure constants of the chiral ring are the same as in the three-variable
situation[12]. From the Landau—Ginzburg theory it is known (see, ¢18] and references therein) that we can

pass from the moduli; to flat coordinates; in terms of which the Gauss—Manin connection is set to zero. The
Landau—Ginzburg product structure reads

AW AW IW AW aw
=Y ChW)——+ Qij— 34
i ) dty Bty + Qi 5 (3.4)

ot; 8tj =

which leads to the algebra

r

aW aw ow
3t 2y e (3.5
I k=1
and the flat coordinatésatisfy
90i; W (3.6)
dx  dt; '

3 The ADE algebras are invariant under this twisting.

4 Ther; are flat coordinates for theultivariable Landau—Ginzburg superpotentials. In the cases,dd Lie algebras these superpotentials
are respectively not and not much different from the oréatsée case presented here. For the Lie algebras of Egoie was shown explicitly
in [12] that the known flat coordinates are indeed a solutiof816) for the one-variable superpotentiahd that the algebra is the same as in
the multivariable case.
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Now that the Riemann surfacé® 3)are introduced, we need a meromorphic differential on them

d
Asw:x—z (3.7)
Z

whose derivatives with respect to the moduli are

dAsw oW dx
=d[--]— — I
ot; atj 7z — =

(3.8)

are holomorphic and linearly indepemdeFor all classical Lie algebras, the Riemann surfaces are hyperelliptic
and this statement can be easily checked. For all exaegdtLie algebras however, the Riemann surfaces are not
hyperelliptic and it is still not proven that the forms are holomorphic.

As a final ingredient for the Seiberg—Witten theory, we introduce a third set of coordimatsthe moduli
space of the family of surfaces and obje€is

Af By

where we take a subset of a canonical basis for the homology. The holomorphic parts of the diffe%%ﬁialse

canonical with respect to the cycles and there%é is a submatrix of the period matrix, which is symmetric. So
Fy is agradient and there exists a functigtu;) Wit{ﬁ derivativesF; and this so-called prepotential solves the low
energy behaviour aV = 2 super-Yang—Mills theory.

The product structurg3.4)can also be expressed in terms of éhes follows

IWOW  ~ x, OW | < day OW 1
— N K () 2 oW o 3.10
da; da, KX=:1 ”(a)aa,({MX::l on, day | T2 ox (3.10)

where the structure constants are related throﬂﬁﬂa) = Zi,j’k gfl %Cl"] (t)%”Tf. Here we assume that the
transformation frons; to a; is invertible, which can be justified: in the case of typé.ie algebras, the number of
moduli equals the genus and therefore the Jacobian

9 BN
ﬂ:y§ W i=1...g (3.11)
3lj 8tj

Ap

isindeed invertible, sincé’a\%v form a basis of holomorphic forms (modulo exact forms). For the other Lie algebras,

we have to take a subset of a canonical basis. Suppose we supplement thé’}fjéﬁfmﬁh more formsw; to form
a basis of holomorphic forms, then we know that ghe ¢ matrix '

I R
9§A1 azslw fAl azS,W fAlwl fAlwg,,

Psw o o '
ng . ng i ngwl ngwgfr
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has rankg. So the submatrix

L(}g dlsw f dlsw
Aq 3[1 Al aty

Pa T R
has rank-, and we can always find a square submatrix of raibly choosing the proper cycles. Therefore we can
always choose cycles in such a way that the transformation frama; is invertible. In Seiberg—Witten theory,
there is a specific prescripti¢hl] of what cycles one has to take and inebitity of the correponding submatrix
should be checked.
Following[5] we write down a subset of the Picard—Futaguations

82 r . 82
— Cr (¢t dsw =0 3.12
81,-8t,- I<X=2:L ”( )3lk31r f swW ( :

which hold for integrals along any closed cydle
We will now prove the following theorem

Theorem 1. Thefollowing formula holds: 77, x = 37 _; CF (@[ X -1 ]-‘MKL]
Proof. Making a change of coordinates(®.12)from 7; to a; we get

daj da;  9? Z Ck (1) 29K dam 92 ?gk 0
0t 01j dajday = 9 0ty dagday ) S VT
= r

where we made use of the fact that thethemselves are solutions (8.12) Now we can substitut&® = Bx and
find

BaM
8a18a18aK Z C”(a)|: Z :| (3.13)

which is the relatior{1.3) between the third order derivatives®1a;) and the structure constar@$, (a). O

To obtain the generalized WDVV equations for the functiu;) we need the matri®_’,_; 3“’” Fu to be
invertible, which is generically true. Otherwise small perturbations can make it so. Since the derivation of the
theorem does not depend on the specific choice nbe&al homology basis we started with, and since duality
transformations are changes of canonical homology, we have the following

Corollary 2. Take a set of solutions of the WDVV system coming from Seiberg—\Wtten theory with gauge group of
ADE type. Duality transformations leave the set of solutions invariant.

5 |f a basis of cohomology on a family of Riemann surfaces is givefuhy wherei =1, ..., 2g then the Picard—Fuchs equations express

9 k
a_tifwj:ZAijfwk’
r k r

whereI" is some closed cycle and tiieare the moduli of the family. By a subset of Picard—Fuchs equations, we mean that we can express
derivatives of some (not all) period integrals into a linear combination of some others.
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In other words, after a duality transformation there exists a funcfigiy) which is in general differefittrom
F(ay) but still satisfies the generalized WDVV system.

3.2. The B and C cases
Let us stress that faB, C Lie algebras, we no longer have
1
z+-—=W
Z
with W a one variable version of the Landau—Ginzburg superpotential. This will be reflected in the Picard—Fuchs

equations. In fact, if we still work with the flat coordinates of the Landau—Ginzburg superpoi#@pgtiabne can
derive the Picard—Fuchs equatigb¥

32 : datn
- - —A—di)— | d rsw=0, 3.14
(atiatj ’Jatkat ZZ lfatkar +Z ”hV( ") jg swW (3.14)

- r

where theij are structure constants of thégc Landau—Ginzburg theory, thé, are so-called degrees of the

Lie algebra (the exponentsl), ij depend on the; and Y is the dual Coxeter number. Making a change of
coordinates to the; just like we did forA D E algebras and using the fact that thesatisfy(3.14) we get

day d day d y dntn day @ 92
aj day Zcik/ﬂﬂ _ Dl/ nin daj day fflsw= 0. (3.15)
dt; at, = oty 0ty — hv azn atk aalaajr

These equations are not of such a form that we can derive a relation befygermnd the structure constar(f,i‘,j
in the same way as before. However[&j it was shown that some other constaﬁf;; form structure constants of
an associative algebra and are relatedgothrough

k ~k a 1 21’1[,, ~ d 2nt, ~
Cij=Cli— 2 Dy Cu  C=C=Di-| 3 =G, (3.16)
l,n=1 n=1

where the second line is in matrix form. Substituting this f&d.5)we get

0aj da; i ar day 92 %A
ot 01; = T ot |darday ) "V

r
2nt" | day day -y day day | 92 yg
+Y Dl = Y ¢k == Asw=0 3.17
Xn: i v [azn ou 4= "on a1, |darday f O .17
r
and in[6] further information about th@fj was used to conclude
day day ok dar day 32 %
Asw=0. 3.18
[azi a1 Z Vo ot |daraay J S (3.18)
r

From this point we can proceeditv the same reasoning as in theD E case and conclude that the following
theorem holds

6 The transformations are often too difficult to perform explicitly.
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Theorem 3. The following formula holds: 77k = Y7 _; CF, (@)[ X1 a;—,’ffMKL]-

Corollary 4. Take a set of solutions of the WDVV system coming from Seiberg—\Wtten theory with gauge group of
B, C type. Duality transformations |eave the set of solutionsinvariant.

4. Conclusion and outlook

It was shown in8] that elements of theontinuous symplectic grouf®(2n, C) are symmetries of the gener-
alized WDVV system. Because of the relation between Seiberg—Witten theory and Riemann surfaces, this leads
naturally to the study of thdiscrete subgroupSp(2n, Z) in the Seiberg—Witten context, and we have shown how
the interpretation of this discrete subgroup as changes of a canonical homology basis leads automatically to the
invariance of classes of solutions to the WDVV system.
Other solutions of the generalized WDVV system found so far either come from the original WDVV equations
or from the context of tau functions of conformal mappifit]. Interpretations of the symplectic transformations
can be looked for in both contexts. This might show whether the discrete subgroup is a natural object there as well.
Other interesting symmetries of the WDVV system have been fpLid 6], but no systematic investigation of
symmetries has been undertaken. We believe such an investigation would be interesting.
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