
Mechatronics 20 (2010) 876–886
Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier .com/ locate /mechatronics
Towards automation of control software: A review of challenges
in mechatronic design

A.A. Alvarez Cabrera a,*, M.J. Foeken b, O.A. Tekin a, K. Woestenenk c, M.S. Erden a, B. De Schutter a,
M.J.L. van Tooren b, R. Babuška a, F.J.A.M. van Houten c, T. Tomiyama a

a Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
b Faculty of Aerospace Engineering, Delft University of Technology, PO Box 5058, 2600 GB, Delft, The Netherlands
c Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
a r t i c l e i n f o

Keywords:
Control software generation
Design methods
Design tools
Development challenges
Function modeling
Integration
Knowledge base
Mechatronics
0957-4158/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.mechatronics.2010.05.003

* Corresponding author. Tel.: +31 15 278 5608; fax
E-mail address: a.a.alvarezcabrera@tudelft.nl (A.A.
a b s t r a c t

Development of mechatronic systems requires collaboration among experts from different design
domains. In this paper the authors identify a set of challenges related to the design of mechatronic sys-
tems. The challenges are mostly related to integration of design and analysis tools, and automation of
current design practices. Addressing these challenges enables the adoption of a concurrent development
approach in which the synergetic effects that characterize mechatronic systems are taken into account
during design. The main argument is that in order to deal with software development problems for com-
plex mechatronic systems, there is a need to look at system design practices beyond concurrency, i.e.,
there is a need to consider the complex interdependencies among subsystems and the designers that
develop them. A review on current methods and tools is carried out to identify possible solutions pro-
posed in previous works. The purpose is not to make an extensive review, but to show that integration,
from different points of view, is a major issue and that increasing the level of abstraction in the descrip-
tion of systems can help to overcome the integration challenges. An increased level of abstraction also
forms a basis for addressing other issues in mechatronic product development, which are presented in
this work. With that in mind, concepts for an integration framework are proposed. The goal of the frame-
work is to support a multi-disciplinary design team to (almost) automatically generate and verify control
software. Based on high-level architectural descriptions, the software generation and verification process
can be supported by knowledge-based methods and tools. Other goals are to support communication
among engineers, improve reliability of designs, increase reuse of design knowledge, and reduce devel-
opment time and development costs.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Developing mechatronic products requires intensive collabora-
tion between engineers of the mechanical, electronic, control, and
software domains in a design team [1–3]. A central issue is that de-
sign decisions cannot be taken from the point of view of a single
domain, as often they will have an impact in other domains. The
procedure in traditional sequential design is that the mechanical
design has to be ‘‘frozen” before proceeding to the design of control
software. This responds to the required preparations for produc-
tion of the hardware, while for the software still last-minute
changes may occur, sometimes to fix problems from the rest of
the design. This approach usually does not lead to optimal overall
behavior, since it does not properly address the interaction among
mechanical, electronic, and control behaviors. Furthermore, it does
ll rights reserved.

: +31 15 278 4717.
Alvarez Cabrera).
not reflect the importance of software design, which can have a
major impact on overall system design and performance.

Therefore, there is a need for a concurrent engineering approach
with a highly integrated development strategy [4,5], where design
freeze is based on multi-disciplinary objective and constraint eval-
uation. Such an approach is referred to as a mechatronic design ap-
proach by multiple authors [3,6,7]. The idea that mechatronic
design must be considered as a whole has been well known for
some time now, as Ziegler and Nichols [8] commented in 1943:
‘‘In the application of automatic controllers, it is important to real-
ize that controller and process form a unit; credit or discredit for
results obtained are attributable to one as much as the other.”

This paper describes the challenges related to the use of this
mechatronic design approach and its relations to software genera-
tion. The authors revise current solutions and propose extensions
and combinations of them. It is concluded that methods based on
higher abstraction levels play an important role, but that their
implementation is an issue. Furthermore, it is shown that

http://dx.doi.org/10.1016/j.mechatronics.2010.05.003
mailto:a.a.alvarezcabrera@tudelft.nl
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886 877
multi-disciplinary design optimization and verification of both
hardware and software require suited modeling paradigms and
tool support. With these findings in mind, the authors propose
an integrated design support framework for mechatronic systems,
which also addresses control software development. The frame-
work is supported by a common high-level system model, to pro-
vide both a clear system overview for the designers and to enable
the transfer of critical product information between tools. So far,
the proposed framework outline is intended to deal with the chal-
lenges mentioned above, mainly at the early stages of the design
process. As such the proposal does not target a defined control par-
adigm, specific industry, or product type.

In Section 2 the identified challenges in mechatronic design are
presented and discussed in more detail. Section 3 gives a review on
existing methods and solutions to face those challenges. After that,
Section 4 introduces the approach proposed by the authors, based
on the discussions about the identified challenges. The conclusions
are presented in Section 5.
2. Challenges in mechatronic design

Both academic and industrial sources have reported on chal-
lenges related to the design and development of mechatronic sys-
tems, such as:

� Exchange of design models and data [2,6].
� Cooperative work and communication among the design engi-

neers [2,5,6,9,10].
� Multi-disciplinary modeling [4,7,9].
� Simultaneous consideration of designs from different disci-

plines [4,5,7,11].
� Early testing and verification [5,7,9].
� Persistence of a sequential design process [2,4,10].
� Lack of tools and methods supporting multi-disciplinary design

[2,4,5,11].
� Support of the design of control software [3,5].

Examining these challenges, three core issues can be identified,
which influence many of the problems in the development of
mechatronic systems. These challenges relate to design integra-
tion, design verification, and generation of control software. In
the next subsections, these will be discussed in more detail.

2.1. Design integration

Modern mechatronic systems provide an increasing number of
functionalities [1,6], while available energy, space, weight, and
time remain constant or even decrease. Specialists from various
fields must combine their expertise to develop a single product.
Product
definition

Conceptual
design

Documents.
Requirement tools.

Single
/ ve

Mechanic
design

Ele
d

C

Design phase Used too

Fig. 1. Common current design
A need for tighter integration, which encompasses diverse factors
related to design tools and practices, design methods, and mem-
bers of the design team and their interactions, arises from such
trends.

Fig. 1 shows a representation of the current mechatronic design
process, where spaces represent common gaps between the differ-
ent design phases and the tools used in the design. Design teams
are often composed separately according to their area of expertise
and often work at different locations. The integration phase is post-
poned until the moment when physical prototypes are available.
Even in cases where a certain level of automation in the design
has been reached, integration problems can still be found; e.g., to
use linked domain-specific libraries of components, it is necessary
to verify consistency and completeness of such libraries. These
points are elaborated in Section 3.

Integration has been directly identified as an important re-
search direction and a key element in the design of mechatronic
systems by industry [9] and by authors like Craig [7], Schöner
[6], and Wikander et al. [4]. Tomizuka [3] and Wang et al. [2] iden-
tify the importance of aspects closely related to integration, such as
cooperative work of designers, data sharing, knowledge manage-
ment, design project management, and simultaneous design in dif-
ferent domains (e.g., design of the control algorithm and of the
system to be controlled). A recent report on industrial practices
[5] shows that the leading mechatronic product manufacturers
opt for integration oriented towards management of specialist
designers and tools that support such an approach, rather than
using tools that encompass all detailed design aspects. The desired
tools, as identified by these manufacturers, should handle informa-
tion at the system level and track requirements and design changes
to efficiently support integration of design activities. Apart from
the need for tools as identified by industry, it is also necessary to
consider the design methods supporting these tools and their users
to get close to an integrated design approach.

Appropriate methods and tools to support design integration
are required, both in the conceptual phase as well as in the detailed
design phase, as has been identified by academia [2] and by the
engineering community [9,10,12]. The role of the human actors is
also important, as communication of ideas and information be-
tween designers from different domains is necessary [5,7]. These
three factors will be discussed in the next subsections.
2.1.1. Design methods
Despite many research contributions aimed at providing a the-

oretical framework for the design, this goal has not been achieved
yet [13]. As depicted in Fig. 1, design activities might be separated
in the sense that parts of the design might depend on data
provided by other parts (e.g., the design of a controller may require
knowledge of certain physical characteristics of the system).
Physical
prototypes / tests

Prototyping

domain tools
rification

al

ctronic
esign

ontrol software
design

Systems
integration

paG sls

practice phases and tools.

878 A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886
Traditional methods in engineering design broadly exhibit either a
sequential or a concurrent flow of activities.

As reported by Wang et al. [2], sequential design has proven to
be unsuitable because of its lack of flexibility, which increases de-
sign cost and development time. This perception is supported by
engineers in industry [10]. Rzevski [14] recommends stepping
out of the conventional end-to-end (i.e., sequential) design process
in favor of a concurrent approach to deal with design of mecha-
tronic systems.

The core of traditional concurrent engineering approaches (see
e.g., [15]) is to consider all phases of the life-cycle of the product as
early as possible in the design in order to deal with issues related
to later life-cycle phases, such as production and disposal [16]. But
even traditional concurrent approaches have proven to be limited
when dealing with complex design situations, in the sense that
strong interdependencies might have unpredicted effects on the
overall performance [4]. As mentioned by Wikander et al. [4] and
Rzevski [14], a typical approach for the design of mechatronic sys-
tems is to build the system by assembling single-domain subsys-
tems and by paying special attention to the design of interfaces
among them. Wikander et al. remark that such traditional methods
can merely achieve a sound integration of the components (i.e.,
‘‘something that works”), but not a synergetic integration. There-
fore, research on mechatronics should also focus on the interac-
tions of the different engineering disciplines [4] rather than only
on the interactions between the subsystems that are being
designed.

Dealing concurrently with the interactions of designers and of
their designs is of paramount importance for the early detection
of problems in product development.

2.1.2. Design tools
Recent reports on industrial practices confirm the use of differ-

ent tools to manage design data, and state that the lack of tools
that allow integration and shared use of such data is one of the
main challenges in mechatronic product development [5,11]. As
illustrated in Fig. 1, a current tendency is that designers from dif-
ferent design domains rely on specialized tools. Similar to Wang
et al. [2], we denote a tool as domain-specific if it supports the de-
sign in a single domain, e.g., mechanical or electrical. Examples are
tools like SolidWorks in the mechanical design domain, Synopsys
and OrCad in the electrical domain, and Matlab/Simulink in the
control domain. Furthermore, there are not many specialized tools
that support the first stages of design and that also extend effi-
ciently to the subsequent stages, although this limited reach is
probably due to misuse of the existing tools. Examples of such
tools are requirement management tools like Rational DOORS,
and tools that support approaches to capture requirements like
Quality Function Deployment (QFD) [17] or Integration DEFinition
for function modeling (IDEF0) [35].

Mono-domain tools perform well within their own domains,
but their specialization often makes it difficult to consider informa-
tion from other domains. The tools used in the control design do-
main in general prove to be more flexible as they use
mathematical models as modeling primitives, e.g., in the form of
block diagrams or bond graphs [19]. Additional insights on tool
integration can be found in the works of Cutkosky et al. [20] and
Dolk et al. [21]. The varied nature of the different design tools
interferes with a direct integration (i.e., direct mapping of the mod-
eled objects) using a single tool or design environment. Examples
that illustrate such variety are:

� In mechanical design, dimensions, shapes, and materials that
correspond to the physical objects are the main interest. Thus,
representing abstract concepts and grouping parts according
to other criteria than physical proximity become problematic.
� In the design of controllers, the physical system, also referred as
the plant, is often abstracted to a black box model. From such
point of view it is difficult to find the explicit connection
between the behavior and its physical causes.
� Electronics deals with the physical implementation of the con-

trol. The software packages for electronic design support pre-
dictions of behavior and execution time through logical and
physical simulations.
� Electric engineering commonly designs ‘‘bridge” objects from

electronic and mechanical domains, and tools related to it focus
on the connectivity of components and the communication
among them.
� Requirement management and capture tools focus on repre-

senting textual requirements information. The link to other
design domains is mainly made through document referring,
and it is the job of the user to (informally) connect such docu-
ments with the current design data.

2.1.3. Human factors
In part, the integration problem can be traced back to the early

phases of design of a system in which its architecture is defined. In
the conceptual design phase, the designers choose the solution
principles, decomposition, interfaces, and design process planning
that will guide the detailed design phases and the way in which
designers will cooperate [14]. The selection of an architecture
influences the choice of detailed solutions and the integration of
those solutions in a rather straightforward manner; e.g., actuating
an axis of a machine tool with a linear motor or with a precision
ball screw completely changes the configuration of the machine
at both the hardware and the software level, and therefore, differ-
ent groups of specialists will need to interact in each case.

Human communication and cooperation are additional factors
that affect design integration. One issue is to communicate the
goals and requirements of the design and how they relate to the
chosen solution, and to assign responsibilities for such require-
ments. In order to enable monitoring the requirements throughout
the design process it must be possible to decompose and the
requirements and to make budgets of resources for them, down
to the interfaces of the individual designers. Another issue is to in-
form the designers on how their part of the solution in the design
affects other parts. Individual designers make choices that can
inadvertently affect the system as a whole. The design should
therefore be tested for consistency and validity throughout the de-
sign process.

Both issues strongly relate to the fact that there are currently
few methods and tools that support systems engineering and
architecting activities and that capture the information produced
in these activities in order to facilitate the exchange of information
between designers.

2.2. Lack of interdisciplinary verification

The four classical verification methods are demonstration, test,
inspection, and analysis [16]. Of these, the first three require phys-
ical prototypes to be developed, while the latter is based on a
mathematical representation of the system, also known as a model.
Developing appropriate models for analysis and a platform to ver-
ify various aspects of the system, including control software, repre-
sents a challenge. In practice, specific models are developed to
perform tests at different stages of the design. Due to the use of do-
main-specific modeling tools, such models usually correspond to a
specific point of view on the system, like either the electrical or
mechanical aspects, or continuous dynamics and discrete, sequen-
tial behavior [22]. With the expected synergetic effects that char-
acterize mechatronic systems, these separate views cannot
capture the overall system behavior. Even more, the analysis of

A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886 879
changing operation modes, defined in terms of state machines, re-
quires reconfigurable multi-domain models, which are often not
supported.

Schemes of co-simulation and model sharing incorporate data
generated in other domain-specific analysis tools into control de-
sign models, for example, as implemented in the de facto industry
standard [23] Matlab/Simulink. However, often these dynamic
models can be considered as an input/output box in the form of
a transfer function, and the explicit relation with the original de-
sign input is lost. On the other hand, control and hardware co-sim-
ulations also require coordination among different specialists, and
as discussed in Section 2.1.3, many challenges remain in that area.

For these reasons, verification and testing of control software
still relies heavily on the use of hardware prototypes or bread-
boards, requiring considerable investment in terms of time and
money. In a way, complete system prototypes allow a concurrent,
multi-disciplinary verification that can reduce overall develop-
ment time. On the other hand, besides their cost, the use of proto-
types becomes less viable as the mechanical design has to be
relatively well specified for their construction. An approach typi-
cally used in the aerospace industry is the ‘Iron Bird’ concept, in
which a combination of part of the final hardware and software
is used to test and verify the behavior of on-board systems, such
as the electrical and hydraulic actuation devices. In this way, sys-
tem verification does not require building a fully operational sys-
tem, but it still requires significant investment and the detailing
of portions of the design.

2.3. Lack of automation in control software design

In practice, the control system development effort is around 20–
40% of the total software development effort [25]. Modern
Computer Aided Control System Design (CACSD) tools such as
Matlab/Simulink or dSPACE, and software development tools such
as Rational Rose provide means to translate control algorithms, in
the form of block diagrams and state transition diagrams, to ma-
chine-executable code. These code generators eradicate human
coding errors, increase reliability and reusability, and reduce
development time and effort. Nonetheless, a major part of the con-
trol system design is spent obtaining ‘‘working” formal models like
block diagrams and the values for the parameters that configure
each block. The aforementioned tools only help to transform those
formal descriptions into control code.

Generating code from a model (e.g., a block diagram or a
description in the Unified Modeling Language (UML) [24]) of the
structure and logic of the software system is part of what is known
as model-based software development. Only some of the top-level
companies that design mechatronic systems take this approach
and it is not a common practice [5]. In such cases, the primitives
used for building such models usually represent objects clearly de-
fined for certain specialists. To obtain a more transparent model
that aids integration, it is desirable that the objects used in the
model are familiar to the parties involved in the control design,
which transcend the control engineers.

To arrive at a formal description that can be transformed into
code, the designer must define a control structure and strategy,
and think about the implementation of functions for the measure-
ment and filtering of system signals and for the application of the
control outputs to the system. Here, ‘control structure’ refers to the
selection of groups of control inputs and outputs that will be han-
dled by a software or hardware control unit, and the term ‘control
strategy’ refers to the type of control algorithm to be used in a par-
ticular situation and the control sequences derived from the sys-
tem’s characteristics and the required behavior. Once the control
structure and strategy are chosen, design rules and optimization
routines can be applied to determine the controller parameters,
provided that the requirements are given in a suitable form. Often,
however, these requirements have to be derived by the experts
first, as system requirements specifications are defined at a higher
level of abstraction. There is still much to be gained by supporting
and automating the control design tasks in the early stages of de-
sign mentioned earlier in this section.
3. Review of available approaches

Both academia and industry have come up with methods and
tools to deal with the challenges identified above. In this section
we discuss a selection of these methods and tools, grouping them
in the same way as in the previous section.
3.1. Design integration

3.1.1. Design methods
Various methods consider the modeling of functions, require-

ments, and other information that is usually defined at the concep-
tual stage of the design. Documenting such information helps the
designer to maintain an overview of the system and to keep track
of the evolution of the design. Multiple authors have proposed
models that contain functional descriptions of systems, like Func-
tion-Behavior-State (FBS) [26], Functional Representation [27],
Schemebuilder [28], and MACE [29], to guide and improve choices
made in the first phases of product design. These models represent
knowledge about the functions of the system, complemented with
information about how the function is accomplished and which
objects, both hardware and software, are involved. For example,
some functional modeling approaches complement this informa-
tion with qualitative (e.g., Qualitative Process Theory and Qualita-
tive SIMulator [30]) or quantitative (e.g., differential equations,
bond graphs) data. Example applications are mentioned by Erden
et al. [31]. The FBS methodology has been implemented in the soft-
ware framework KIEF [32] to integrate tools from various domains
and to facilitate the transfer of information, as discussed in Section
3.1.2. Other approaches use functional flow and block diagrams,
and they model functions as transformation stages of matter, en-
ergy, or information [1,33–36]. So the functionalities of the system
are then documented separately from other models. The IDEF0
method [35] offers a formalization for functional flow diagrams
and various IDEF languages [18] model details of the system that
could be connected more directly than the functions to other do-
main-specific models, but they do not provide a clear connection
between the different IDEF models. The functions and key drivers
method (FunKey) [37] proposes allocating budgets of resources
to the functions of a system. In this way, FunKey pursues its goal
of documenting the architecting process and of providing a means
to compare product architectures.

The implementation of these methods is a challenge. As in the
case of other theories related with design, either the approaches
are not implemented in a tool, or the developed tools are not part
of common industrial practice [13]. Furthermore, functional
descriptions are mainly used to aid the designer in the identifica-
tion of related information, but not to classify or identify such
information with the help of an automated system. This stems
from the fact that these abstract representations have proven to
be hard to formalize. Another important factor is that there is
not even a consensus for definitions and formalisms in the field
of design research [13]. Additionally, requirements information is
not included in most of these methods. An exception is FunKey,
which mainly focuses on the system budgeting aspect. In particu-
lar, QFD specializes in capturing user requirements and connecting
them to characteristics of the system that can be used to measure
the fulfillment of those requirements.

880 A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886
Muller has proposed the Customer objectives, Application,
Functional, Conceptual, Realization model (CAFCR) to decompose
the product architecture into the five views its name indicates
[38]. This allows for independently capturing the needs of the cus-
tomer, the functions the product performs, and the design of the
product from the conceptual and realization standpoints. Its main
purpose is to provide mechanisms to keep track of stakeholder
concerns, like safety, usability or performance, in order to maintain
integrated goals throughout the whole design process. The work of
Muller mentions what relevant information should be considered
to obtain a proper description of the architecture of a product,
and suggests methods to capture such information. However, these
methods are not strongly linked to each other. The large variety
and number of methods mentioned in CAFCR brings more flexibil-
ity, but leaves to the systems architect or designer the, sometimes
difficult, task of choosing the most appropriate method out of all
the presented methods.

The V-model [39] sets a general flow for the development pro-
cess of a product. It indicates that each stage of the product defini-
tion should be used to systematically test the implementation as
subsystems are integrated to arrive to the final product. Different
stages of development and testing are defined depending on the
source, but in general, requirements analysis, architecting, detailed
design, and the corresponding verification/validation stages are de-
fined. The model provides a structured base for the development
process, but it is very general, and does not provide details for its
implementation; there are no tools to fully support it, and compa-
nies have to carefully develop a framework of tools to model each
definition phase and to put the test phases into practice. Though
not explicitly specified in the V-model references, analysis verifica-
tion methods (cf. Section 2.2) are crucial to support the definition
stages and to obtain correct models that can be used for verifica-
tion. At this point it is worth mentioning the spiral model [40],
which has similar goals as the V-model, but which considers sev-
eral iterations using prototypes to verify the design at one stage
and to produce a base for the next one.

The axiomatic design method, presented by Suh [41] states that
functional independence of the system constituents leads to an
optimal design. To attain this, the method provides guidelines,
namely, the axioms of independence and information, to compare
and evaluate early design choices. Suh and other authors also re-
port that the method has been applied successfully in multiple sit-
uations [41]. A crucial point from the axiomatic design method is
the importance of linking high-level information (functional
requirements) to implementation specific information (design
parameters). On the other hand, modern mechatronic products
implement an increasing number of functionalities while main-
taining constraints on space and costs, and thus, a tight integration
of the subsystems is desirable, which makes it harder to obtain
functional independence.

Capturing and integration of information is important to deal
with the challenges discussed here. The Knowledge and Informa-
tion Management project [42] has proposed principles that de-
scribe the characteristics of engineering information that should
be captured and kept for reuse.

In this section we have shown how several methods deal with
one or more aspects related to integration, but gaps exist between
early design phases and the detailed design phases.

3.1.2. Tool integration
According to Citherlet et al. [43], there are four different ap-

proaches to multi-disciplinary tool integration: stand-alone, inter-
operable, coupled or linked, and integrated programs. The first one
is the least desirable, as the tools are unrelated and communication
is not possible. Interoperable programs provide means to exchange
or share models. Towards these goals, additional frameworks have
been developed to streamline or automate the model exchange.
This second approach will be treated in more detail later on in this
section. Coupled or linked tools can communicate at run-time. Due
to the flexibility of their modeling primitives (cf. Section 2.1.2)
some tools used in the control design domain have taken the sec-
ond or third approach. Finally, integrated programs facilitate work
in different domains within a single tool. Vendors, especially those
of mechanics CAD tools, have used this approach, integrating tools
from other domains into their software suites. As an example, the
latest version of CATIA also supports electronics, systems and con-
trol modeling, and incorporates embedded control code generation
for the latter. Though the existing coupled and integrated pro-
grams provide a way of predicting the behavior of a system, they
specialize in running models used in detail design and lack a direct
connection with information from earlier phases of the design pro-
cess (e.g., goals, functions).

Within the interoperable integration approaches we can men-
tion the pluggable metamodel mechanism implemented in KIEF
[45] and the framework of the Virtual Reality Ship (VRS) systems
project [44]. The VRS project reference indicates that several tools
used in the European ship building industry, including a physical
testing platform, have been integrated, but unfortunately no de-
tails of how this is done could be extracted from the available
material.

The core of KIEF is a knowledge base in which objects from dif-
ferent modeling tools are mapped to each other using ‘‘physical
phenomena” as connecting points [32,46], in what is known as
the process-centered approach [31]. This knowledge base also con-
tains information about modeling tools to support their integration
into the framework. A metamodel of the system is built according
to the ontology underlying the knowledge base and KIEF manages
the data transfer and consistency between the domain-specific
modelers. An ontology can be defined as a formal representation
of a set of concepts within a domain and the relationships between
those concepts, and as such can define a language for communica-
tion between domains.

The software suite CORE [47] offers integration through a mod-
el-based systems engineering approach. The tool allows to make
models to capture requirements, to model function decomposition
and flows, and to map them to models of system components and
their interfaces. It implements a concurrent design process called
‘the onion model’ [48] to validate the product definition stages
subsequently within its models. Such a tool can support a good
portion of the ‘left arm’ of product specification of the V-model
(see Section 3.1.1), but lacks a direct link to the models and tools
used in the detailed design and the subsequent testing phases (ver-
ification). Nonetheless, the models provided by this tool can be re-
lated manually by the designer, outside the CORE tool, at the level
of components.

A component-oriented approach that also corresponds to inter-
operable integration is proposed by Peak et al. [49,50]. A frame-
work based on the Systems Modeling Language (SysML) [51] is
used to integrate information from different tools (e.g., CATIA,
Ansys, Matlab/Simulink). Using a combination of SysML and the
Composable Object (COB) [52] paradigm it is shown how to repre-
sent knowledge about a system and to link such knowledge to tools
that can use it to build other models. COBs combine the structural
and behavioral descriptions of a system. In this object-oriented ap-
proach the models can be built in such a way that they are both hu-
man- and machine-readable. COBs also form a basis for the
integration of different views on a system, as shown by Peak
et al. [49].

In support of multi-disciplinary design and optimization a
framework called a Design and Engineering Engine (DEE) has been
developed by La Rocca [53], see Fig. 2. Relying on a knowledge-
based engineering platform, a DEE is a domain-independent tool

Fig. 2. Design and Engineering Engine [52].

A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886 881
suitable for the design of a variety of systems from multiple do-
mains. The core of a DEE is the ‘Multi-Model Generator’ (MMG),
which is responsible for the instantiation of a product model built
from a set of parametric, object-oriented modeling primitives. Fur-
thermore, the MMG processes the product model to generate input
for domain-specific analysis tools, which are responsible for the
evaluation of one or several aspects of the design. In this way, as-
pects such as aerodynamic performance and structural stiffness
can be analyzed, all based on the same product model. Data shar-
ing between the various tools is enabled by using an agent-based
network [54].

Although the approach of the two methods discussed above is
different, both rely on a product model-based on components to
integrate multiple views on the system. The models from the CORE
tool can also be manually integrated to other design information at
the component level. This originates in the fact that most parame-
ters and data are directly related to these components. The object-
oriented properties ensure that components sharing parameters or
data can be easily grouped into a new composite component. The
component-oriented approach may be intuitive and fast at the mo-
ment of building models, but each modeling object can only be
used in a specific situation. For example, a ‘‘gear pair” component
used in a transmission must be defined in a completely different
way than a gear pair used to grind material. A process-oriented ap-
proach can help to deal with these kinds of situations, by separat-
ing behavior and modeling primitives. The metamodel in KIEF uses
such an approach. It relates all concepts of the system through
their attributes to physical phenomena and laws, giving more
applicability to each modeling object (cf. Fig. 3).

Recent interviews with mechatronic product development
companies [11] reveal a problem with the fact that different disci-
plines use separated design tools and data, which hampers com-
munication among them. The same interviews show that better
results can be achieved when using specialist engineers working
in well-coordinated groups rather than mixed groups with cross-
disciplinary managers. Based on this, we conclude that a promising
approach is to provide different modeling environments tailored to
each domain, while integration is handled at the ‘‘back side” of the
tools as a communication support mechanism. The next section
treats efforts to overcome the communication issue in more detail.

3.1.3. Human factors
As argued in Section 2.1.3, it is important to consider human

factors involved in the design if one wants to achieve an integrated
design approach. The communication between the people involved
in the design of a system, including stakeholders, is of special inter-
est. Tomizuka [3] mentions that effective communication with oth-
ers is a necessary requirement for the engineering practice, even
more when considering that nowadays engineers must work in
teams in design mechatronic systems. Industry also recognizes
the importance of the communication among engineers [9,10].

Pahl et al. [1] identify communication and exchange of informa-
tion between designers as one of the fundamental aspects of their
systematic design approach that relates to division of work and
collaboration. They mention methods like brainstorming and
group evaluation to support the information exchange activities.
As Pahl et al. comment, these methods are especially helpful for
the search of solutions in the conceptual phase, and thus are fo-
cused towards that end in their work. Unfortunately, such methods
seem less appropriate for being extended to later stages of design,
because they have been conceived to deal with less detailed infor-
mation than the one required for such design phases.

Although the importance of communication among engineers
and information exchange has been widely recognized, to the best
knowledge of the authors, there are no tools supporting the design
activity while extensively considering these aspects, e.g., integrat-
ing the individual work of the engineers using their own tools to-
gether with an overview of the system and its goals.

3.2. Lack of interdisciplinary verification

As discussed in Section 2.2, in practice the use of domain-spe-
cific modeling tools limits the design and the verification to a spe-
cific point of view on the system. FEM models are used to verify
strength and stiffness of the mechanical design, CACSD tools are
used to develop and verify controllers, and data is transferred from
one tool/domain to the other when required. Following an analysis
method for verification plays an essential role in early multi-disci-
plinary verification of the design; the onion model discussed in
Section 3.1.2 is an example of this. Often, real multi-disciplinary
verification can only take place at late stages in the design process,
when hardware prototypes are available. In relation to controller
design, the use of hardware-in-the-loop and rapid control proto-
typing relies on these hardware prototypes. Though this is com-
mon practice, the reliance on prototypes makes this approach
less suitable in a concurrent design environment. Our focus is to
find alternatives to the use of physical prototypes, also to avoid
the other disadvantages presented in Section 2.2.

The multi-domain dynamics models used in control design are
often transfer functions, modeled with block diagrams in tools as
Matlab/Simulink. Two other types of simulation models can be
identified for this purpose: models of the first type are based on
’physical modeling’ methods, which rely on differential equations
and energy flows to describe the behavior of systems; models of
the second type are based on geometric modeling, either in combi-
nation with finite-element meshes and solvers, or with multi-body
dynamics solvers.

A drawback of the use of controller design tools to integrate
multi-domain effects in system design is that the user often fo-
cuses on the design of the controller for the given model of the sys-
tem. The ‘black-box’ nature of the plant models used supports that
statement. In order to shift from controller design to system de-
sign, physical modeling languages like bond graphs [14], Modelica

Fig. 3. Metamodel mechanism in KIEF [26].

882 A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886
[55], and SimScape [56] provide the user with graphical modeling
elements representing physical components from various domains,
such as electrical motors, resistors, and mechanical gears. The ob-
tained system of differential equations is subsequently solved by
the supporting tool. These tools often also allow for the modeling
of signals and discrete events [57,58]. Due to the port-based ap-
proach, simplified models which are used early on in the design
process can be replaced with more detailed models as the design
matures.

The bond graph language from Karnopp et al. [19] has been pro-
moted for the modeling of mechatronic systems by authors like
van Amerongen [59,60]. The bond graph tool 20-sim consists of a
block modeler, a set of control analysis methods, and a basic 3D
modeler which can be used to link the block diagram representa-
tion to a mechanical model. Ferretti et al. [61] state that mutual
interaction between domains, modular and object-oriented model-
ing, and reuse of modeling components using libraries and custom-
ization are required for a modeling and simulation tool for
mechatronic systems. Their conclusion is that the combination of
the Modelica language and the tool Dymola satisfies most of these
requirements. There are various similar modeling and simulation
tools available, both commercial and academic. These tools include
gPROMS [62], SABER [63], HyBrSim [64], and Smile [65].

A disadvantage of these multi-physics modeling tools is that the
model is based on assumptions about the expected behavior, such
that a significant experience is required to know which assump-
tions are valid. For example, thermal effects can have a consider-
able influence on electronic components, but the designer needs
to know the relative position of the heat source and the electronics
to decide whether or not to take this into account. The use of first-
principle based simulations, i.e., using finite-element analysis, is a
way to (partially) circumvent this.

Simulation based on finite-element methods relies on 2D/3D
CAD models. Various commercial CAD tools are available nowa-
days, and their use is a well-established industrial practice.
Vendors of these tools often provide additional tool suites for
finite-element analysis, covering domains such as mechanics and
thermodynamics. Specialized multi-physics simulation tools, e.g.,
COMSOL, allow for simultaneous analysis of phenomena from dif-
ferent domains. To prevent consistency problems, often the geom-
etry models developed in dedicated CAD tools are imported in the
specialized tools, instead of being developed only for this purpose
[22].

Results from these various analysis tools can subsequently be
used in models that are used in the controller design, albeit via
manual data transfer. The direct use of finite-elements tools in
combination with controller design tools for verification purposes
is computer-intensive and time-consuming, but might, however,
in the long term be faster and cheaper than physical prototype-
based testing.

To prevent the manual transfer of data, Voskuijl et al. [66] has
used a combination of a Simulink-based aircraft dynamics model
and computational fluid dynamics (CFD) analysis for the design
and optimization of a blended-wing body aircraft. Albeit custom-
developed, it shows that domain-specific analysis can be inte-
grated in a multi-domain analysis and optimization tool. The DEE
concept discussed in Section 3.1.2 applies a similar approach, in
which multi-disciplinary analysis, optimization, and verification
are supported by an integration framework.

With respect to the verification of discrete, event-driven control
algorithms, there are various methods available, depending on the
formalism in which the algorithm is defined. These methods are
used for checking the existence of dead-lock situations, unreach-
able states and transitions that do not occur, among others. For
realistic model-based verification, the model of the system should
reflect the changes in operation mode, e.g., by reconfiguring the ac-
tive actuators.

3.3. Lack of automation in control design

It must be stressed that in this work the automation of control
software covers more than just the generation of control code out
of a detailed control software model, and extends to obtaining such
model (cf. Section 2.3). There are various commercial code genera-
tors available, both for Matlab/Simulink-like environments and
UML-based modeling tools. The Gene-Auto project has developed
methods for automatic model transformations, focusing on a ‘‘cor-
rect by construction” approach [67], such that the code can be
implemented on critical embedded systems in the aerospace and
automotive industry. By verifying the code generator itself, it can
be used without the need to verify the generated code. To integrate
design formalisms for continuous and discrete-event control, an

Fig. 4. Architecture of integration framework. White blocks represent tools to be
further developed. Dashed-line blocks correspond to existing commercial software
tools.

A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886 883
integrated design notation is used in both the PiCSi [22] and the
Flexicon project [68]. UML is used as a common language, into
which both Simulink models and Sequential Flow Charts are trans-
formed. From the combined control system, platform-independent
Java code can be generated. Again, the use of proven, domain-spe-
cific tools and methods in combination with a translation to an
integrated model is preferred above a new and integrated ‘‘do it
all” language. In contrast to this, the application of domain-specific
modeling (DSM) languages to raise the level of abstraction of con-
trol software design relies on specific modeling elements. It re-
moves the need to map elements to domain-independent
languages as UML before code generation can be applied and as
such decreases development time [69]. For DSM to work, however,
the language and code generation tools have to be developed by
one or more domain experts.

In terms of automation of the control design much can be
gained in the early phase when requirements are translated into
control structure and logic. Message Sequence Charts and UML se-
quence diagrams can be used to specify required behavior, but
these specifications are considered to have a weak expressiveness
[70]. Instead, Live Sequence Charts have more expressive power.
By formalizing communication between actors over a timeline,
Live Sequence Charts provide means to automatically derive con-
trol software logic and structure from them, e.g., in the form of
UML. As discussed in Section 2.3, the generation of code from the
latter description is possible, but not widely applied yet.

To get from requirements to control software, a method based
on Requirements-Based Programming (RBP) is proposed by Rash
et al. [71]. RBP should increase development productivity and the
quality of the generated code by automatically performing verifica-
tion of the software, which is supported by an approach that en-
sures that the application can be fully traced back to the initial
requirements of the system. A more direct link between (func-
tional) requirements and software has been achieved by the use
of the Functional Block computer-aided design environment [72].
The prototype tool can be used to design and analyze reusable
high-level control software components and to generate run-time
code for distributed control systems. The applicability of such a di-
rect approach, where functions and software code are directly
linked, to continuous-feedback control software is however not
straightforward, because of the strong dependency on the system
properties.

Another approach that starts from high-level specifications is
presented by Sakao et al. [73]. The input specifications are modeled
in FBS [26] using qualitative descriptions. Qualitative reasoning
techniques are used to derive a sequence of activations from the
actuators, and quantitative information can be added to the result-
ing sequence. The method is only implemented for a specific case,
but a patent [74] shows aspects of the control sequence derivation
that could be used in generic cases.

Partial automation of the control development process can be
obtained by instantiating pieces of pre-developed control code
from databases linked to specific system components, e.g., sen-
sors or actuators. For example, this approach has been imple-
mented on a large scale by a company specialized in handling
and transport systems of goods. In that company, around 80% of
a the PLC controller code in a system can be generated from com-
ponent descriptions and associated code elements. These code
elements, stored in company-specific libraries, contain routines
to execute most of the low-level tasks for each type of compo-
nent; e.g., start up, shut down, and emergency handling se-
quences for an electric motor. Service functions and irregular
situations have to be predicted by the engineers and programmed
manually. Integrating generated code with manually written or
existing library code removes part of the advantages of automatic
code generation in this case.
4. An integrated approach for control software development

The need for a revised concurrent engineering design approach
was identified in Section 2. The use of domain-specific design
methods and tools to develop an integrated, multi-disciplinary sys-
tem has inherent drawbacks, related to multi-domain modeling
and the communication between designers and tools. The review
in Section 3 has shown that methods based on higher abstraction
levels play an important role, but that implementation is an issue,
and that multi-disciplinary design, optimization, and verification
of both hardware and software require suitable modeling para-
digms and tool support. The framework proposed here is intended
as a support for such a design approach. There are two important
reasons not to develop a single tool for mechatronic system design
to tackle the identified challenges. First, the design information of
an entire system is too big and complex. On the one hand, creating
a model that contains design information with the necessary detail
would increase the model size, and create a bottleneck to access it
[20]. On the other hand, providing the operations to model and
handle the different kinds of design data in a single tool constitutes
another barrier. Second, existing tools are designed and optimized
for specific domains, and the designers are proficient with these
tools. In practice, each designer is responsible for creating and
maintaining the models related to her or his discipline [75].

As an alternative to the single tool approach, we propose an
integration framework to support mechatronic system develop-
ment, and in particular, the design of control software. Fig. 4
depicts an overview of the framework, with existing, domain-

884 A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886
specific tools represented as dashed-line boxes. For clarity, design
iteration loops are not included in this figure. This approach can be
classified as an architecture framework, as defined by Browning in
[75], and similarly, it aims at supporting the communication
among developers and model transformations between tools. This
addresses the challenges related to cooperation and communica-
tion discussed in Section 2.

A high-level or abstract functional information model appears
in the upper part of Fig. 4. The intention is to obtain a backbone
to navigate, give an overview, and classify detailed design informa-
tion, by capturing functions, requirements, and the architecture of
the system. In this aspect, the proposal follows the line of reason-
ing of the methods presented in Section 3.1.1, additionally aiming
towards integration. The basic hypothesis for the use of functions
as integration elements is that from the functional point of view
it is possible to describe a system at different levels of detail, focus-
ing on the points of interest to the user while maintaining coher-
ence of the model. To that end, the initial design is specified
using the FBS modeling scheme [76,77]. System-level choices re-
lated to control design are also included in this system model, at
the level of strategies and goals. Quantitative requirements and
constraints can also be incorporated at this stage, using a formal
specification language. The architecture is initially specified in
terms of objects, which can correspond to software, hardware,
mechanical components, etc. Since this information is beyond the
scope of the original FBS scheme, the proposed model will use an
extended version of it.

Besides high-level information, a model of the system requires
information of the analysis (e.g., controller simulations) and
descriptive models (e.g., manufacturing blueprints) necessary for
implementation, as indicated by the block of ‘‘mechatronic feature
product definition” in Fig. 4. For this purpose we propose the use of
the object- and component-oriented techniques discussed in Sec-
tion 3.1.2. Such techniques allow for the building of models in an
intuitive and fast manner once the modeling elements have been
developed. The main difference between our proposal and the com-
ponent-oriented tools presented in Section 3.1.2 is that we aim at
building a hybrid representation in the knowledge base that merges
the component- and process-oriented modeling paradigms.

Information needs to be exchanged between different domain-
specific design tools, like mechanical CAD or CACSD software, in or-
der to integrate the different design activities and to automate
analysis, synthesis, and model transformation. An information
manager should provide means to navigate, visualize, and ensure
consistency of the system model and the associated modeling data.
The integrated results obtained from the domain-specific tools are
labeled as ‘‘quantitative behavior” in Fig. 4.

At the architectural level, multiple views on the overall system
can be discerned. These views can be used to capture and trace the
concerns and requirements of stakeholders [78,79]. System-level
requirements must be decomposed or budgeted and tracked back
to the various subsystems and the different domain-specific design
processes.

Our proposal addresses the challenges from Section 2.3 and
complements many of the approaches presented in Section 3.3
by obtaining the control structure and strategy, starting from the
models presented before. For the controller design, the require-
ments defined at the architectural level are transformed into con-
trol design specifications, both for sequential-supervisory control
as well as for continuous-feedback control. For the first, these spec-
ifications may be state machines defining operation modes; the
second often contains requirements in terms of allowable over-
shoot or rise time, or the used power. From these, a cost function
can be derived, and subsequently the controller (e.g., PID or Model
Predictive Control) can be (semi) automatically designed and tuned
using existing software tools, e.g., the control system toolbox in
Matlab. Our proposed approach is similar to the Control Design
Method (CDM) [72], which fills the gap between the functional de-
sign and the final implementation. In the framework proposed
here, however, the control system and the plant model are devel-
oped in parallel, as appears in Fig. 4 labeled as ‘‘control code gen-
eration” and ‘‘control model generation”.

For developing the plant model, the concept of the ‘‘Multi-Mod-
el Generator” introduced in Section 3.2 is extended to include
views containing simulation and verification models based on
physical modeling principles, which can be used to interact with
control algorithm design and analysis tools. Linearization and
model reduction methods ensure that the order of the model is
suitable for the control design algorithms. The use of a knowl-
edge-based engineering platform allows the software to reason
about the interaction of components from various domains.

The generated control software can be verified using non-linear,
high-fidelity models incorporating finite-element analysis results.
For this, the formal representation of the requirements specified
at the start of the design process is used. Once the software code
has been generated and tested on virtual models, it can be tested
on real prototypes. Recent benchmarks show that this has been
an advantageous practice for the top-level mechatronic product
developing companies [5].

In order to support and eventually automate the aforemen-
tioned tools and processes, and to collect, structure and communi-
cate the generated information and data, it is required to create a
common understanding of related concepts in the associated de-
sign domains. For this, it is necessary to have a formal definition
of the different types of models supported by the framework, the
element primitives and domains that are used to build the model,
and a vocabulary of the domain-specific languages to give meaning
to the abstractions of the primitives in the model [80]. These three
elements form the basis for an ontology: a formal representation of
a set of concepts within a domain and the relationships between
those concepts. The developed ontology will be the foundation of
the knowledge bases on which the (custom) tools and processes
are built.
5. Conclusions

The design of integrated mechatronic systems requires a para-
digm shift towards cooperation between design teams/paradigms,
paying special attention to the early phases of design. To obtain
tighter integration, the design of mechatronic systems demands a
holistic approach that considers interactions and interrelations
among design domains. Tools to support such an approach are nec-
essary and, at the moment, scarce.

The authors have identified a set of challenges related to the de-
sign of mechatronic systems. These challenges are related to the
integration of tools, models, and human actors in the design pro-
cess, the lack of multi-disciplinary verification, and the lack of
automation in control software development. The review shows
that current methods and tools attacking these challenges focus
on specific points and that developed implementations are not
available. Model and data sharing is a key issue to progress to-
wards an overall solution. Furthermore, formalization of architec-
ture, function descriptions, and requirements needs to be
addressed.

Regarding the efforts to overcome the identified challenges,
industry tends to focus on tool-level integration, while academia
focuses on underlying integration methods. Methods proposed by
academia are hard to implement due to the abstract system
descriptions, but have a promising future.

To address the challenges, some basic concepts for an integra-
tion framework supporting mechatronics design are proposed.

A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886 885
The framework contains both existing and to be developed tools,
with which a multi-disciplinary design team can automatically
generate and verify control software. Based on the FBS modeling
scheme, the designer can create a requirements-specifications
model that gives a high-level overview of the system under devel-
opment. By integrating existing domain-specific design and analy-
sis tools, the model data can be used to build simulation and
verification models. The application of high-level function models
as a base to the framework to support communication through tool
and model integration is a promising approach.

The proposed framework has many similarities with the CORE
tool [47]. The fundamental difference is that the proposed frame-
work aims at the integration of software tools used by the design-
ers for detailed design. To support this, the main mechanism will
be an information model that links the attributes present in the
system components and in the phenomena (specified in the do-
main-specific models) that rule their behavior. Another fundamen-
tal difference is that the proposed framework leaves analysis,
verification, and simulation to the specialized tools that can be
integrated instead of dealing with such computations directly as
in the case of CORE.

A high degree of automation can be obtained by applying
knowledge-based techniques, to carry out non-creative and repet-
itive tasks, resulting in a decrease in development time and devel-
opment costs and an increase in reliability. Various methods and
tools are supported by an automated information manager that en-
ables the integration of models using the central, high-level system
model.
Acknowledgments

The authors gratefully acknowledge the support of the Dutch
Innovation Oriented Research Program ‘Integrated Product Crea-
tion and Realization (IOP-IPCR)’ of the Dutch Ministry of Economic
Affairs.
References

[1] Pahl G, Beitz W, Feldhusen J, Grote KH. Engineering design: a systematic
approach, 3rd ed.. London (UK): Springer London Limited; 2007.

[2] Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A. Collaborative conceptual
design – state of the art and future trends. Comput-Aid Des 2002;34:981–96.

[3] Tomizuka M. Mechatronics: from the 20th to the 21st century. Control Eng
Practice 2002;10:877–86.

[4] Wikander J, Törngren M, Hanson M. The science and education of mechatronics
engineering. IEEE Robot Autom Mag 2001;8(2):20–6.

[5] Boucher M, Houlihan D. System design: new product development for
mechatronics. Boston (MA, USA): Aberdeen Group; 2008.

[6] Schöner HP. Automotive mechatronics. Control Engineering Practice
2004;12:1343–51.

[7] Craig K. Mechatronic system design. ASME Newslett 2009. <http://files.asme.
org/asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf>.

[8] Ziegler JG, Nichols NB. Process lags in automatic control circuits. Trans ASME
1943;65:433–44.

[9] Perrin K. Digital prototyping in mechatronic design. Proj Mech 2009. <http://
www.projectmechatronics.com/2009/07/13/digital-prototyping-in-mechatro-
nic-design/> [website].

[10] Mathur N. Mechatronics – five design challenges and solutions for machine
builders. Instrum Newslett 2007;19(2):6–7. <http://zone.ni.com/devzone/cda/
pub/p/id/145>.

[11] Jackson CK. The mechatronic system design benchmark report. Boston (MA,
USA): Aberdeen Group; 2006.

[12] Shapiro J. Mechatronics design faces two challenges – and two solutions.
Electron Des 2008. <http://electronicdesign.com/Articles/Index.cfm?AD=1&
ArticleID=18068> [website].

[13] Blessing LTM, Chakrabarti A. DRM, a design research methodology. London
(UK): Springer-Verlag; 2009.

[14] Rzevski G. On conceptual design of intelligent mechatronic systems.
Mechatronics 2003;13:1029–44.

[15] Sohlenius G. Concurrent Engineering. CIRP Annals 1992;41(2):645–55.
[16] Martin JN. Systems engineering guidebook – a process for developing systems

and products. Boca Raton (FL, USA): CRC Press; 1997.
[17] QFD Institute. QFD Institute home page. <http://www.qfdi.org/>.
[18] Knowledge Based Systems Inc. IDEF Family of Methods website. <http://
www.idef.com/>.

[19] Karnopp DC, Margolis DL, Rosenberg RC. System dynamics: modeling and
simulation of mechatronic systems, 4th ed.. New York (NY, USA): Wiley; 2006.

[20] Cutkosky MR, Engelmore RS, Fikes RE, Genereseth MR, Gruber TR, Mark WS,
et al. PACT: an experiment in integrating concurrent engineering systems.
Computer 1993;26(1):28–37.

[21] Dolk DR, Kotterman JE. Model integration and theory of models. Decis Support
Syst 1993;9(1):51–63.

[22] Jackson CK. Simulation driven design benchmark report. Boston (MA,
USA): Aberdeen Group; 2006.

[23] Ramos-Hernandez DN, Fleming PJ, Bass JM. A novel object-oriented
environment for distributed process control systems. Control Eng Pract
2005;13:213–30.

[24] Object Management Group. Unified modeling language, V2.2; 2009. <http://
www.omg.org/spec/UML/2.2/>.

[25] Heck B, Wills L, Vachtevanos G. Software technology for implementing
reusable, distributed control systems. IEEE Control Sys Mag 2003;23(1):21–35.

[26] Umeda Y, Ishii M, Yoshioka M, Tomiyama T. Supporting conceptual design
based on the function-behavior-state modeler. AI EDAM 1996;10(4):275–88.

[27] Chandrasekaran B. Functional representation: a brief historical perspective.
Appl Artif Intel 1994;8:173–97.

[28] Bracewell R, Sharpe J. Functional descriptions used in computer support for
qualitative scheme generation – ‘‘Schemebuilder”. AI EDAM J – Special Issue:
Represent Function Des 1996;10:333–46.

[29] Hunt J. MACE: a system for the construction of functional models using case-
based reasoning. Expert Syst Appl 1995;9(3):347–60.

[30] Barr A, Cohen PR. The handbook of artificial intelligence. vol. 4. Los Altos, CA,
USA: William Kaufmann, Inc.; 1989 [chapter 21].

[31] Erden MS, Komoto H, Van Beek TJ, D’amelio V, Echavarria E, Tomiyama T. A
review of function modeling: approaches and applications. Artificial
intelligence for engineering design. Anal Manuf 2008;22(2):147–69.

[32] Tomiyama T, Umeda Y, Ishii M, Yoshioka M, Kirayama T. Knowledge
systematization for a knowledge intensive engineering framework. In:
Tomiyama T, Mantyla M, Finger S, editors. Knowledge intensive CAD, vol.
1. Chapman & Hall; 1996. p. 55–80.

[33] European Cooperation for Space Standardization. Space engineering – functional
analysis (E-10-05A); 1999. <http://esapub.esrin.esa.it/pss/ecss-ct05.htm>.

[34] Stone R, Wood K. Development of a functional basis for design. ASME J Mech
Des 2000;122(4):359–70.

[35] National Institute of Standards and Technology. Integration definition for
function modeling (IDEF0); 1993. <http://www.idef.com/pdf/idef0.pdf>.

[36] Wood W, Dong H, Dym C. Integrating functional synthesis. AI EDAM
2004;19(3):183–200.

[37] Bonnema GM. FunKey architecting – an integrated approach to system
architecting using functions, key drivers and system budgets. PhD thesis.
University of Twente. Enschede, The Netherlands; 2008.

[38] Muller GJ. CAFCR: a multi-view method for embedded systems architecting,
PhD thesis. Delft University of Technology. Delft, The Netherlands; 2004.

[39] Stevens R, Brook P, Jackson. System engineering: coping with
complexity. Europe: Prentice Hall; 1998.

[40] Boehm B. A spiral model of software development and enhancement. ACM
SIGSOFT Software Eng Notes 1986;11(4):14–24.

[41] Suh NP. The principles of design. Oxford (UK): Oxford University Press; 1990.
[42] Mcmahon CA, Caldwell NHM, Darlington MJ, Culley SJ, Giess MD, Clarkson PJ.

The development of a set of principles for the through-life management of
engineering information; 2009. <http://www.bath.ac.uk/idmrc/themes/
projects/kim/kim40rep007mjd10.doc>.

[43] Citherlet S, Clarke JA, Hand J. Integration in building physics simulations.
Energy Build 2001;33:451–61.

[44] VRS ROPAX. Virtual reality ship systems project webpage. <http://www.vrs-
project.com/index.phtml>.

[45] Yoshioka M, Sekiya T, Tomiyama T. An integrated design object modeling
environment – pluggable metamodel mechanism –. Turk J Electr Eng Comput
Sci 2001;9(1):43–62.

[46] Yoshioka M, Umeda Y, Takeda H, Shimomura Y, Nomaguchi Y, Tomiyama T.
Physical concept ontology for the knowledge intensive engineering
framework. Adv Eng Infor 2004;18(2):69–127.

[47] Vitech corporation. CORE software website. <http://www.vitechcorp.com/
products/Index.html>.

[48] Childers SR, Long JE. A concurrent methodology for the system engineering
design process. Unpublished green paper; 1994. <http://www.vitechcorp.com/
support/papers.php>.

[49] Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I. Simulation-
based design using SysML part 1: a parametrics primer. In: Proceedings of
INCOSE international symposium, San Diego, CA, USA; 2007.

[50] Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I. Simulation-
based design using SysML: celebrating diversity by example. In: Proceedings of
INCOSE international symposium, San Diego, CA, USA; 2007.

[51] Object Management Group. OMG systems modeling language, V1.0; 2001.
<http://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf>.

[52] Paredis C, Diaz-Calderon A, Sinha R, Khosla PK. Composable models for
simulation-based design. Eng Comput 2001;17:112–28.

[53] La Rocca G, Van Tooren MJL. Enabling distributed multi-disciplinary design of
complex products: a knowledge-based engineering approach. J Des Res
2007;5(3):333–52.

http://files.asme.org/asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf
http://files.asme.org/asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf
http://www.projectmechatronics.com/2009/07/13/digital-prototyping-in-mechatronic-design/
http://www.projectmechatronics.com/2009/07/13/digital-prototyping-in-mechatronic-design/
http://www.projectmechatronics.com/2009/07/13/digital-prototyping-in-mechatronic-design/
http://zone.ni.com/devzone/cda/pub/p/id/145
http://zone.ni.com/devzone/cda/pub/p/id/145
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=18068
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=18068
http://www.qfdi.org/
http://www.idef.com/
http://www.idef.com/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/
http://esapub.esrin.esa.it/pss/ecss-ct05.htm
http://www.idef.com/pdf/idef0.pdf
http://www.bath.ac.uk/idmrc/themes/projects/kim/kim40rep007mjd10.doc
http://www.bath.ac.uk/idmrc/themes/projects/kim/kim40rep007mjd10.doc
http://www.vrs-project.com/index.phtml
http://www.vrs-project.com/index.phtml
http://www.vitechcorp.com/products/Index.html
http://www.vitechcorp.com/products/Index.html
http://www.vitechcorp.com/support/papers.php
http://www.vitechcorp.com/support/papers.php
http://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf

886 A.A. Alvarez Cabrera et al. / Mechatronics 20 (2010) 876–886
[54] Berends JPTJ, van Tooren MJL, Schut EJ. Design and implementation of a new
generation multi-agent task environment framework. In: 49th AIAA/ASME/
ASCE/AHS/ASC structures, structural dynamics, and materials conference, 4th
AIAA multidisciplinary design optimization specialist conference.
Schaumburg, IL, USA; 2008.

[55] The Modelica Association. Modelica and the modelica association; 2008.
<http://www.modelica.org>.

[56] The MathWorks. Simscape; 2009. <http://www.mathworks.com/products/
simscape/?s_cid=HP_FP_SL_Simscape>.

[57] Dynasim AB. Dymola–dynamic modeling laboratory; 2008. <http://
www.dynasim.se/index.htm>.

[58] Controllab Products B.V. 20-sim. <http://www.20sim.com>.
[59] van Amerongen J. Mechatronic design. Journal of Mechatronics

2003;13(10):1046–166.
[60] van Amerongen J, Breedveld P. Modeling of physical systems for the design and

control of mechatronic systems. Ann Rev Control 2003;27:87–117.
[61] Ferretti G, Magnani GA, Rocco P. Virtual prototyping of mechatronic systems.

Ann Rev Control 2004;24:192–206.
[62] Process Systems Enterprice Limited. gPROMS Advanced Process Modeling and

Process Simulation. <http://www.psenterprise.com/gproms/index.html>.
[63] Synopsys. Saber mixed-signal, mixed-technology simulation. <http://

www.synopsys.com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx>.
[64] Mosterman PJ. HyBrSim – A modeling and simulation environment for hybrid

bond graphs. <http://moncs.cs.mcgill.ca/people/mosterman/papers/jsce01/
p.pdf>.

[65] Technical University of Berlin. SMILE – the simulation environment for
scientific computing. <http://www.smilenet.de>.

[66] Voskuijl M, La Rocca G, Dircken F. Controllability of blended wing body
aircraft. In: Proceedings ICAS of the international council of the aeronautic
sciences including the 8th AIAA Aviation Technology, Integrated and
Operations Conference. Edinburg, UK; 2008.

[67] Toom A, Naks T, Pantel M, Gandriau M, Indrawati. Gene-Auto: an automatic
code generator for a safe subset of Simulink/Stateflow and Scicos. In: 4th
European congress on embedded real time software. Toulouse, France; 2008.
[68] Thompson HA, Ramos-Hernandez DN, Fu J, Jiang L, Choi I, Cartledge K, et al. A
flexible environment for rapid prototyping and analysis distributed real-time
safety-critical systems. Control Eng Pract 2007;15:77–94.

[69] Kelly S, Tolvanen J-P. Domain-specific modeling: enabling full code
generation. Hoboken (NJ, USA): Wiley-IEEE Computer Society Press; 2008.

[70] Harel D. From play-in scenarios to code: an achievable dream. IEEE Comput
2001;34(1):53–60.

[71] Rash JL, Hinchey MG, Rouff CA, Gracanin D, Erickson J. A requirements-based
programming approach to developing a NASA autonomous ground control
system. Artif Intel Rev 2006;25(4):285–97.

[72] Ferrarini L, Carpanzano E. A structured methodology for the design and
implementation of control and supervision systems for robotic applications.
IEEE J Control Syst Technol 2002;10(2):272–9.

[73] Sakao T, Umeda Y, Tomiyama T, Shimomura Y. Generation of sequence-control
programs from design information. IEEE Expert 1997:12.

[74] Umeda Y, Tomiyama T, Yoshikawa H, Sakao T, Shimomura Y, Tanigawa S. Mita
Industrial Co., Ltd., assignee. Method of automatically creating control
sequence software and apparatus therefore. US patent 194,064, Feb 9; 1994.

[75] Browning TR. The many views of a process: toward a process architecture
framework for product development processes. Syst Eng 2009;12(1):69–90.

[76] Umeda Y, Tomiyama T. FBS modeling: modeling scheme of function for
conceptual design. In: Workshop on qualitative reasoning about physical
systems. Amsterdam, The Netherlands; 1995, p. 271–8.

[77] Tomiyama T, Umeda Y. A CAD for functional design. Ann CIRP93
1993;42(1):143–6.

[78] Institute of Electrical and Electronics Engineers Standards Association. IEEE Std
1471–2000: recommended Practice for Architectural Description of Software-
intensive Systems; 2000.

[79] Muller G. System architecting. Eindhoven (The Netherlands): Embedded
Systems Institute; 2009.

[80] Guizzardi G. On ontology ontologies conceptualizations modeling languages
and (meta) models. In: Vasilecas O, Edler J, Caplinskas A, editors. Frontiers in
artificial intelligence and applications, databases and information systems
IV. Amsterdam (The Netherlands): IOS Press; 2007.

http://www.modelica.org
http://www.mathworks.com/products/simscape/?s_cid=HP_FP_SL_Simscape
http://www.mathworks.com/products/simscape/?s_cid=HP_FP_SL_Simscape
http://www.dynasim.se/index.htm
http://www.dynasim.se/index.htm
http://www.20sim.com
http://www.psenterprise.com/gproms/index.html
http://www.synopsys.com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx
http://www.synopsys.com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx
http://moncs.cs.mcgill.ca/people/mosterman/papers/jsce01/p.pdf
http://moncs.cs.mcgill.ca/people/mosterman/papers/jsce01/p.pdf
http://www.smilenet.de

	Towards automation of control software: A review of challenges in mechatronic design
	Introduction
	Challenges in mechatronic design
	Design integration
	Design methods
	Design tools
	Human factors

	Lack of interdisciplinary verification
	Lack of automation in control software design

	Review of available approaches
	Design integration
	Design methods
	Tool integration
	Human factors

	Lack of interdisciplinary verification
	Lack of automation in control design

	An integrated approach for control software development
	Conclusions
	Acknowledgments
	References

