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Abstract

In this study, the Lattice Boltzmann (LB) method is applied for computer simulation of suspension flow in Couette systems. Typical
aspects of Couette flow such as wall effects and non-zero Reynolds numbers can be studied well with the LB method because of its
time-dependent character. Couette flow of single, two and multi-particle systems was studied, where two-dimensional (2D) systems were
compared with three-dimensional (3D) systems.
Computations on multi-particle 3D suspensions, for instance to assess the viscosity or shear-induced diffusivity, were found to be very

intensive. This was only partly a consequence of the 3D system size. The critical particle grid size, necessary for accurate results, was
found to be relatively large, increasing the system to impractical sizes.
It is however demonstrated that it is possible to carry out computer simulations on 2D suspensions and use relatively simple, linear

scaling relations to translate these results to 3D suspensions, in this way avoiding intensive computations. By doing so, the LB method
is shown to be well-suited for study of suspension flow in Couette systems, particularly for aspects as particle layering near solid walls,
hydrodynamic particle interactions and viscous stresses at non-zero Reynolds numbers, which cannot be easily solved with alternative
methods. It also opens the way to employ the LB method for other unexplored aspects, such as particle polydispersity and high Reynolds
number flow, with large relevance to practical processing of suspensions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since many manufacturing processes involve the trans-
port of suspensions such as slurries, colloids, polymers and
ceramics, knowledge of the flow behaviour of suspensions
is of general interest. Not only the behaviour in shear flow
but also in the presence of rigid boundaries, such as a pipe
wall, is important, because these rigid boundaries can induce
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effects such as structuring, demixing and wall slip (Komnik
and Harting, 2004). In experimental research as well as the-
oretical research, Couette flow is often used as a means to
investigate the suspension flow behaviour in simple shear
flow and in the presence of walls.
In the recent years, computer simulation models for

colloidal suspension flow have developed into powerful
research tools (Ladd and Verberg, 2001). These numerical
models take explicit account of the hydrodynamic forces be-
tween the suspended particles, although the various models
do this in different ways. In Brownian and Stokesian dynam-
ics, the hydrodynamic interactions are assumed to be fully
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developed. This virtually means that the time scales between
the fluid dynamics and the motion of the solid particles are
completely separated. These methods are however not suited
for suspensions bounded by walls, and are therewith also
not suited for Couette flow. Time-dependent models do not
assume fully developed hydrodynamic interactions, but take
into account the development of hydrodynamic interactions
in time and space from purely local stresses generated at the
solid-fluid surface. These models, including Lattice Boltz-
mann (LB) and finite-element methods, as well as particle-
based schemes such as dissipative particle dynamics, are
suited for describing Couette flow. In comparison to the LB
method, finite-element methods require much more comput-
ing power, while dissipative particle dynamics is less often
used for hydrodynamics. Therefore, the LB method can be
considered the best-developed of the time-dependent mod-
els for multi-particle suspensions.
In the time-dependent methods, the solid-fluid surface is

explicitly present in the system. This mostly means that the
solid particles are represented on a numerical grid, which
introduces inaccuracy not only in the shape of the particle
but also in the fluid flow around the particle. The degree of
inaccuracy is dependent on the particle grid size and this
brings up limitations in the range of conditions where accu-
rate results can be obtained. One obvious limitation is the
volume fraction of particles in the system. Dependent on the
particle size, there will be a limiting volume fraction above
which the accuracy will be insufficient.
An advantage of computer modelling is that very detailed

knowledge on the particle dynamics and structure can be
gained, such as the translational and rotational velocities of
the individual particles in the suspension. In spite of the large
progress in computational power, these computer modelling
techniques still require a large computing effort, which lim-
its the system size in the computations. This is particularly
the case when the particle grid size needs to be relatively
large in order to have sufficient accuracy. One way to re-
duce the computing power can be to carry out simulations
on two-dimensional (2D) instead of three-dimensional (3D)
suspensions. Adequate 2D–3D scaling relations are then re-
quired to be able to translate the 2D results to predictions
for 3D suspensions.
In this paper, we present a study on the use of the LB

method for computer simulation of 2D and 3D suspensions
in Couette flow, with the aim to investigate whether com-
puter simulations on 2D suspensions can (partly) replace
computer simulations on 3D suspensions, especially when
the latter are computationally intensive. Hereto, we compare
different aspects of the flow behaviour of 2D and 3D sus-
pensions in Couette systems in order to find 2D–3D scaling
relations. Furthermore, we investigate the accuracy of the re-
sults in relation to the particle size and the volume fraction,
as related to the explicit presence of the solid-fluid surface
in the system. Therewith, this paper demonstrates the use
and the limitations of LB computations on 2D suspensions
in Couette flow as compared to 3D real suspensions.

2. Computer simulation method

For general information about the LB method, we refer
to literature (see e.g. (Succi, 2001)). In this section, the em-
phasis is on the suspended particles, their incorporation in
the fluid and their interactions.

2.1. Simulation of the fluid

The LB method is based on the well-established con-
nection between the dynamics of a dilute gas and the
Navier–Stokes equations (Chapman and Cowling, 1960).
In the LB method, the discretised Boltzmann equation is
solved for fictitious fluid particles, that are constrained to
move on a lattice. The state of the fluid is characterised by
the single-particle distribution functionfi(x, t), describing
the average number of particles at a particular node of the
lattice x, at a timet, with the discrete velocityci , which
brings the fluid particles in one time step to an adjacent
lattice node. It is known that only a small set of discrete
velocities is necessary to simulate the Navier–Stokes equa-
tions (Frisch et al., 1986). In the simulations described in
this paper, the fluid dynamics were solved with a D2Q9 or
a D3Q19 LB scheme, which is, respectively, defined on a
2D square lattice with rest particles and 8 non-zero particle
velocities or on a 3D square lattice with rest particles and
18 non-zero particle velocities. The velocity directions link
lattice sites to its nearest and next-nearest neighbours. The
hydrodynamic field’s mass density�, momentum density
j , and the momentum flux density� are moments of this
velocity distribution:

� =
∑
i

fi, j =
∑
i

fici , � =
∑
i

ficici . (1)

The fictitious fluid particles and their interactions evolve
by collisions and subsequent propagation to neighbouring
lattice sites. In a collision step, the distribution function is
relaxed towards the local equilibrium distribution according
to

fi(x + �xi , t + �t)= fi(x, t)− fi(x, t)− f
eq
i (x, t)

�
. (2)

The relaxation time� controls the relaxation of the viscous
stress in the fluid and is linked to the kinematic viscosity�
via:

� = c2s

(
� − 1

2

)
�t , (3)

where the speed of soundcs is defined byc2s = c2/3. In
our simulations we applied� = 1.0 (in lattice units), which
corresponds to a kinematic viscosity� of the fluid of 1

6
(in lattice units). The equilibrium distributionf eq

i (x, t) is
chosen such that the Navier–Stokes equations for a weakly
compressible system are obtained (Qian et al., 1992).
The 2D Couette system consists of a rectangular box with

a widthX and a heightY (Fig. 1). Periodic boundaries were
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Fig. 1. Schematic representation of the 2D Couette system. The solid box
lines represent rigid walls and the dashed lines periodic boundaries. The
3D Couette system is similar, but has an extra dimensionZ, which is
bounded by periodic boundaries.

applied at the left and right side of the box, while the up-
per and lower boundaries consist of a rigid wall. The rigid
walls move with a constant velocityv in a horizontal but
opposite direction in order to create a shear flow. The 3D
Couette system is similar to the 2D system, but has an extra
dimensionZ, which is bounded by periodic boundaries.

2.2. Fluid–particle interactions

In the LB scheme for particulate suspensions as devel-
oped byLadd (1944a,b), the solid particles are defined by
a boundary surface, which can be of any size or shape. The
spherical (3D) or circular (2D) particles are projected on
the lattice, where the boundary surface cuts off some of the
links between lattice nodes. Fluid particles moving along the
boundary surface interact with the surface at boundary nodes
that are located at the lattice nodes nearest to the bound-
ary surface of the solid particles, following an alternative
method to Ladd’s, that was developed byBehrend (1995).
In this method, called relaxed bounce back conditions at the
nodes, the LB collisions are carried out at every node, in-
cluding the boundary nodes. The method of Behrend avoids
some complications of Ladd’s method, where additional in-
formation is to be passed between lattice nodes because the
boundary nodes are placed in between instead of on lattice
nodes. The resolution of the particles on the grid is better
for Ladd’s method. Behrend showed that the translational
friction of the particles agreed well with results of Ladd and
independent numerical results. The rotational friction how-
ever, agreed less well, due to the worse resolution. Compara-

ble results were obtained for the hydrodynamic interactions
between pairs of spheres, where the parallel friction coef-
ficients were in excellent agreement with independent nu-
merical solutions, whereas the agreement of the perpendic-
ular friction coefficients was less. Results for three different
transport coefficients were all again very accurate.
The collision rules at the boundary surface enforce a stick

boundary condition on the fluid, which means that the fluid
velocity is matched to the local solid-body velocityub. This
local solid-body velocityub (at positionxb) is determined
by the solid-particle velocityU, its angular velocity� and
the position of its center of massR:

ub = U + � × (xb − R). (4)

After the collision phase, the boundary nodes are updated
in the following way:

fi(x + �xi , t + �t)= f ′−i (x, t)+ 2�wi
c2s

ub · ci , (5)

fi(x − �xi , t + �t)= f ′
i (x, t)− 2�wi

c2s
ub · ci . (6)

For moving suspension particles, in this update, momentum
is exchanged between the incoming particles from the fluid
and the solid side (the combined momentum of the fluid and
the solid phase is however conserved). From this momen-
tum exchange the force and torque exerted on a suspension
particle is calculated. Hereafter the kinematic properties of
the suspension particles themselves are updated with a sim-
ple Euler forward integration of Newton’s second law.
The calculations on spherical (3D) and circular (2D) par-

ticles follow essentially the same method. Only the massM
and the moment of inertiaI in Newton’s second law differ.
For 3D particles, they are given by

M = �s
4
3 �a3, (7)

I = 0.4Ma2, (8)

where� and �s are the density of the fluid and the solid
particle, respectively, anda is the particle radius. For 2D
particles,M andI are given by

M = �s�a
2, (9)

I = 0.5Ma2. (10)

Since a suspended particle is essentially simulated by the
introduction of a boundary surface, separating the interior
of the particle from the exterior, the interior of the particle
also consists of fluid. The particles thus comprise a solid
shell of given mass and inertia, filled with fluid of the same
mass density as the bulk fluid.Ladd (1994b)examined the
effects of the interior fluid on the behaviour of the particle.
Dynamically, the particle behaves as if its mass is the sum
of the shell mass and the mass of the interior fluid. With a
sufficiently high effective mass of the shell, the contribution
of the interior fluid to the inertial force is negligibly small.
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Our computations were carried out in this regime, with an
effective mass�s/� of 10. Since our computations are car-
ried out in the Stokes flow regime, inertial effects do not
play a role (see alsoKromkamp et al. (2005)).

2.3. Accuracy of particle representation and
particle–particle interactions

By the projection of the suspended particles on the lat-
tice, a discrete representation of the surface is obtained,
which becomes more and more precise as the surface cur-
vature gets smaller and which is exact for surfaces parallel
to lattice planes. Together with the choice of the location of
the boundary nodes and the boundary update rules, the dis-
cretisation of the particle surface onto the lattice induces a
hydrodynamic particle diameter that is slightly larger than
the diameter based on the number of occupied lattice nodes
(Ladd, 1994b). It is therefore often proposed that the parti-
cle diameter should be corrected for this hydrodynamic ef-
fect. The magnitude of the correction is mostly based on
the particle behaviour in the Stokes flow regime and at low
particle concentrations. As also presented in an earlier pa-
per (Kromkamp et al., 2005), we have seen that in suspen-
sions in shear flow, particles can approach each other very
close, such that particles would largely overlap when the hy-
drodynamic particle size would be taken into account. The
closest approach distance is moreover found to be depen-
dent on conditions such as the particle concentration and the
shear rate. Since assessment of the hydrodynamic particle
diameter in these systems is virtually impossible, while the
corrections would probably be very small, we did not apply
this correction but used the input particle diameter in our
calculations.
Since the suspension flow behaviour in Couette systems

is mainly governed by hydrodynamic particle–particle or
particle–wall interactions, these interactions need to be ac-
curately resolved in the computations. When two suspen-
sion particles come into close contact with each other, the
lubrication force becomes important. This force is caused
by the attenuation of the fluid film in the gap between the
two particles and is repulsive upon approach and attractive
upon separation of the particles. When the gap width be-
tween two particles is in the order of one lattice spacing, the
lubrication force is however not exactly resolved with the
LB method. This is due to the discretisation of the particles
and fluid on a grid and is a problem that is encountered by
all numerical methods. This lubrication breakdown leads to
a so-called “depletion force” that pushes particles into each
other. To overcome this problem we applied a lubrication
correction method based on an explicit calculation of the lu-
brication forceF (Nguyen and Ladd, 2002). For a 3D system
F is given by (Nguyen and Ladd, 2002):

F = −6��U12.R̂12
a1a2

(a1 + a2)
2

(
1

h
− 1

hc

)
, h<hc,

F = 0, h>hc, (11)

where� is the viscosity,U12=U1 −U2, h= |R12| − (a1 +
a2) is the gap (distance between the particle surfaces) and
hc represents the cut-off distance between the particle sur-
faces for the added lubrication force. The unit vectorR̂12=
R12/|R12|. For a 2D system the lubrication force per unit
cylinder lengthF is given by (see Appendix A):

F = − 1

2
�U12.R̂12

((
a1 + a2

h

)3/2(
F0 + h

a1 + a2
F1

)

−
(
a1 + a2

hc

)3/2(
F0 + hc

a1 + a2
F1

))
,

h<hc,

F = 0, h>hc, (12)

whereF0 is the numerical constant34�
√
2= 3.3322 andF1

is the first order correction for the lubrication limith/2a �
1 with a value of23180 · � · √2= 12.829. In accordance with
Ladd and Verberg (2001), we applied a correction on the
lubrication force to account for the lubrication force that is
already resolved in the computations of the fluid dynamics.
This was done by subtracting the lubrication force at a cut-
off distancehc from the total lubrication force, as indicated
in Eqs. (11) and (12). For the added lubrication force, the
cut-off distancehc between the particle surfaces was chosen
equal to 1.1 lattice units for a 3D system and to 2.0 lattice
units for a 2D system (as was found optimal in our simu-
lations). For 3D systems,Nguyen and Ladd (2002)showed
that this correction leads to more accurate results for par-
ticle interactions at short interparticle distances, even with
neutrally buoyant particles very near to contact and without
causing instabilities in the particle dynamics.
In a similar way, the tangential lubrication can also be

corrected. Since it has a weaker logarithmic divergence and
its breakdown does not lead to serious problems, we have
not included this correction in our simulations.
We have noticed before, that in suspensions with relatively

high particle fractions or at high particle Reynolds number,
particle clustering and overlap can occur, which greatly af-
fects the diffusive behaviour of the particles (Kromkamp et
al., 2005). This behaviour seems to be correlated with the
lubrication breakdown of concentrated colloids, that was re-
ported byBall and Melrose (1995). As suggested by these
authors, we applied a Hookean spring force between the
particles to avoid this clustering and overlap. This Hookean
spring force was applied for gapsh smaller than a thickness
� and was applied in the direction of the line of particle
centres, according to

Fh = F0 −
(
F0

�

)
h (13)

with a maximal Hookean spring forceF0 of 2.5× 10−6 (in
lattice units) for a 3D system and 10.0 (in lattice units) for
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a 2D system. The Hookean spring force is active in a layer
around the particle with a thickness�/2 of 0.025 lattice units
for a 3D system and 0.05 lattice units for a 2D system.

3. Single and pair particles in Couette flow

3.1. Wall effects on a single particle

In order to compare wall effects between a single sus-
pended 2D particle and a 3D particle in shear flow, the ro-
tation was studied in Couette systems with varying ratio of
channel height to particle radiusY/a. For 3D particles, we
take the data fromNirschl et al. (1995), who used a finite
volume numerical scheme. We studied the rotation of 2D
particles with our LB model.
The LB calculations were carried out for a 2D particle

with a radiusa of 8 lattice units. The distanceX/a between
the periodic boundaries was 80, which was verified to give
results corresponding to a system with an infinitely large
distanceX/a. The channel heightY/a varied between 2.5
and 40. The shear ratė� was 3.75× 10−5 per time step,
which was verified to give results corresponding to Stokes
flow. The shear-based particle Reynolds numberReshear,p=
4�̇a2/�, where � is the kinematic viscosity, was equal to
0.058. The 2D particle was placed at the horizontal centerline
of the Couette system. We assessed the equilibrium angular
velocity � of the 2D particle, which is normalised for the
shear rate.
For a channel heightY/a larger than 10, the angular ve-

locity � was close to the analytical solution ofTaylor (1932)
for a rotating particle in simple shear (Fig. 2). For smaller
channel heights, the angular velocity� starts to decrease due
to interaction with the walls. The decrease starts earlier and
is most pronounced for the 2D particle, where the angular
velocity� decreased from the maximum value of 0.50 to a
value of 0.33 at a channel heightY/a of 2.5. This effect can
be understood because the intensity of the flow field around
a 2D particle is larger than around a 3D particle. As a result,
for 2D particles, wall effects start at a channel heightY/a,
which is about 3 units higher than for 3D particles, while
the wall effects for 2D particles are more intense as well.
The results suggest that a scaling can be obtained between
2D and 3D results by normalisation of the channel height.
For the 2D results, the channel height should be multiplied
with a factor of about 0.33.

3.2. Two colliding particles in shear flow

The hydrodynamic interactions between particles in a 2D
and a 3D system can be compared from the flow trajectory of
two interacting particles.Batchelor and Green (1972)have
derived an analytical solution for 3D particles, but a solution
for 2D particles is not yet available. Therefore, we calculated
the flow trajectories with the LB model for 2D as well as
3D particles, at equivalent conditions.

Fig. 2. The angular velocity� as a function of the relative channel height
Y/a for a single cylinder with radiusa in shear flow (Reshear,p = 0.058,
a = 8 lattice units). The distance between the solid walls of the Couette
system was varied between 2.5a and 40a. The results are compared to
results ofNirschl et al. (1995)for a 3D system. The inset shows a scheme
of the simulated situation.

For 2D particles, two equal-sized particles (a = 8 lattice
units) were placed at equidistant heights above and under
the horizontal centerline. The initial horizontal distance(x−
xmidpoint)/a from the midpoint between the particles was
5, while the initial vertical distance was varied. Both the
channel height (Y/a = 40) and the distance between the
periodic boundaries (X/a= 80) were chosen such that they
did not affect the particle trajectories.Reshear,p was equal to
0.058, which was verified to give results in accordance with
Stokes flow. For 3D particles, virtually the same conditions
are applied, except for the particle radius, which was chosen
as 11 lattice units.
The resulting flow trajectories are presented inFig. 3.

When the two particles pass each other, they move away
from the horizontal centerline upon approach andmove back
to their original height upon separation, as is described by
Batchelor and Green (1972). When comparing 2D and 3D
particles, it is clear that the 3D particles move closer around
each other: the minimal gap between the 2D particles is
equal to 0.27a and 0.11a for initial vertical distances from
the midpoint of, respectively, 0.44a and 0.25a, while the
minimal gap between 3D particles is, respectively, 0.01a
and 0.00a.
These differences between the inter-particle distances are

caused by differences between the ratio of drag to lubri-
cation force for 2D and 3D particles, which causes the
fluid to move less easily out of or into the gap for 2D
particles. A consequence of the observed behaviour is that
the range of hydrodynamic interactions is longer for 2D
particles. In 2D multi-particle systems, this may lead to
more intense hydrodynamic interactions at a similar particle
fraction.
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Fig. 3. Cylinder or sphere trajectory during interaction of two cylinders
(a = 8.0 lattice units (2D)) or two spheres (a = 11.0 lattice units (3D))
in a linear shear field (Reshear,p =0.058) between two walls, for varying
initial positions of the cylinders and spheres.

A full scaling of the particle trajectories would at least
require a numerical solution of the lubrication force, but
here we apply an analytical scaling by simply rescaling
of the X-axis andY-axis in Fig. 3. TheX-axis is rescaled
by normalisingX for X∗, the X-value where the particle
has reached a distanceY∗ = 0.5(Ymax − Yinitial). The Y-
axis is rescaled by normalisingY for the factorYmax(Y −
Yinitial)/(Ymax − Yinitial) + 1.0(Ymax − Y )/(Ymax − Yinitial).
Obviously, this rescaling can only be applied whenX∗
and Ymax are already known. The result is presented
in Fig. 4.
The rescaling lead to 2D and 3D trajectories with a good

resemblance, except when the particles are relatively far
apart. These long-range effects are often less relevant in con-
centrated suspensions. This indicates that the trajectories of
2D and 3D systems can be scaled with the parametersX∗
andYmax, which can thus be considered characteristic for
this system.

Fig. 4. Cylinder or sphere trajectory during interaction of two cylinders
(a = 8.0 lattice units (2D)) or two spheres (a = 11.0 lattice units (3D))
in a linear shear field (Reshear,p =0.058) between two walls, for varying
initial positions of the cylinders and spheres. The values forX andY are
scaled as explained in the text (Section 3.2).

4. 2D and 3D multiparticle suspensions in Couette flow

4.1. Wall effects

The 2D multiparticle system consists of a rectangular box
with X :Y = 1 : 2. The total number of particles (particle
radius 8 lattice units) was equal to 200.Reshear,p was equal
to 0.023. In the 3D multiparticle system, the particle radius
andReshear,p were similar to the 2D system. The box size
wasX :Y :Z = 1 : 1.5 : 1 and the total number of particles
400.
Walls can induce effects as particle structuring, demixing

and wall slip. In order to analyse these effects, we compare
the time-averaged concentration distribution and the particle
velocity profile as a function of the distance to the wall
for 2D and 3D systems (Fig. 5). In the 2D system, a layer
near the walls with a height close toa was depleted of
particles, as can be expected based on the particle size. No
additional wall depletion was however found. For	>0.10,
strong structuring effects are found near the walls, which
is clear from the concentration fluctuations at these places.
The first concentration peak appears for a distance from the
wall between 0 and 1.3a for 	 = 0.3 and between 1.1a and
2.1a for 	=0.45. For	=0.45 at least two distinct particle
layers are visible, at a distance between 1.1a and 2.1a and
between 3.2a and 4.2a from the wall, respectively. From the
particle velocity profile in the 2D system, it is clear that the
shear profile deviates slightly from perfectly linear, but that,
even for	 = 0.45 where the particle velocity near the walls
was up to 5% smaller than expected, this effect of wall slip
is of minor importance.
In a 3D system, the situation was slightly different

(Fig. 5). The height of the layer near the walls that was de-
pleted of particles, was again close toa. Structuring effects
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Fig. 5. The time-averaged area (2D, cylinders) or volume (3D, spheres) fraction	 across the channel widthY for a 2D suspension (top) with mean area
fractions〈	〉 of 0.10 (a), 0.30 (b) and 0.45 (c) and a 3D suspension (bottom) with mean volume fractions〈	〉 of 0.10 (a), 0.30 (b) and 0.36 (c).

were found to differ from 2D systems. In 3D systems, for
volume fractions higher than 0.10, only one concentration
peak was visible, which was more pronounced than in 2D
systems. For	 = 0.3, and 0.36 this concentration peak
appears at a distance from the wall between 0.93a and
1.40a and between 0.88a and 1.09a, respectively. As in
accordance with wall effects in a single particle system,
where wall effects on 3D spheres were only evident at small
channel heights when compared to 2D cylinders, the con-
centration peak was closer to the wall in a 3D system (at
the highest concentration). As a consequence of this more
pronounced structuring in 3D systems, the particle velocity
profile was also found to deviate more from perfectly linear.
The profile exhibited a tendency towards a sigmoid shape.
The velocity of particles near the walls deviated around
10% from the velocity expected for a linear velocity profile.

4.2. Viscosity

The viscosity of a concentrated suspension is a character-
istic that strongly depends on hydrodynamic interactions. By
calculation of the squeezing flow contribution, the viscosity
can be calculated as a function of the particle fraction, as is
done for 3D particles byFrankel and Acrivos (1967). The

result is practically identical to the semi-empirical model
of (Krieger, 1972; Krieger and Dougherty, 1959), which is
valid for both 2D and 3D suspensions:

�r =
(
1− 〈	s〉

	max

)−[�]	max

, (14)

where�r is the relative viscosity,〈	s〉 is the averaged parti-
cle fraction and	max, the maximum packing fraction. The
dimensionless factor[�] is the intrinsic relative viscosity of
the suspension. It is often suggested that the factor[�]	max
is similar for 2D and 3D suspensions (Shakib-Manesh et al.,
2002). Here we will use[�]	max=1.82, as follows from the
values for	max and[�] of 2.68 and 0.68, respectively, that
are reported byPhillips et al. (1992)for 3D suspensions. The
value for	max followed from a fit of the simulation results.
Because the viscosity simply evolves from the lubrica-

tion force as a function of the mean distance between the
particles, the scaling relation between 2D and 3D systems
directly follows from this derivation. Therefore, we only de-
termined the viscosity as a function of the particle fraction
to compare the accuracy between 2D and 3D systems. In our
simulations, the viscosity is determined from the stress at the
walls in a multiparticle Couette system. For a 2D system, the
heightY/a and widthX/a of the Couette system are equal
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Fig. 6. Effective viscosity of a 2D and a 3D suspension as a function of
the area (cylinders) or volume (spheres) fraction. The lines represent fits
of the results to the Krieger–Dougherty model with a value of 1.82 for
[�]	max, both for 2D and for 3D suspensions (the fit result for	max
was 0.88 for 2D and 0.69 for 3D). The inset shows the viscosity as a
function of	/	max.

to, respectively, 64.75 and 32.38. The particle fraction was
varied by varying the amount of particles up to a maximum
of 365.Reshear,p was equal to 0.012, which was verified to
give results in accordance with Stokes flow. For a 3D sys-
tem, the system properties were as described in Section 4.1.
Fig. 6 presents the results. There is a good agree-

ment between the 2D computer simulation results and the
Krieger–Dougherty model for	max = 0.88. At a particle
fraction	 exceeding 0.49 however, the viscosity is slightly
lower than according to the Krieger–Dougherty model. Also
the 3D computer simulation results show a good agreement
with the Krieger–Dougherty model (	max= 0.69). Similar
to the 2D system, at higher concentrations, the viscosity
starts to get lower than the Krieger–Dougherty model. This
occurs however at a particle fraction	 exceeding 0.3 in-
stead of 0.49 for a 2D system. From comparison of our
2D viscosity data with LB results from literature (see e.g.
Shakib-Manesh et al., 2002for an overview), it is clear
that our data do not significantly differ from these data. 3D
viscosity data are amongst others given byHeemels et al.
(2000). These authors could accurately describe the vis-
cosity up to a volume fraction of at least 0.45, making use
of the similar LB method as Ladd, but adapted in order to
simulate truly solid particles. They also showed that when
the original LB method of Ladd is usedLadd (1994a,b),
the internal fluid in the particles contributes to the effective
density, which leads to an underestimation of the viscos-
ity over the total volume fraction regime. A leveling off
at higher volume fractions, as occurs in our simulations,
is however not observed. Because this behaviour is found
at lower volume fractions in 3D suspensions, where the
particles come into closer contact, we hypothesize that the
inaccuracy in the viscosity has to do with this close contact.
It may therefore be that the less accurate particle represen-

tation, that is associated with Behrend’s boundary rules as
used in this study, is the main reason for the inaccuracy
at higher particle fractions. The viscosity results indicate
that particle radii in concentrated 3D suspensions should be
relatively large in order to obtain sufficient accuracy. Since
3D suspensions require much computing power, this is a
clear disadvantage of the method followed. FromFig. 6,
it is however clear that an appropriate scaling is obtained
when the particle fractions of both 2D and 3D suspensions
are related to	max.

4.3. Shear-induced diffusion

4.3.1. Computer simulation
Another interesting phenomenon in multiparticle suspen-

sions in shear flow is shear-induced diffusion, a phenomenon
that arises from the hydrodynamic interactions between the
particles. As can be seen inFig. 3, apart from the displace-
ment caused by the affine flow, two-particle interactions do
not lead to permanent displacements of these particles. In a
concentrated multi-particle suspension however, simultane-
ous interactions between more than two particles can lead to
permanent displacements, which can have a diffusive char-
acter on a sufficiently large timescale. The shear-induced
self-diffusivity is thus defined as the time rate of change of
one half times the mean-square displacement:

Dxx ≡ lim
t→∞

1

2

d

dt
〈x(t)x(t)〉. (15)

Sierou and Brady (2004)have done extensive computer
simulation work on shear-induced self-diffusion, using
the Stokesian dynamics technique. Although in the past,
the system size was severely limited because of limits in
the computing capacity, as far as we know, they have not
published any results from 2D simulations. In contrast
to Stokesian dynamics, our LB method enables research
on shear-induced diffusion at non-Stokesian conditions,
such as in the presence of walls and at non-zero Reynolds
number. Here, we investigate 2D–3D scaling relations for
shear-induced diffusion because this knowledge may enable
the use of computationally less intensive 2D simulations.
The 2D and 3D systems were as described in Section 4.1.

For a 2D system, the shear-induced diffusivity is determined
over a strain range between 18 and 60. In order to evaluate
the effect of the initial particle configuration on the diffu-
sion coefficient, we splitted the displacement curve of one
simulation run into several curves which start at different
times of the simulation run (and consequently at different
particle configurations). In each separate curve, the mean
square displacement was monitored over a strain of 30. The
final diffusion coefficient is the mean value of the diffu-
sion coefficients that were determined from the individual
mean square displacement curves. Dependent on the parti-
cle volume fraction, the 2D calculations required between
70 and 650h CPU time. With a similar particle radius, the
3D system requires much more computational power per
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Fig. 7. ComponentDyy of the shear-induced self-diffusion coefficient, as
related to the values found with Stokesian dynamics (Sierou and Brady,
2004), in a 3D suspension as a function of the particle radius for	=0.10,
0.20 and 0.30 (N = 400, Reshear,p = 0.023). The lines are drawn as a
guide to the eye.

simulated particle than a 2D system. For 3D systems, a par-
ticle number of 400 is found to be sufficiently high to obtain
results that are representative for an infinitely large system.
This particle number was twice as high as in a 2D system,
which results in an improved statistical reliability of the 3D
simulations. In order to limit the computational effort, the
shear-induced diffusivity is determined over a strain range
between 4.5 and 15, which was verified to give results rep-
resentative for the long-range diffusive regime. In this way,
the 3D simulations required about 40 times more CPU time
than the 2D simulations (with equal particle radius).
For a 3D system and	�0.20, our simulations generated

shear-induced diffusivities that are smaller than the results
found bySierou and Brady (2004). In order to try to elucidate
these differences, we assessed the influence of the particle
radius on the shear-induced diffusivity at	=0.10, 0.20 and
0.30 (Fig. 7).
The shear-induced diffusivity increased with the particle

radius, but seems to have reached a plateau value for	=0.10
at a particle radius of 8 lattice units. For	=0.20 and 0.30,
even at a particle radius of 10 lattice units, a plateau value
was not reached. The values for	 = 0.30 were furthermost
away from the values presented by Sierou and Brady.
One hypothesis for the cause of the differences could be

that a jammed state of hydrodynamic clusters is formed, as
for instance put forward byFarr et al. (1997). Because the
particles have more or less fixed positions in such system-
spanning clusters, the particle displacements may be smaller
than in an unjammed state. It can be expected that system
size will be of large influence on the jamming transition. We
did however not find these effects when varying the distance
between the two moving walls. Therewith, this hypothesis
is less likely to be the cause for the differences in shear-
induced diffusivity.

Fig. 8. ComponentDyy of the shear-induced self-diffusion coefficient as
a function of the cylinder area fraction for a 2D suspension (N =200) in
shear flow atReshear,p = 0.023. The open symbols represent the relation
found bySierou and Brady (2004)for a 3D system with spheres instead
of cylinders.

Another reason might be in the occurrence of short-range
multi-particle interactions. In our code, multi-particle inter-
actions are solved by pair-wise calculation of the interac-
tion effects, which are successively calculated for all parti-
cle pairs. The problem does not seem to be in the pair-wise
calculation itself, because this would not lead to an effect of
the particle radius as shown inFig. 7. It may however be that
the solution of the short-range multi-particle interactions in
our code is too inaccurate because of the ragged particle sur-
face. This explanation is in line with the observed effect of
the particle radius and our hypothesis based on the viscosity
results. Because of the relative close approach of particles
in 3D systems, this problem might be more pronounced in
3D than in 2D systems.
Since the inaccuracy is found to increase with	, it can

be expected that for volume fractions higher than 0.20, even
larger particles are required. However, a particle radius of
14 would already require about 2000 times more CPU time
than 2D simulations, while the CPU time would increase
with a factor of about 25,000 for a particle radius of 20. Even
on advanced supercomputers, one would run into problems
with these requirements.
The 2D results on shear-induced diffusivity are presented

in Fig. 8. These results were not found to be dependent
on the particle size within a range of±25%. We can thus
conclude that, similar to the viscosity results, the 2D results
for shear-induced diffusion are less sensitive to inaccuracy
in the particle representation on the grid. At area fractions
higher than 0.45 however, very large standard deviations
were found, which may be caused by comparable reasons
as mentioned above for 3D systems, namely formation of a
jammed state or inaccuracies in the calculation of the short-
range multi-particle interactions. Therefore, we limited the
results up to an area fraction of 0.45.
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The relation between shear-induced diffusivity and	 is
clearly different from the 3D relation. For volume fractions
lower than 0.25, the 2D shear-induced diffusivity was around
three times higher, and at higher fractions around two times.
In order to better understand these differences and to be able
to translate 2D results into 3D results, we have developed an
analytical model for shear-induced diffusivity. This model
is discussed in the next section.

4.3.2. Analytical model for 2D–3D scaling
We used an analytical model for shear-induced diffusion

(an adapted version of the model that was originally pub-
lished byBreedveld (2000)), which is based on a simple col-
lision mechanism. Just as most other analytical models, our
analytical model does not give an accurate quantitative pre-
diction of shear-induced self-diffusion, but because it cap-
tures the volume fraction dependence rather well, we found
it relevant to apply it for a comparison between 2D and 3D
systems.
Our simple collision model, described in Appendix B,

approaches self-diffusion in a similar way asLeighton and
Acrivos (1987)did. It describes the movement of individual
particles in a homogeneous suspension and shear field un-
der the action of excluded volume effects that are caused by
interactions with neighbouring particles on different stream-
lines in the shear flow. The particle motion during each en-
counter is described as a deterministic process, but it is as-
sumed that this can lead to diffusive behaviour in systems
with many particles and random initial positions. An en-
counter of particles is modelled as an effective two-particle
collision process, which proceeds unhindered until it is ter-
minated by the presence of a third neighbouring particle.
Without the presence of a third neighbouring particle, the
collision is ended when the angle
=� is reached (see figure
in Appendix), which does not result in a net displacement
of the colliding particle. This is consistent with the shear
flow trajectories that are obtained in the symmetric problem
of two colliding ideal hard spheres (Da Cunha and Hinch,
1996). When particle concentrations are high, the average
time between subsequent collisions is shorter than the time
needed to complete the interaction and then the collisions
end when interaction with a third incoming particle occurs.
Under these model assumptions, in a following step, parti-
cle trajectories are calculated as a function of initial particle
positions and finally, averaging the displacements over all
configurations provides a measure for shear-induced self-
diffusion. It is clear that the model will be valid for a re-
stricted range of particle fractions. This range is determined
by factors such as the presence of two-particle interactions
and the homogeneity of the suspension. In previous work
(Kromkamp et al., 2005), we have seen that particles in
an inhomogeneous suspension can have an increased shear-
induced diffusivity. But, although the model is simplistic in
that it does not at all consider complex hydrodynamics, it
provides interesting insights into the nature of the micro-

Fig. 9. The componentsDxx , Dyy , Dzz andDxy of the diffusion tensor
for a 3D system, as calculated from the collision model (part a) andDyy
for a 2D system as compared to a 3D system (part b).

scopic processes that could be responsible for shear-induced
self-diffusion, even more because the model does not con-
tain adjustable parameters.
With our collision model, the componentsDxx , Dyy ,

Dzz andDxy of the diffusion tensor have been calculated
for a 3D system (Fig. 9). The calculated values for the
componentsDyy andDzz are almost a factor 4 lower than
most experimental data (see e.g. (Breedveld et al., 1998,
2001)). The latest numerical results, calculated with ASD,
are however also a factor 2 lower than experimental data; it
was postulated by the authors that discrepancies are due to
analysing over too short strains in the experiments (Sierou
and Brady, 2004). The difference between the collision
model and the numerical values forDyy was around a
factor 2.
A feature that seems to be captured well by the collision

model is the volume fraction dependence.Dyy andDzz level
off for volume fractions above 25%. In the model, this is due
to the fact that above this critical concentration, the average
duration of an interaction is shorter than needed for the com-
pletion of the trajectory to
 = �. The diffusion components
Dyy andDzz reach a plateau value at this volume fraction
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of 25%. This is due to the fact that the decrease in displace-
ment with higher volume fraction is exactly balanced by the
increase in collision frequency, resulting in constant diffu-
sion coefficients. Such a plateau value forDyy andDzz is
also found in experiments, although at a somewhat higher
volume fraction of around	=0.35. Most model predictions
however do not show a plateau value at all. OnlySierou and
Brady (2004)found a plateau value forDyy as well asDzz
in their latest model calculations with the ASD technique.
Therefore, it is remarkable that our simple collision model
does show this plateau value.
The anisotropyDyy/Dzz between the velocity gradient

and vorticity direction is equal to 2 in our model. The value
of 2 agrees well with experimentally observed values for
the anisotropyDyy/Dzz. Although only a limited number
of results onDxx andDxy is available in literature, it seems
clear that the results of our collision model exhibit large dif-
ferences with these results. Particularly the volume fraction
dependence is different in our model results. The negative
sign ofDxy is however correctly predicted. Since consider-
able debate still exists on the magnitudes ofDxx andDxy ,
it is hard to assess the accuracy of the model predictions.
With respect toDxx andDxy , the subject clearly needs more
elucidation.
For a 2D system, the collision model predicts a different

volume fraction dependence ofDyy than for a 3D system
(Fig. 9). At first,Dyy only starts to increase at an area frac-
tion between 0.2 and 0.3. After it has started increasing how-
ever, the diffusion componentDyy not only increases faster
with the area/volume fraction, but it also reaches its plateau
value at a critical value, which is two times higher than for
a 3D system. Moreover, at area fractions above the critical
value, the diffusion component exhibits a decrease instead
of staying at a constant level. A relevant factor for these dif-
ferences is the collision rate per particle. In a 2D system, the
collision rate per particle at a certain fraction is two times
smaller than in a 3D system. On the other hand, the average
displacement during a collision is larger because the angle�
is equal to 0 in 2D systems, resulting in the maximal value
of 1 for cos(�). The combination of these two effects leads
to a somewhat steeper increase ofDyy with the area/volume
fraction than in 3D systems, although the difference is not
large. The smaller collision rate per particle in 2D systems
is also relevant for the onset concentration ofDyy and the
critical concentration where levelling off occurs. The onset
concentration is directly related to the collision rate, because
it is determined by the point where a two particle collision
starts to be disturbed by a third particle. For the critical
concentration, the average collision time is also important.
Since the average time needed for a collision does not dif-
fer much between 2D and 3D systems, the smaller collision
rate causes a shift of the critical concentration from 0.25
to about 0.50 in 2D systems. At higher concentrations in
2D systems, the effect of decreasing displacement is larger
than the effect of increasing collision rate, leading to a net
decrease ofDyy .

Fig. 10. Comparison of the shear-induced diffusivity as predicted by the
collision model and by computer simulation. The shear-induced diffusivity
Dyy and the area or volume fraction	 are normalised following scaling
rules derived from the results of the collision model. The values for
	∗ andDmax are determined separately for each curve from the results
presented inFigs. 7 and 9. For the 2D results of the present study, the
value forDmax is derived fromDyy at 	∗.

Based on this understanding, our expectations for 2D sys-
tems are that at relatively low area fractions, the shear-
induced diffusion componentDyy is smaller than for 3D
systems. At area fractions above 0.25, the 2D diffusion com-
ponent can become up to a factor 3.5 higher, due to the dif-
ference in area/volume fraction dependence. A normalisa-
tion was carried out by dividing the area or volume fraction
by 	∗, the fraction where the diffusivity has reached half of
the maximal value (0.5Dmax), and by dividing the diffusiv-
ity by its maximal value (Dmax) (Fig. 10). As a result, the
normalised 2D and 3D values of the collision model nicely
coincide with each other. The same procedure has been car-
ried out on the 2D and 3D simulation results, but here, be-
cause the collision model did not capture theDyy − 	 rela-
tion well, the normalisation parameters were derived from
the simulation results itself. In this way, a good agreement
is found between the normalised data of our 2D LB simula-
tions and the 3D Stokesian dynamics simulations ofSierou
and Brady (2004). This indicates that the 2D–3D scaling re-
lation as determined from the collision model, is suited for
the translation of (future) 2D simulation results to 3D.

5. Conclusions

In this study, we have analysed the flow behaviour of
suspensions subjected to Couette flow, making use of the
LB method. The focus was on a comparison of the flow
behaviour of 2D and 3D suspensions. Since computations on
3D suspensions can computationally be very intensive, it is
investigatedwhether andwhen it is advantageous to carry out
computations on 2D suspensions and translate these results
to 3D suspensions with the help of scaling relations.
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We have found particle structuring near the walls in both
2D and 3D suspensions. The thickness of the structuring
layer was thinner for 3D suspensions, which is in accordance
with wall effects in 2D and 3D single particle systems. Wall
slip was found in both systems as well, and was more inten-
sive in 3D systems and at higher concentrations. An impor-
tant consequence of the differences between 2D and 3D is
that when one is interested in the bulk particle behaviour, in
the 2D system, a larger system size should be chosen than
in a 3D system.
For computation of the viscosity and shear-induced diffu-

sion, limitations are found in the maximum volume fraction
of particles that gives accurate results; these limitations are
found to be related to the grid size of the suspended parti-
cles. In 3D systems, for a particle radius of 8 lattice units,
the inaccuracy became evident at	 larger than 0.30 (vis-
cosity) or larger than 0.15 (shear-induced diffusion), which
is at much lower concentrations than in 2D systems. This
sensitivity of 3D systems to inaccuracy is probably related
to the closer approach distance of two interacting particles
in shear flow and may be caused by inaccuracy, introduced
by the particle discretisation on the grid.
Because of the very large particle grid sizes, necessary to

obtain accurate results for 3D systems, only advanced su-
percomputers are currently suited for LB computations on
3D systems, while the computations on 2D systems can be
carried out well on a single processor or on small com-
puter clusters. Therefore, adequate scaling relations would
be helpful to translate 2D simulation results to 3D systems.
For the viscosity, such scaling relations are already known,
and we were able to reproduce those in our LB simulations.
For shear-induced diffusion, we have developed an analyt-
ical collision model, which is able to predict qualitatively
correct shear-induced diffusivities, and which captures the
scaling between 2D and 3D well.
This study shows that the feasibility of 3D LB simulations

is restricted to smaller parameter domains than 2D simula-
tions.With the use of relatively simple, linear scaling rules, it
proved possible to translate 2D simulation results to 3D real
systems, which opens the way to employ the LB method for
unexplored aspects of suspension flow in Couette systems,
such as particle polydispersity and high Reynolds number
flow, with large relevance to practical processing of suspen-
sions.
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Appendix A. Lubrication force in a 2D suspension

We apply lubrication theory to calculate the hydrody-
namic force between two cylinders in a 2D suspension.
For small gaps (i.e., rim to rim distances) 2h the force be-
tween two adjacent cylinders can be calculated, solving the
flow field in the gap upto first order in� = h/a. In the
calculation two cylinders are considered, approaching each
other with a velocity 2U . A Carthesian coordinate system
(ex,ez) was used with the origin at the center of the gap. The
z-coordinate, taken along the line of centers, was scaled onh
and thex-coordinate was scaled on

√
ah; thez-component of

the velocity was scaled onU, thex-component on
√
a/hU .

The pressure was scaled ona�U/h2. Under these condi-
tions the differential equation for the dimensionless stream
function
 becomes

�4


�z4
+ 2�

�4


�x2�z2
+ �2

�4


�x4
= 0. (A.1)

The rim of both disks is described byz= ±b(x) with
b(x)= 1+ 1

2 x
2 + �18 x

4 + �2 1
16 x

6 + · · · (A.2)

and the boundary conditions on these rims read:

vz = −�


�x
= ±1, (A.3)

vx = �


�z
= 0. (A.4)

For convenience
 = 0 is chosen atz= 0, so
 is odd inz.
This equation can be solved assuming


 = 
0 + �
1 + · · · , (A.5)

where
0 fulfills the boundary conditions (A.3) and (A.4)
and�
1/�x = �
1/�z = 0 on the rim of the particle. The
solution is given by


0 = 1

2
x

(
3
( z
b

)
−
( z
b

)3)
, (A.6)


1 = 3

20
g(x)

( z
b

)(
1−

( z
b

)2)2
, (A.7)

whereg(x)= 4x(b′)2− 2bb′ − xbb′′ andb′, b′′ are the first
and second derivative ofb=b(x), respectively. The pressure
along the linez= 0 can be calculated by integrating:(

�p

�x

)
z=0

= −3b−3
(
x + �

(
3

5
g(x)− 1

2
f (x)

))
, (A.8)
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wheref (x)=2x(b′)2−2bb′ − xbb′′. Thezz-component of
the total stress tensor (the superfix[D] indicates the dimen-
sional form)

T [D]
zz = −p[D] + 2�

�v[D]
z

�z[D]

reads in dimensionless form

Tzz = −p + 2�
�vz
�z

= −p − 2�
�2�

�x�z
,

where alsoTzz has been scaled onp0 = a�U/h2. The (di-
mensionless) force per unit length,F, on the particle is cal-
culated by integratingTzz along the linez = 0 (with swop-
ping the order of integration of the�p/�x term):

F(�)= 2
∫ ∞

0
(Tzz)z=0 dx

= 2
∫ ∞

0
x

(
�p

�x

)
z=0

dx − 4�
∫ ∞

0

(
�2�

�x�z

)
z=0

dx

=
∫ ∞

0

3x

b3(x)

(
2x + �

(
6

5
g(x)− f (x)

))
dx

− 4�
∫ ∞

0

3

2b2
(b − xb′)dx. (A.9)

This expression can be rewritten as

F(�)= F0 + �(F1 − F2),

where

F0 =
∫ ∞

0

6x2(
1+ 1

2x
2
)3 dx = 3

4
�
√
2= 3.3322,

F1 =
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0

3x(
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2 x
2
)3
((

25

10
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x− 6x5

(8+4x2)
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dx,
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80
�
√
2= 11.496,

F2 =
∫ ∞

0
6

(
1− 1

2x
2
)

(
1+ 1

2 x
2
)2 dx = 0.0

are numerical constants. In our simulations, we have erro-
neously used a value ofF1 = 12.829, which lead to about
1% overestimation of the lubrication force. The lubrication
force per unit length in dimensional form,F [D] =p0

√
ahF ,

follows from Eq. (A.9) as

F [D] =
(
h

a

)−3/2

�UF(h/a)

=
(
h

a

)−3/2

�U

(
F0 + h

a
F1

)
(A.10)

which expression is correct to the first order of�.
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Fig. B.1. Geometry for describing a typical collision.

Appendix B. Analytical model for shear-induced diffu-
sion

B.1. The collision frequency of the particle in 3D

Consider a simple shear field in which the velocity of the
fluid (in Carthesian coordinates) is given by

v = �̇yex (B.1)

so thex-direction is the velocity direction, they-direction
along the gradient and thez-direction along the vorticity
direction. A collision takes place when two particles touch
each other:rij = p = ai + aj , whereai is the radius of
particle(i).
Using spherical coordinates(r,ϑ,�) (seeFig. B.1) and

the unit vectors:

er = − cosϑex + sinϑes ,

eϑ = sinϑex + cosϑes ,

e� = − sin�ey + cos�ez, (B.2)

wherees is defined by

es = cos�ey + sin�ez (B.3)

the relative position between two particles is given by

r rel = p(− cosϑex + sinϑes) (B.4)

and the relative velocity before collision by

vrel = �̇p sinϑ cos�ex . (B.5)

We consider a monodisperse suspension with volume frac-
tion 	 of particles with radiusa. The particle flux onto the
surface of a tagged particle can be estimated as

j = nvrel = 2na�̇ sinϑo cos�oex (B.6)

wheren is the number density of the particles in the sus-
pension.ϑo and�o define the orientation of the colliding
particles. The collision rate in a certain space angle dṄc/d�
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is given by

dṄc = −nvrel · (2a)2 d�er , (B.7)

dṄc
d�

= 8na3�̇ cos�o sinϑo cosϑo (B.8)

and the total collision rate

Ṅc = 2
∫
�(1)

dṄc
d�

d� (B.9)

= 12

�
	�̇
∫ �/2

0
sin2ϑo cosϑo dϑo

∫ �/2

−�/2
cos�o d�o

(B.10)

= 8

�
�̇	, (B.11)

where�(1) is the space angle for which 0<ϑ< �/2 and
−�/2<	< �/2. The probability that a given collision oc-
curs with orientation(ϑo,�o) or (� − ϑo, � + �o) is given
by the function�(ϑo,�o):

�(ϑo,�o)= (dṄc/d�)∫
�(1) (dṄc/d�)d�

= 3

2
cos�o cosϑo sinϑo (B.12)

and the mean time,�, between two collisions of particle 1
with another particle follows from Eq. (B.11):

� = 1/Ṅc = �

8�̇	
. (B.13)

B.2. The collision frequency of a particle in 2D

In 2D the collision rate under a certain angle dṄc/dϑ is
given by

dṄc = −nvrel · 2a dϑer , (B.14)

dṄc
dϑ

= 4na2�̇ sinϑo cosϑo (B.15)

and the total collision rate:

Ṅc = 2
∫ �/2

0

dṄc
dϑ

dϑ = 8

�
	�̇
∫ �/2

0
sinϑo cosϑo dϑo

(B.16)

= 4

�
�̇	 (B.17)

hence, in 2D

�(ϑo)= 2 cosϑo sinϑo (B.18)

and

� = 1/Ṅc = �

4�̇	
. (B.19)

B.3. The displacement of the particle in a collision

To describe the displacement of a particle(i) during a
collision with particle(j) we describe the collision with re-
spect to the center of resistance of the two colliding parti-
cles. The initial position of particle(i) is given byϑo,�o (in
2D: �o = 0): r cm = a(− cosϑoex + sinϑoes(�)). To obtain
a simple collision rule we assume affine motion of the par-
ticles as not prohibited by excluded volume effects. When
the particles become into contact they roll over each other
in the xs-plane. Under this assumption the velocity during
the collision,ϑo�ϑ�ϑ1, is

v = v∞ · (I − erer ) (B.20)

= a�̇ cos�o sin
2ϑ(sinϑex + cosϑes) (B.21)

while the undisturbed velocity would be given by

v∞ = a�̇ cos�o sinϑex . (B.22)

The angular speeḋϑ is given by:ϑ̇ = �̇ cos�osin
2ϑ so the

time a collision takes, is given by

�t = 1

�̇ cos�o

∫ ϑ1

ϑo

dϑ

sin2ϑ
= (cotϑ0 − cotϑ1)

�̇ cos�o
, (B.23)

whereϑ1 is the value ofϑ at which the collision stops,ϑ1=
� − ϑ0, or is taken over by the next collision:

cotϑ1 =




− cotϑ0

(
2 cotϑ0
�̇ cos�o

��

)
,

cotϑ0 − �̇� cos�o

(
2 cotϑ0
�̇ cos�o

> �

)
.

(B.24)

Assuming a collision stops at a certain angleϑ1 irrespective
of the initial values ofϑ0 and�o, the average collision time
in 3D is calculated as

〈�t〉 = 3
∫ �/2

0

∫ �/2

0

(cot ϑ0 − cot ϑ1)

�̇ cos�o
× cos�o cosϑo sin

2ϑo dϑo d�o (B.25)

= �

2�̇
(1− cotϑ1) (B.26)

and in 2D as

〈�t〉 = 2
∫ �/2

0

(cotϑ0 − cotϑ1)

�̇
cosϑo sinϑo dϑo (B.27)

= 1

�̇

(�

2
− cotϑ1

)
. (B.28)

The displacement�r can be obtained from integration, from
time 0 to�, of the velocity (Eq. (B.20)):

�r =
∫ �t

0
v(ϑ,�0)dt +

∫ �

�t
v∞(ϑ1,�0)dt + vcm�

= a

∫ ϑ1

ϑ0

(sinϑex + cosϑes(�0))dϑ

+
∫ �

�t
a�̇ cos�o sinϑ1ex dt + vcm�,
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wherevcm is given by:

vcm = �̇(y0 − a sinϑ0 cos�o)ex .

The stochastic part of the displacementscan be obtained by
subtraction of the convective contribution to�r :

�r c = 1
2 �̇�(y0 + y1)ex

which results in:

s=
∫ �t

0
v(ϑ,�0)dt +

∫ �

�t
v∞(ϑ1,�0)dt

+ �̇�(y0 − a sinϑ0 cos�o)ex − 1
2 �̇�(y0 + y1)ex .

In these expressions is�t given by:�t =min{�, (2 cotϑ0)/
(�̇ cos�o)}. Hence, for((2 cotϑ0)/�̇ cos�o��) one obtains:

s= 0

and for((2 cotϑ0/�̇ cos�o)> �):

s/a = [sinϑ1 − sinϑ0]es + [cosϑ0 − cosϑ1
− 1

2 (sinϑ0 + sinϑ1)(cotϑ0 − cotϑ1)]ex , (B.29)

where we have used:

�̇� cos�o = cotϑ0 − cotϑ1

(in 2D the obtained expressions for the displacements are
valid if one substitutes�o = 0).

B.4. The self-diffusion tensor

The self-diffusion tensorD for a particle can be calculated
from:

D= 〈ss〉
2�

. (B.30)

The averaging has to be done with the weight function�
(Eq. (B.12)) in the following way:

〈ss〉 =
∫ �/2

−�/2

∫ �/2

0
(ss)�(ϑo,�o) sinϑo dϑo d�o (B.31)

= 3
∫ �/2

0

∫ �/2

0
(ss)sin2ϑo cosϑo dϑo cos�o d�o.

(B.32)

The diad(ss) is for �t = (2 cotϑ0)/(�̇ cos�o)< � given by

〈ss〉 = a2〈s̃s̃〉

〈s̃s̃〉 = 3
∫ �/2

0

∫ ϑm(�o)

0
(s̃s̃)sin2ϑo cosϑo dϑo cos�o d�o,

whereϑm(�o)= arctan(16	/(� cos�o)). The dyad(s̃s̃) is
given by

s̃= [sinϑ1 − sinϑ0]es + cosϑ0 − cosϑ1
− 1

2(sinϑ0 + sinϑ1)(cotϑ0 − cotϑ1)]ex (B.33)

with

cotϑ1 = cotϑ0 − ((� cos�o)/8	).

Finally one obtains an expression for the diffusion tensor:

D= �̇a2
4	

�
〈s̃s̃〉. (B.34)

Using Eqs. (B.33) and (B.34) all the components of the self-
diffusion tensor can be calculated. In the 2D calculations no
� dependence exists and the weight function� is given by
Eq. (B.18), while in the expressions for the displacements
one has to replace�o by 0.
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