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Abstract – We numerically analyze Non–Oberbeck-Boussinesq (NOB) effects in two-dimensional
Rayleigh-Bénard flow in glycerol, which shows a dramatic change in the viscosity with temperature.
The results are presented both as functions of the Rayleigh number Ra up to 108 (for fixed
temperature difference ∆ between the top and bottom plates) and as functions of ∆ (“non-
Oberbeck-Boussinesqness” or “NOBness”) up to 50K (for fixed Ra). For this large NOBness
the center temperature Tc is more than 5K larger than the arithmetic mean temperature Tm
between top and bottom plate and only weakly depends on Ra. To physically account for the
NOB deviations of the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the decom-
position of NuNOB/NuOB into the product of two effects, namely first the change in the sum of
the top and bottom thermal BL thicknesses, and second the shift of the center temperature Tc
as compared to Tm. While for water the origin of the Nu deviation is totally dominated by the
second effect (cf. Ahlers G. et al., J. Fluid Mech., 569 (2006) 409) for glycerol the first effect is
dominating, in spite of the large increase of Tc as compared to Tm.
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Introduction. – In most theoretical and numer-
ical studies on Rayleigh-Bénard (RB) convection,
the Oberbeck-Boussinesq (OB) approximation [1,2] is
employed, i.e., the fluid material properties are assumed
to be independent of temperature T except for the
density in the buoyancy term which is taken to be
linear in T . The problem has two control parameters,
namely the Rayleigh number Ra= βgL3∆/(κν) (here β
is the thermal expansion coefficient, g the gravitational
acceleration, L the height, ∆ the temperature difference
between bottom and top plates, κ the thermal diffusivity,
and ν the kinematic viscosity), and the Prandtl number
Pr= ν/κ. For the OB case the mean temperature profile
shows top-bottom symmetry. However, in real fluids, if
∆ is large, this symmetry no longer holds due to the
temperature dependences of the material properties.
Thus, for given fluid, ∆ appears as an additional control
parameter, which characterizes the deviations from OB
conditions, leading to so-called Non-Oberbeck-Boussinesq
(NOB) effects. The NOB signatures can be quantified
by i) a shift Tc−Tm of the bulk (or center) temperature
Tc from the arithmetic mean temperature Tm between

the bottom and top plates and ii) by the ratio of the
Nusselt numbers NuNOB/NuOB in the NOB and OB
cases, which deviates from one. Both quantities have
been measured in the large Ra regime for helium [3],
glycerol [4], ethane [5], and water [6] as functions of the
NOB-ness ∆.
As shown in Ahlers et al. [6] the Nusselt number ratio

NuNOB/NuOB can be connected to Tc by the identity

NuNOB

NuOB
=
2λslOB
λslt +λ

sl
b

· κt∆t+κb∆b
κm∆

=: Fλ ·F∆. (1)

Here the labels on material properties indicate the
temperature at which they are taken, e.g. κt = κ(Tt) etc.
∆t = Tc−Tt and ∆b = Tb−Tc denote the temperature
drops over the top and bottom thermal boundary layers,
and λslt and λ

sl
b indicate their thicknesses, based on

the temperature slopes at the top and bottom plates,
respectively. λslOB is the thermal BL thickness in the
OB case, both at top and at bottom. The factor F∆
can be calculated from the temperature dependences of
the material properties immediately, once Tc is known.
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Remarkably, Ahlers et al. [6] experimentally found that
for water

Fλ ≈ 1. (2)

This has been confirmed by numerical simulations of 2D
NOB Rayleigh-Bénard convection in ref. [7]. If the relation

eq. (2) holds, the Nusselt number ratio NuNOB
NuOB

already

follows from the center temperature Tc, which for water
can be calculated within a generalized boundary layer
theory introduced in ref. [6].
The objective of this letter is to answer the apparently

important question whether the relation Fλ ≈ 1, mean-
ing that the sum of the boundary layer thicknesses stays
the same as in the OB case also under NOB conditions,
λslb +λ

sl
t ≈ 2λslOB , is more generally valid, i.e., if it holds

for other liquids too. We therefore have performed (two-
dimensional) NOB simulations with glycerol as the work-
ing fluid. For glycerol the kinematic viscosity dramat-
ically depends on temperature, i.e., one should expect
large changes of the boundary layer thicknesses at top
and bottom. For instance, ν decreases from 1759mm2/s
to 52.5mm2/s if the temperature increases from 15 ◦C to
65 ◦C. Another advantage of considering glycerol is the
existence of experimental data for the center tempera-
ture (see ref. [4]) for comparison (but not for the Nusselt
number modification). Our main result will be that the
sum of the boundary layer widths is indeed changed under
NOB conditions, i.e., relation (2) does not hold for glyc-
erol. Its validity for water thus turns out to be coinci-
dental, due to the specific temperature dependences of its
material parameters for the chosen temperatures in the
experiments of ref. [6].
Note that the fluid flow in glycerol is very different from

that in water at the same Ra. Due to glycerol’s huge
Prandtl number of about Pr≈ 2500, the transition range
between the onset of convection at Rac and the loss of
spatial coherence in the flow is much more extended than
for water or air, whose Prandtl numbers are of order one.
While in air and in water this transitions range extends
to about Ra≈ 5 · 107 to 108, only beyond which there is
turbulent convection in the bulk, this range extends to
much larger Ra in glycerol, namely to Rayleigh numbers
of order Ra≈ 1012. Since the numerical calculations cover
the range up to Ra≈ 108 only, all results refer to a fluid
flow still having coherent structures.
To quantify these statements we use an averaged

Kolmogorov length ηK as a measure for the scale of
coherent structures in the flow, more precisely

�coh = 10 ηK = 10 (ν
3/εu)

1/4. (3)

Here εu is the volume average of the energy dissipation
rate of the flow for which the well-known exact relation
εu = ν

3L−4Pr−2Ra(Nu− 1) holds. With this we obtain
�coh/L= 10 Pr

1/2 (Ra(Nu− 1))−1/4 (4)

as an estimate for a volume-averaged relative coherence
length. Taking Nu(Ra, Pr) from the unified theory of
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Fig. 1: (Color online) The coherence length �coh in multiples
of the cell size L vs. Ra number for three fluids. For air
and water it is of order 0.1 near Ra≈ 107 to Ra≈ 108. For
glycerol this is reached much later; turbulent heat convection is
expected beyond Ra≈ 1012 only. Gray shaded region indicates
the developed turbulent regime. Lines are derived from the
unified theory of ref. [8], symbols correspond to the Rayleigh
numbers of the present OB numerical simulations.

refs. [8], one thus obtains an estimate of the coherence
length as a function of Ra and Pr from eq. (4), see
fig. 1. The main features of the coherence length are
i) its pronounced explicit dependence on Pr (the implicit
dependence via Nu is only weak). It is by about a factor√
2500 = 50 larger for glycerol than for gases or water.
ii) Its Ra-dependence is approximately �coh ∝Ra−0.3.
General description of numerical simulation. –

We numerically solve the incompressible (∂iui = 0) Navier-
Stokes equations

ρm(∂tui+uj∂jui) =−∂ip+ ∂j(η(∂jui+ ∂iuj))
+g (ρm− ρ) δi3, (5)

and the heat-transfer equation

ρmcp,m(∂tT +uj∂jT ) = ∂j(Λ∂jT ). (6)

The temperature dependence of the dynamic viscosity
η(T ), the heat conductivity Λ(T ), and the density ρ are
experimentally known for glycerol. They are given in
the appendix of ref. [6]. As justified in that reference,
we can assume the isobaric specific heat capacity cp and
the density ρ in the time derivatives of the material
parameters to be constant at their values ρm and cp,m
at the arithmetic mean temperature Tm. We vary the
Rayleigh number Ra up to 108 and the level of the
NOBness ∆ up to 50K.
The container is two-dimensional (2D, no y-

dependence), has height L, and aspect ratio 1. The
flow is wall-bounded, i.e., we use no-slip boundary condi-
tions at all solid boundaries: ui = 0 at the top (z =L)
and bottom (z = 0) plates as well as on the side walls
x= 0 and x=L. For the temperature at the side walls
heat-insulating conditions are employed and Tb−Tt =∆
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is the temperature drop across the whole cell. The
Rayleigh number is defined with the material parameters

taken at the mean temperature Tm, i.e.,Ra=
βmgL

3∆
νmκm

.

The arithmetic mean temperature is fixed at Tm = 40
◦C.

We vary the Rayleigh number by varying the height L of
the box, while the NOBness is changed by varying the
temperature drop ∆. Note that in the buoyancy term in
eq. (5) the full temperature dependence of the density
is taken into account, rather than employing the linear
approximation ρ(T )− ρm = ρmβ(T −Tm) only. (Never-
theless, the Rayleigh number is defined as usual with the
linear expansion coefficient of the density with respect to
temperature, taken at Tm, namely βm =− 1

ρm

dρ
dT |Tm .) The

Prandtl number is defined as Pr= νm/κm; for glycerol at
the chosen temperature Tm its value is Pr= 2495. The
basic equations are directly solved on the two-dimensional
domain by means of the fourth-order finite difference
method. For a detailed description of the simulation
method as well as its validations, see ref. [7].
One may worry if two-dimensional simulations are

sufficient to reflect the dynamics of the three-dimensional
RB convection. For convection under OB conditions this
point has been analyzed in detail in ref. [9] and earlier
in refs. [10–13]. The conclusion is that for Pr� 1 various
properties observed in numerical 3D convection and in
experiment are well reflected in 2D simulations. This in
particular holds for the BL profiles and for the Nusselt
number. Since the focus of this paper is on the difference
between OB and NOB convection, the restriction to
2D simulations seems to be even less severe, as NOB
deviations are expected to be similar in both 2D and
3D simulations and remaining differences to cancel out
in quantities such as Tc−Tm or NuNOB/NuOB .

Results and discussions. –

Large-scale flow dynamics and temperature snapshots.
In the steady-flow regime (Ra< 1.5 · 105) a single large-
scale circulation role develops, which however disappears
in the unsteady flow regime (Ra> 1.5 · 105) and does not
reappear up to the largest accessible value Ra= 108 of
the present study. Even if we start the simulation with an
artificial single roll, the large-scale circulation disappears
in the course of time and then isolated plumes (as shown
in fig. 2) dominate the flow. This feature holds for both
cases, OB and NOB, and is qualitatively different from the
observations in 2D (OB and NOB) simulations in water
(see ref. [7]). We attribute this to the much larger spatial
correlations in glycerol as addressed above. Note that
in experiment (ref. [4]) for larger Ra= 2.3 · 108 a large-
scale 3D circulation role has been observed for glycerol.
The different behavior between the present DNS and the
experiment could either be due to the smaller Ra or to the
two-dimensionality in the simulation.
Typical temperature snapshots are shown in fig. 2. As

observed in experiments, refs. [4,6], the NOB convection is
characterized by an enhancement of the bulk temperature
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Fig. 2: (Color online) Snapshots of the velocity and tempera-
ture fields for Ra= 108 at Tm = 40

◦C. The upper panel corre-
sponds to the OB case (T -independent material parameters),
the lower one to the NOB case, both with ∆= 40K. The
temperature color scheme is the same in both cases. In the
NOB case a strong temperature enhancement of the center is
clearly visible.

Tc, and a top-bottom asymmetry of the thermal BL
thicknesses. Due to the large variation of the glycerol
viscosity (the viscosity ratio reaches as much as νt/νb ≈ 16
at ∆= 40K), the more viscous cold plumes from the top
BL are much less mobile than the warmer plumes from
the bottom BL. This results in a significant increase of Tc
as compared to the water case.

Mean-temperature profiles and center temperature. To
quantify the enhancement of the bulk temperature Tc,
the temperature profiles for Ra= 108 are shown in fig. 3.
Again, a strong asymmetry between top and bottom is
observed: Due to the more mobile bottom plumes the
center temperature Tc is significantly larger than Tm.
To demonstrate this the center temperature shift
Tc−Tm (normalized by ∆) as function of the Rayleigh
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Fig. 3: (Color online) Mean temperature profiles for glycerol
at Ra= 108 in the OB case (dashed) and in the NOB case
with ∆= 40K (solid). (In both cases Tm = 40

◦C, same Ra,
same ∆, but T -independent (OB) or T -dependent (NOB)
material parameters, respectively.) In the NOB case the strong
temperature enhancement of the center temperature Tc by
about 5K becomes visible (relative shift ≈ 0.12).

number Ra and of the NOBness ∆ is shown in fig. 4.
Except for small Rayleigh numbers just above onset of
convection and in a region around Ra≈ 2 · 105 just above
the onset of unsteady motion, the bulk temperature shift
(Tc−Tm)/∆ is rather independent of Ra. The tiny
increase between Ra= 107 and 108 however is beyond
the statistical error-bars. For comparison, the prediction
of the NOB BL theory given in ref. [6] and the shift for
the non-convective state (i.e., purely conductive heat
transport, driven by the temperature gradient only)
are shown. Though the NOB BL theory from ref. [6]
is not applicable here due to the lack of a large-scale
wind, it gives the correct qualitative trend for the
shift (Tc−Tm)/∆. We also included experimental data
measured at Ra= 2.3 · 108 (taken from ref. [4]) in an
aspect-ratio-1 cylindrical container. Though for that case
a large-scale convection role has been observed, the agree-
ment with the 2D numerical simulations is reasonable.

Nusselt number. The key question on NOB effects
is: How do they affect the heat flux, i.e., the Nusselt
number? For water we could address this question within
an extended BL theory, cf. ref. [6], but only thanks to
the exact relation eq. (1) and the experimental input
Fλ ≈ 1, see relation (2), because then only F∆ is needed
to calculate the NOB deviations in the Nusselt number
ratio, and F∆ is accessible within the extended BL theory,
since it follows directly from Tc. But here, with glycerol
as working fluid, we find that Fλ ≈ 1 does not hold, as
demonstrated in fig. 5. In contrast to water, for glycerol
the main ∆-dependence of NuNOB/NuOB = Fλ ·F∆ is
due to the ∆-dependence of Fλ while the factor F∆ is
basically 1 for all ∆’s. This qualitative difference between
glycerol and water in the origin of the Nusselt number
modification also means that the experimental finding
Fλ ≈ 1 for water at Tm = 40K and Ra in the range of
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Fig. 4: (Color online) Relative deviation (Tc−Tm)/∆ of the
center temperature Tc from the arithmetic mean temperature
Tm for glycerol vs. Ra at fixed ∆= 40K (upper panel) and vs.
the NOBness ∆ at fixed Tm = 40

◦C and various values of Ra
(lower panel). The experimental data points (denoted by ×)
are measured at Ra= 2.3 · 108 and were taken from ref. [4].
For comparison the Tc shift obtained from BL theory (upper
solid lines) and for the case of no convection (lower solid lines)
are also plotted.

108–1010, see ref. [6], is merely accidental and not a general
feature of the RB flow under NOB conditions.
Both NOB responses, the shift of the center temper-

ature Tc and thus ∆b �=∆t as well as the shift of the
BL thicknesses λslb,t, are determined by the full nonlinear
dynamics, in glycerol as well as in water. The Tc-shift in
glycerol is even larger (≈ 6.5K) than in water (≈ 1K). The
same is expected for the λslb,t-shifts. But the differences in
the temperature drops ∆b,t enter via F∆; here they are
weighed with the explicit temperature dependence of the
material parameter κ(T ). Since the thermal diffusivity
changes only minutely in glycerol, κb,t/κm− 1≈±0.01,
the factor F∆ stays near F∆ ≈ 1 despite the large Tc
response, cf. figs. 5, 6. This does not happen in Fλ; here
the full changes of λslb,t enter. Because of the very strong
and in particular nonlinear temperature dependence of ν
the thicknesses of the BLs change significantly and also
quite differently in magnitude at the bottom and the top
BLs, because

√
νt/νb ≈ 2.4 due to the strong nonlinear

T -dependence of ν(T ). Therefore the sum λslb +λ
sl
t

no longer is equal to 2λslOB . For water, instead, the
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Fig. 5: (Color online) Nusselt number ratio NuNOB/NuOB =
Fλ ·F∆ together with its contributing factors Fλ and F∆ vs. ∆
for fixed Rayleigh numbers. (a) Ra= 104, (b) Ra= 107, and
(c) Ra= 108. As always, the working liquid is glycerol at
Tm = 40

◦C. The dashed lines correspond to F∆ resulting from
the NOB BL theory of ref. [6].

dominantly linear λslb,t-NOB modifications are opposite in
sign and nearly cancel in the sum of the NOB thicknesses,
giving λslb +λ

sl
t ≈ 2λslOB or Fλ ≈ 1. Thus in glycerol we

have F∆ ≈ 1 and the Nu changes are dominated by Fλ,
while in water it is Fλ ≈ 1 and the NOB effects in Nu
are determined dominantly by F∆ (which is given by the
temperature shift alone).
Figure 6 shows that the dependences of NuNOB/NuOB

and Fλ on the Rayleigh number Ra are non-monotonous.
We consider this as due to the nontrivial evolution of
various coherent flow patterns with increasing Ra. In
particular, as shown in fig. 5, for Ra= 104 the function
Fλ(∆) shows a qualitatively opposite behavior to that for
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Fig. 6: (Color online) The Nusselt number ratio NuNOB/
NuOB = Fλ ·F∆ (upper panel) and the constituting factors Fλ
and F∆ individually (lower panel) vs. Ra for fixed NOBness
∆= 40K (glycerol at Tm = 40

◦C). Note the dramatic NOB
effect at Ra≈ 2 · 105; this happens still in the pattern forming
range, far below the turbulent highRa region. We are not aware
of its experimental verification.

water, namely Fλ increases with increasing ∆ and reaches
as large a value as 1.017 at ∆= 50K. A consequence of our
finding is that in general NuNOB/NuOB = Fλ ·F∆cannot
be calculated within the extended BL theory introduced in
ref. [6], even if a large-scale wind has formed: Within BL
theory only the factor F∆ can be calculated but not the
factor Fλ, for which in general one cannot assume Fλ ≈ 1.
We finally present our results for the Nu number itself

as a function of Ra, see fig. 7, both for the OB and the
NOB case. The inset shows the local scaling exponents.
When applying the unifying theory of refs. [8], it is 0.306
at Ra= 108 and Pr= 2500, consistent with our numerical
findings. This local slope practically does not change in
the NOB case.

Summary and conclusions. – In summary, for
glycerol both the center temperature Tc and the Nusselt
number Nu of the 2D numerical simulations are in
good agreement with the available experimental data of
ref. [4]. The experimental finding by Ahlers et al. [6] of
a “thermal-BL-thickness sum rule” for water, Fλ ≈ 1 or
λslb +λ

sl
t ≈ 2λslOB , is shown to be incidental and seems due

to the specific temperature dependence of the material
parameters of water at 40 ◦C. Apparently this cannot
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Fig. 7: (Color online) The Nusselt number Nu for glycerol vs.
Ra under OB (dashed line) and NOB (solid line) conditions.
In both cases Tm = 40

◦C and ∆= 40K. OB is provided by
keeping the material parameters artificially constant with
T . We have also included the available data from ref. [4].
Logarithmic slope d log(Nu)/d log(Ra) is plotted in the inset
and the line corresponding to the exponent 0.297 measured in
ref. [4] is also shown.

be generalized to other fluids (or other mean tempera-
tures), as our analysis of RB convection in glycerol has
shown. While for water the Nusselt number modification
NuNOB/NuOB is due to the modified temperature drops
over the BLs, represented by F∆, as shown in refs. [6,7],
for glycerol it is governed by the variation of the BL
thicknesses, namely by Fλ. This can be attributed to the
strong and nonlinear temperature dependence of ν(T ).
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