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The aim of the current study was to examine the effects of providing support in the form of tools for con-
structing representations, and in particular the differential effects of the representational format of these
tools (conceptual, arithmetical, or textual) in terms of perceived affordances and learning outcomes. The
domain involved was combinatorics and probability theory. A between-subjects pre-test–post-test
design was applied with secondary education students randomly distributed over four conditions. Partic-
ipants completed the same tasks in a simulation-based learning environment. Participants in three exper-
imental conditions were provided with a representational tool that could be used to construct a domain
representation. The experimental manipulation concerned the format of the tool (conceptual, arithmet-
ical, or textual). Participants in a control condition did not have access to a representational tool. Data
from 127 students were analyzed. It was found that the construction of a domain representation signif-
icantly improved learning outcomes. The format in which students constructed a representation did not
directly affect learning outcomes or the quality of the created domain representations. The arithmetical
format, however, was the least stimulating for students to engage in externalizing their knowledge.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Learning to understand science and mathematics is hard for
many students. The current study seeks to facilitate the learning
process by offering students tools to create external representa-
tions while learning. It does so in a subdomain of mathematics
which is known to be notoriously difficult: combinatorics and
probability theory.

One of the more general reasons for students’ difficulties with
science and mathematics problems is that novices often have a
tendency to focus on superficial details rather than on understand-
ing the principles and rules underlying a science or mathematics
domain (Chi, Feltovich, & Glaser, 1981; de Jong and Ferguson-
Hessler, 1986; Reiser, 2004). Science and mathematics problems
require students to go beyond the superficial details in order to
recognize the concepts and structures that underlie the problem
and to decide which operations are required to solve it (e.g., Fuchs
et al., 2004). In the case of probability instruction, for example,
identifying the approach that needs to be taken to solve a problem
depends a great deal on correct classification of the problem
(Lipson, Kokonis, & Francis, 2003).

A second reason for students’ difficulties is that the abstract and
formal nature of often used arithmetical representations does not
ll rights reserved.

: +31 53 489 2849.
lloffel).
illustrate the underlying principles or concepts as explicitly as pic-
torial and textual representations. Most students tend to view
mathematical symbols (e.g., multiplication signs) purely as indica-
tors of which operations need to be performed on adjacent num-
bers, rather than as reflections of principles and concepts
underlying these procedures (Atkinson, Catrambone, & Merrill,
2003; Cheng, 1999; Greenes, 1995; Nathan, Kintsch, & Young,
1992; Niemi, 1996; Ohlsson & Rees, 1991). Therefore, they easily
lose sight of the meaning of their actions. Correctly processing for-
mal notations thus becomes an end in itself (Cheng, 1999), not for
the purpose of understanding and communicating concepts but for
getting high scores on tests (Greeno & Hall, 1997). Learning of
arithmetical procedures without conceptual understanding tends
to be error prone, easily forgotten, and not readily transferable
(Ohlsson & Rees, 1991).

Third, the formal, abstract way in which subject matter is rep-
resented makes it hard for students to relate the subject matter
to everyday life experiences. Fuson, Kalchman, and Bransford
(2005) argue that the knowledge students bring into the classroom
is often set aside in mathematics instruction and replaced by pro-
cedures that disconnect problem solving from meaning making.
The integration of theory and everyday life experience is particu-
larly important in probability and combinatorics, because the prin-
ciples of probability often appear to conflict with students’
experiences and how they view the world (Garfield & Ahlgren,
1988; Kapadia, 1985). The conflicts arise because probabilities do
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not always match students’ conceptions and intuitions (e.g.,
Batanero & Sanchez, 2005; Fischbein, 1975; Greer, 2001). An exam-
ple of a misconception is the gambler’s fallacy, that is, the belief
that the outcome of a random event can be affected by (and there-
fore predicted from) the outcomes of previous events.

These reasons are by no means exhaustive, but summarize
some of the main problems encountered in the instruction of com-
binatorics and probability theory. What can be learned from these
points to help improve instruction in this domain? One of the sug-
gestions that follows from this list is that the (abstract and formal)
way in which information is presented plays a critical role. The
effects of format were tested in a previous study, where different
formats (tree diagrams, mathematical equations, texts, or combi-
nations of these) were compared in terms of their effects on learn-
ing outcomes and cognitive load (Kolloffel, Eysink, de Jong, &
Wilhelm, in press). Learning outcomes improved when using a text
describing solution steps on the basis of everyday life situations
and simultaneously presenting an equation repeating the same
information in an arithmetical format.

The aim of the current study is to find out whether more can be
done to support and scaffold students to help them overcome the
problems described above. A promising approach traditionally
found to help students gain a better understanding and focus
more on the underlying principles and concepts of the domain is
having students themselves construct representations of the do-
main, for example by means of writing a summary, creating a draw-
ing, building a runnable computer model, or constructing a concept
map.

1.1. Constructing representations

Constructing representations can have different purposes. For
example, for students with advanced levels of domain knowledge,
constructing a representation may serve as an aid to accessing
information stored in long term memory and as a summary of their
processing, which decreases working memory load and thus helps
them to concentrate on reasoning (Tabachneck-Schijf, Leonardo, &
Simon, 1997). For students unfamiliar with the domain, construct-
ing representations can support learning and understanding (e.g.,
Greeno & Hall, 1997; Lesh & Lamon, 1992). Gaining a full under-
standing of a domain requires students to recognize which infor-
mation is relevant, to combine pieces of information into a
coherent and internally connected structure (e.g., a mental repre-
sentation), and to relate newly acquired knowledge to prior knowl-
edge (Mayer, 2003, 2004; Shuell, 1986, 1988; Sternberg, 1984). Cox
(1999) argues that the process of constructing a representation
elicits self-explanation effects and consists of dynamic iterations
and interactions between the constructed representations and
mental representations and therefore helps students to refine
and disambiguate their domain knowledge.

Evidence from studies in which students (collaboratively) con-
structed representations indicates that the format in which students
construct representations plays a significant role in knowledge con-
struction processes (e.g., Suthers & Hundhausen, 2003; van Drie, van
Boxtel, Jaspers, & Kanselaar, 2005). Representational formats can
differ with regard to the affordances students perceive.

In the first place, the properties of representations influence
which information is attended to and how people tend to organize,
interpret, and remember the information (Ainsworth & Loizou,
2003; Cheng, 1999; Larkin & Simon, 1987; Zhang, 1997). This is
called constraining (Ainsworth, 2006; Scaife & Rogers, 1996; Sten-
ning & Oberlander, 1995), representational bias (Utgoff, 1986), or
representational guidance (Suthers, 2003; Suthers & Hundhausen,
2003). For example, constructing concept maps directs attention
to concepts and their mutual relationships (Nesbit & Adesope,
2006) and using formal arithmetical representations may focus
attention on procedures rather than on principles and concepts
(Atkinson et al., 2003; Cheng, 1999; Ohlsson & Rees, 1991).

In the second place, the perceived affordances of formats for
expressing knowledge also depend on familiarity with the format
and domain; some formats may seem easier or more appropriate
for constructing a representation than others. For example, to stu-
dents with advanced levels of mathematical knowledge, symbols
and formulas may be the easiest and most appropriate way to ex-
press their knowledge. To them, these formats are a common and
efficient way to express both procedures and underlying principles
and concepts. For students relatively new to the domain, using
symbols and formulas to construct a representation might seem
too difficult or inappropriate, resulting in incorrect and/or incom-
plete representations, or even a failure to construct a representa-
tion at all. Such students may lack the knowledge to use this
formal language or may be prone to the misconception that those
formats reflect only procedures and not underlying concepts or
principles. Tarr and Lannin (2005) found that in conditional prob-
ability instruction, students initially avoid using conventional ways
of representing probabilities (i.e., using ratios or odds, or formal
numerical probabilities). Instead they use alternative forms of rep-
resentation, such as textual statements. When they reach more ad-
vanced levels of knowledge, some of them start using more
conventional representations.

1.2. Research questions

The aim of the current study was to examine the effects of
providing support in the form of tools for constructing representa-
tions, and in particular the differential effects of the representa-
tional format of these tools in terms of perceived affordances and
learning outcomes. The following questions guided this study. Do
representational formats have differential effects on the likelihood
that students use the support and engage in constructing represen-
tations? Does format have differential effects on the quality of the
representations students construct? Does the construction of a
representation of a domain lead to better learning outcomes than
not constructing a representation? And, if students construct a rep-
resentation, does format have differential effects on domain
understanding?

On the basis of the arguments outlined in the previous section,
it is hypothesized that constructing a representation of a domain is
beneficial for learning and understanding (e.g., Cox, 1999). The for-
mat in which such a representation is constructed is assumed to
have differential effects on knowledge construction and domain
understanding. Three of the most commonly used formats in the
domain of combinatorics and probability theory were compared:
(a) a conceptual format, (b) an arithmetical format, and (c) a tex-
tual format.

Constructing a conceptual representation like a concept map is
thought to focus the student’s attention on the identification of
concepts and their mutual relationships (Nesbit & Adesope,
2006). A concept map is not a very complicated format, in particu-
lar when the number of concepts and relations is not too large (van
Drie et al., 2005). It is hypothesized that the construction of a con-
ceptual representation will make students focus in particular on
the concepts underlying the domain. Therefore, it is expected that
constructing a conceptual representation will result in enhanced
levels of knowledge about the conceptual aspects of the domain,
rather than procedural or situational aspects.

Constructing representations in an arithmetical format is
assumed to draw the student’s attention primarily to operational
aspects. Therefore, it is hypothesized that constructing an arith-
metical representation will enhance procedural knowledge, rather
than conceptual and situational aspects. Regarding the likelihood
that students will construct a representation using the arithmetical
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format, it is hypothesized that compared to other formats students
may have difficulty constructing arithmetical representations (Tarr
& Lannin, 2005).

The third format for constructing a domain representation that
is considered here is a textual format. This format particularly al-
lows students to express their knowledge in their own words.
The current domain can easily be described in terms of everyday
life contexts and situations. Constructing textual representations
is assumed to direct the student’s attention to situational and con-
ceptual aspects, although the conceptual issues might not be as
strongly stressed as for students who construct a conceptual repre-
sentation. It is expected that students will not experience too many
difficulties using this format. Overall, in educational settings this is
the most commonly used format.
Fig. 1. Screendump Probe-XMT simulation.
2. Method

2.1. Participants

In total, 133 secondary education students, 65 boys and 62 girls
(six students did not indicate their gender), participated. The aver-
age age of the students was 14.63 years (SD = .62). The domain of
combinatorics and probability theory is part of the regular curric-
ulum and the experiment took place a few weeks before this sub-
ject would be covered. The students completed the experiment
during regular school time; therefore, participation was obligatory.
They received a grade based on their post-test performance.

2.2. Design

The experiment employed a between-subjects design with four
conditions: three experimental conditions and one control condi-
tion. All students (including those in the control condition) had
to complete the same tasks: completing a pre-test, working
through a simulation-based learning environment, and completing
a post-test. The only difference between the control condition and
the experimental conditions was that students in the experimental
conditions were asked to construct a representation of the domain.
Their learning environments were equipped with an additional
tool: the representational tool. The difference between the three
experimental conditions concerned the format of the representa-
tional tool, which could be conceptual, arithmetical, or textual.
The students in the experimental conditions were informed in ad-
vance about the (general) beneficial effects on learning of con-
structing representations. Students were assigned randomly to
conditions. Afterwards, six students were excluded from the anal-
yses because they missed one or more experimental sessions. Of
the remaining 127 students, 33 were in the Conceptual condition,
30 in the Arithmetical condition, 32 in the Textual condition, and
32 in the Control condition.

2.3. Domain

The domain of instruction was combinatorics and probability
theory. An example of a problem in this domain is: what is the
probability that a thief will guess the 4-digit PIN-code of your
credit card correctly the first try? The essence of combinatorics
is determining how many different combinations can be made
with a certain set or subset of elements. In order to determine
the number of possible combinations, one also needs to know
(1) whether elements may occur repeatedly in a combination
(replacement) and (2) whether the order of elements in a com-
bination is of interest (order). On basis of these two criteria, four
so-called problem categories can be distinguished. The PIN-code
example matches the category ‘‘replacement; order important”.
When the number of possible combinations is known, the prob-
ability that one or more combinations will occur in a random
experiment can be determined.
2.4. Learning environment

The instructional approach used in this study is based on in-
quiry learning (de Jong, 2005, 2006). Computer-based simulation
is a technology that is particularly suited for inquiry learning
(e.g., de Jong and van Joolingen, 1998a,b). Computer-based simula-
tions contain a model of a system or a process. By manipulating the
input variables and observing the resulting changes in output val-
ues the student is enabled to induce the concepts and principles
underlying the model (van Joolingen and de Jong, 1991, de Jong
and van Joolingen, 1998a,b).

The learning environment used in the current study, called
Probe-XMT (see Fig. 1), was created with SimQuest authoring soft-
ware (van Joolingen and de Jong, 2003).

In the box on the left-hand side of the simulation (see Fig. 1),
students could manipulate input variables. On the right-hand side
of the simulation the resulting effects of the manipulations on the
output values could be observed. In this case the output consisted
of a text and an equation that changed whenever the input vari-
ables were changed. Probe-XMT consisted of five sections. Four
of these sections were devoted to each of the four problem catego-
ries within the domain of combinatorics. The fifth section aimed at
integrating these four problem categories. Each section used a dif-
ferent cover story, that is, an everyday life example of a situation in
which combinatorics and probability played a role. Each cover
story exemplified the problem category treated in that section. In
the fifth (integration) section, the cover story applied to all prob-
lem categories.

Each of the five sections in the learning environment con-
tained a series of questions (both open-ended and multiple-
choice items), all based on the cover story for that particular
section. These questions involved determining which problem
category matched the given cover story (situational knowledge),
calculating the probability in a given situation (procedural knowl-
edge), and selecting a description that matched the relation be-
tween variables most accurately (conceptual knowledge). In the
case of the multiple-choice items, the students received feedback
from the system about the correctness of their answer. If the
answer was wrong, the system offered hints about what was
wrong with the answer. Students then had the opportunity to
select another answer. In the case of the open-ended questions,
students received the correct answer after completing and closing
the question.
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Most of the questions were accompanied by simulations that
could be used to explore the relations between variables within
the problem category. In the simulations, students could manipu-
late variables and observe the effects of their manipulations on
other variables. The simulations used a combination of textual
and arithmetical representations. This combination of representa-
tions was found to have benefits in terms of learning outcomes
and mental effort (Kolloffel et al., in press).

The learning environment automatically registered student ac-
tions. User actions that were logged included measures such as
user path through the learning environment (which parts of the
learning environment were opened, when, for how long, and in
what sequence) and the number and nature of manipulations car-
ried out in the simulations (how many experiments were carried
out and the input values of each experiment).
Fig. 3. Arithmetical representational tool.
2.5. Representational tools

Students in the experimental conditions were encouraged to
construct a representation of the domain that would be meaningful
to themselves and a fictitious fellow student. This representation
could be used to summarize principles underlying the domain,
the variables playing a role in the domain, and their mutual rela-
tionships. Students could create their representations by means
of an electronic on-screen representational tool. There were three
types of representational tools, one for each experimental condi-
tion: (a) a conceptual representational tool, (b) an arithmetical rep-
resentational tool, and (c) a textual representational tool.

The conceptual representational tool (see Fig. 2) could be used to
create a conceptual representation of the domain. Students could
draw circles representing domain concepts and variables. Key-
words could be entered in the circles. The circles could be con-
nected to each other by arrows indicating relations between
concepts and variables. The nature of these relations could be spec-
ified by attaching labels to the arrows.

In the arithmetical representational tool (see Fig. 3), students
could use variable names (N, K, and P), numerical data, and math-
ematical operators (division signs, equals signs, multiplication
signs, and so on) in order to express their knowledge.

Finally, the textual representational tool (see Fig. 4) resembled
simple word processing software, allowing textual and numerical
input.
Fig. 2. Conceptual representational tool.
The contents of the representational tools were stored automati-
cally.
2.6. Knowledge measures

Two knowledge tests were used in this experiment: a pre-test
and a post-test. The tests contained 12 and 26 items, respectively.
The pre-test aimed at measuring the prior knowledge of the
students. The post-test aimed at measuring the completeness of
students’ schemas related to this domain. Sweller (1989, p. 458)
defined a schema as ‘‘a cognitive construct that permits problem
solvers to recognize problems as belonging to a particular category
requiring particular moves for solution”. A complete schema there-
fore rests on three pillars: situational knowledge, conceptual
knowledge, and procedural knowledge. Situational knowledge
(de Jong and Ferguson-Hessler, 1996) enables students to analyze,
identify, and classify a problem, to recognize the underlying con-
cepts, and to decide which operations are required to solve the
problem. There were four multiple-choice items measuring this
type of knowledge on the post-test (see Fig. 5 for an example).
Fig. 4. Textual representational tool.



You throw a die 3 times and you predict that you will throw two sixes 
and a one in random order. What is the characterization of this 
problem?

a. order important; replacement
b. order important; no replacement
c. order not important; replacement
d. order not important; no replacement

Fig. 5. Post-test item measuring situational knowledge.

There is a man at a fair who says he will predict the 2 months in which
you and your companion were born. The man does not have to specify 
who was born in which month. When he correctly predicts both 
months, he wins the stake; when his prediction is not correct, you win 
the stake and can choose a cuddly toy. You and your friend decide to 
take the chance. You were born in July and your friend was born in 
May. What is the chance that the man correctly predicts these months 
and wins?

Fig. 7. Post-test item measuring procedural knowledge.
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Conceptual knowledge is ‘‘implicit or explicit understanding of
the principles that govern a domain and of the interrelations be-
tween units of knowledge in a domain” (Rittle-Johnson, Siegler, &
Alibali, 2001, p. 346). Conceptual knowledge develops by establish-
ing relationships between pieces of information or between exist-
ing knowledge and new information. The post-test contained 13
multiple-choice items aiming at measuring conceptual knowledge
(see Fig. 6 for an example).

Procedural knowledge is ‘‘the ability to execute action se-
quences to solve problems” (Rittle-Johnson et al., 2001, p. 346).
The post-test contained 9 open-ended items aiming at measuring
procedural knowledge (see Fig. 7 for an example).

The correct answers to the items presented in Figs. 5, 6 and 7,
are, respectively: answer C; answer B; and (2/12) � (1/12) = 1/72.
2.7. Procedure

The experiment was carried out in a real school setting in three
sessions, each separated by a 1-week interval. Students worked
individually and they were told that they could work at their
own pace.

The first session started with some background information
with regard to the experiment (general purpose of the research,
the domain of interest, learning goals, etc.). This was followed
by the pre-test. It was announced that the post-test would con-
tain more items of greater difficulty than the pre-test, but that
the pre-test items nonetheless would give an indication of what
kind of items to expect on the post-test. At the end of the pre-test
the students received a short, printed introductory text introduc-
ing the domain. The first session was limited to 50 min in dura-
tion. During the last 15 min of the session, the use of the
learning environment was demonstrated. Use of the representa-
tional tools was demonstrated for students in the experimental
conditions. They were informed of the beneficial effects on learn-
ing of constructing representations and they were told that they
could use the tool any time they wanted while working in the
learning environment. During the second session, students
worked with the learning environment; students in the experi-
mental conditions were encouraged to use the representational
tool to construct a domain representation while working with
You play a game in which you have to throw a die twice. You win 
when you throw a 3 and a 4. Does it matter if these two numbers must
thrown in this specific order? 

a. Yes, if you have to throw the numbers in a specific order your 
chance is greater than when the order doesn’t matter

b. Yes, if you have to throw the numbers in a specific order your 
chance is smaller than when the order doesn’t matter

c. No, both events are equally likely to occur
d. This depends on what the other players in the game throw

Fig. 6. Post-test item measuring conceptual knowledge.
the learning environment. Again they were informed of the ben-
eficial effects of constructing representations and they were told
that they could use the tool any time they wanted while working
in the learning environment. The duration of this session was set
at 70 min. Although it was possible to take a non-linear path
through the learning environment, students were advised to go
through the sections in order because they build upon each other.
While working with the representational tool, some students
asked the experimenter if the quality of the representation they
constructed would count as well for their final grade. They were
told that it was very important to use the tool, that the con-
structed representation could possibly play some role in deter-
mining the grade, but that it in any case would be very helpful
for preparing oneself for the post-test.

The third session was set at 50 min. First, students were allowed
to use the learning environment for 10 min in order to refresh their
memories with regard to the domain. Then all students had to
close their domain representations and learning environments,
and had to complete the post-test. When students finished the test
they were allowed to leave the classroom.
2.8. Data preparation

The domain representations constructed by the students were
scored using a scoring rubric (see Appendix A). This rubric revolved
around the principle that scoring of the domain representation
should not be biased by the representational format of the repre-
sentational tool, that is, all types of representations should be
scored on the basis of exactly the same criteria. The maximum
possible score was 8 points. The rubric was used to assess whether
domain representations reflected the concepts of replacement and
order, presented calculations, referred to the concept of probabil-
ity, and indicated the effects of size of (sub)sets, replacement,
and order on probability.
3. Results

3.1. Use of representational tools

The first aspect of our research question was whether representa-
tional formats have differential effects on the likelihood that stu-
dents engage in constructing representations. Of the 33 students
provided with a conceptual representational tool, 17 students (52
percent) created a domain representation. This was about the same
for students provided with a textual representational tool: 15 of the
32 students (47 percent) constructed a representation. The arith-
metical tool turned out to be used the least: 6 out of 30 students
(20 percent) used the tool. A Chi-square analysis showed these dif-
ferences between conditions were significant, {2(2, N = 95) = 7.45,
p < .05. The data show that the arithmetical format is clearly less
ready-to-hand for creating external representations than the other



Table 1
Quality scores of constructed representations.

Representational format

Conceptual (n = 17) Arithmetical (n = 6) Textual (n = 15)

M SD Min Max M SD Min Max M SD Min Max

Score 2.38 1.03 1 4 2.67 1.97 1 6 2.67 0.98 1 4

6 B. Kolloffel et al. / Computers in Human Behavior 26 (2010) 1–11
two formats. The next question concerns the quality of the represen-
tations created by the students.

In Table 1 the average quality scores of the constructed repre-
sentations as these were assessed with the scoring protocol are
displayed. All representations were scored by two raters who
worked independently. The inter-rater agreement was .89 (Cohen’s
Kappa).

A one-way ANOVA showed that the format in which a represen-
tation was constructed did not influence its quality, F(2, 37) = 0.42,
MSE = 0.62, p = .66.
3.2. Time-on-task

The log files provided data about how much time students spent
on the learning task (see Table 2).

The data presented in Table 2 were analyzed by means of 3 � 2
ANOVA with experimental conditions (Conceptual, Arithmetical,
and Textual) and tool-use as factors. Subsequently, these data are
compared to the control condition. With regard to time-on-task,
no differences were observed between conditions (F(2, 89) = 0.22,
MSE = 60.89, p = .81), tool-use (F(1, 89) = 1.60, MSE = 449.92, p =
.21), and no interaction was observed (F(2, 89) = 0.17, MSE = 46.99,
p = .85). A one-way ANOVA in which the tool-users from each exper-
imental condition and the students from the control condition were
included, showed that tool-users and students in the control condi-
tion spent the same amount of time on the learning task, F(3, 66) =
0.65, MSE = 156.48, p = .59. The same was true for no-tool-users
and students in the control condition, they also spent the same
amount of time on the task, F(3, 85) = 0.26, MSE = 74.19, p = .85.
3.3. Knowledge measures

Two measures of knowledge were obtained: prior knowledge
(pre-test score), and post-test score. The reliability, Cronbach’s a,
was a = .40 for the pre-test and a = .80 for the post-test. The pre-
test reliability was rather low, but sufficient for the purpose of
verifying if students did not have too much prior knowledge and
that there were no differences between conditions. The scores on
the knowledge measures are displayed in Table 3. In this table
and the subsequent analyses a distinction is made for the three
experimental conditions between students who used the represen-
tational tool and those who did not.

The data presented in Table 3 were analyzed by means of 3 � 2
ANOVAs with experimental conditions (Conceptual, Arithmetical,
and Textual) and tool-use as factors. After that, a separate analysis
Table 2
Time-on-task.

No. of experiments Condition

Conceptual (n = 33) Arithmetical

M SD M

Total time-on-task (min.) 69.64 13.95 66.95
Tool-use 70.84 14.17 70.62
No-tool-use 68.38 14.05 66.04
that compares the data of the experimental groups with the con-
trol group is presented.

Students were asked for their latest school report grade in
mathematics. This grade, which can range from 1 (very, very poor)
to 10 (outstanding) was interpreted as an indication of the stu-
dent’s general mathematics achievement level. An ANOVA showed
that there were no differences between conditions with regard to
math grade, F(2, 89) = 0.22, MSE = 0.49, p = .80. With regard to
tool-use a difference was found: students who constructed repre-
sentations (tool-use) in general had somewhat higher math grades
than students who did not use their representational tool to con-
struct a representation, F(1, 89) = 10.01, MSE = 22.38, p < .01. No
interaction between condition and tool-use was found, F(2, 89) =
0.24, MSE = 0.54, p = .79.

With regard to prior knowledge (pre-test score) no differences
were observed between conditions, F(2, 89) = 0.58, MSE = 1.52,
p = .56, tool-use, F(1, 89) = 0.97, MSE = 2.55, p = .33, and no interac-
tion was observed, F(2, 89) = 0.05, MSE = 0.12, p = .96.

Math grade was entered as a covariate in the analysis of learn-
ing outcomes. With respect to overall post-test scores, no differ-
ences were observed between conditions, F(2, 88) = 1.39,
MSE = 20.23, p = .26. A main effect of tool-use was found: students
who constructed a domain representation showed significantly
higher overall post-test scores, F(1, 88) = 5.65, MSE = 82.41,
p < .05, g2

p ¼ :06. No interaction effects were observed between
condition and tool-use, F(2, 88) = 0.24, MSE = 3.53, p = .79.

With regard to conceptual knowledge, no main effect of condi-
tion (F(2, 88) = 1.58, MSE = 4.46, p = .21), tool-use (F(1, 88) = 3.54,
MSE = 9.99, p = .06), or interaction between the two was found
(F(2, 88) = 0.07, MSE = 0.19, p = .94).

In the case of procedural knowledge no main effects were ob-
served for condition (F(2, 88) = 0.59, MSE = 2.58, p = .56) and tool-
use (F(1, 88) = 0.96, MSE = 4.20, p = .33), and no interaction effect
was found (F(2, 88) = 0.76, MSE = 3.31, p = .47).

Regarding situational knowledge, condition did not play a sig-
nificant role (F(2, 88) = 0.93, MSE = 1.45, p = .10), but tool-use did,
F(1, 88) = 9.60, MSE = 14.97, p < .01, g2

p ¼ 0:10. No interaction effect
was observed, F(2, 88) = 0.07, MSE = 0.11, p = .93.

Finally, Pearson product-moment correlation coefficients
between the quality of the constructed representations (in general,
but also for each format) and knowledge type scores were
calculated. No correlations were observed except that between
the quality of representations in general (regardless of format)
and procedural knowledge (r = .33, p < .05).

It could be argued that students who use the representational
tools are more compliant, interested, and motivated and that stu-
(n = 30) Textual (n = 32) Control (n = 32)

SD M SD M SD

17.61 66.64 18.32 65.48 15.57
15.98 70.50 16.85
18.19 63.23 19.38



Table 3
Knowledge measures.

Knowledge measures Condition

Graphical (n = 33) Arithmetical (n = 30) Textual (n = 32) Control (n = 32)

M SD M SD M SD M SD

Math grade (max. 10) 6.46 1.61 5.89 1.55 6.25 1.54 6.27 1.64
Tool-use 7.12 1.52 6.62 1.63 6.73 1.37
No-tool-use 5.75 1.41 5.71 1.51 5.82 1.58

Pre-test (max. 12) 5.70 1.36 5.43 1.85 5.25 1.59 5.47 1.95
Tool-use 5.94 1.39 5.67 1.75 5.40 1.60
No-tool-use 5.44 1.32 5.38 1.91 5.12 1.62

Post-test
Conceptual knowledge (max. 13) 9.21 1.97 9.77 1.50 9.28 1.67 9.06 1.90

Tool-use 9.76 1.64 10.33 0.82 9.80 1.47
No-tool-use 8.63 2.16 9.63 1.61 8.82 1.74

Procedural knowledge (max. 9) 4.15 2.32 3.67 2.70 3.66 2.04 3.75 2.57
Tool-use 4.82 2.33 5.17 3.19 3.87 1.96
No-tool-use 3.44 2.16 3.29 2.49 3.47 2.15

Situational knowledge (max. 4) 2.94 1.25 2.87 1.33 2.66 1.31 2.63 1.36
Tool-use 3.41 1.00 3.67 0.82 3.07 1.22
No-tool-use 2.44 1.32 2.67 1.37 2.29 1.31

Overall score (max. 26) 16.30 4.51 16.30 4.11 15.59 3.98 15.44 4.68
Tool-use 18.00 4.27 19.17 3.82 16.73 3.49
No-tool-use 14.50 4.15 15.58 3.93 14.59 4.21
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Fig. 8. Post-test scores of experimental conditions and control condition.
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dents who do not use the tools are the less compliant, interested
and motivated students. Differences between these groups as they
were found could then be attributed to these characteristics and
not to the factor tool-use. A comparison of the data from the exper-
imental groups with the data from the control group makes this
assumption highly unlikely. Students in the control condition came
from the same population as the students in the experimental con-
ditions. They formed a cross-section of both the group of students
who chose not to use the tool and the group who did use the tool.
The performance of the control group can therefore be considered
average. The supposedly less motivated, compliant, and/or self-
regulated no-tool-users are expected to perform below average,
the tool-users to perform above average. However, the data do
not confirm this expectation as can be observed in Fig. 8.

Fig. 8 indicates that the learning outcomes of students who did
not use a representational tool are equal to learning outcomes in
the control condition. A statistical comparison of the overall
post-test scores of the no-tool-use group and the control condition
confirmed this picture, t(87) = �0.48, p = .63. Furthermore, it was
established that the no-tool-use group and the control condition
obtained equal scores with regard to conceptual knowledge
(t(87) = 0.10, p = .92), procedural knowledge (t(87) = �0.69, p =
.49), and situational knowledge (t(87) = �0.45, p = .65). Therefore,
in terms of learning results the no-tool-use group and the control
condition perform equal.

When the tool-use group and the control condition are com-
pared with each other, it is found that with regard to overall
post-test scores the tool-use group outperformed the control con-
dition, t(68) = 2.19, p < .05, Cohen’s d = .52. Both obtained compara-
ble scores on conceptual knowledge (t(57.45) = 1.96, p = .05) and
procedural knowledge (t(68) = 1.28, p = .21). With regard to situa-
tional knowledge, the tool-use group outperformed the control
condition, t(58.32) = 2.33, p < .05, Cohen’s d = .57.
4. Conclusion and discussion

Constructing a representation of a domain is thought to be
beneficial for learning and understanding (e.g., Cox, 1999). The
format in which such a representation is constructed is assumed
to have differential effects on knowledge construction and do-
main understanding. In the current study three formats for con-
structing representations in the domain of combinatorics and
probability theory have been compared in a between-subjects
pre-test–post-test experiment with three experimental conditions
and one control condition. The three experimental conditions
were provided with a simulation-based inquiry learning environ-
ment that was equipped with a representational tool, that is, a
support tool that could be used by students to construct domain
representations. The experimental conditions differed with re-
spect to the format of the tool, that could be conceptual (i.e., a
concept map), arithmetical, or textual. The following questions
guided this study. Do representational formats have differential
effects on the likelihood that students use the support and engage
in constructing representations? Does format have differential ef-
fects on the quality of the representations students construct?
Does the construction of a representation of a domain lead to bet-
ter learning outcomes than not constructing a representation?
And, if students construct a representation, does format have dif-
ferential effects on domain understanding? In order to gain a
more full understanding of the effects of support in the form of
representational tools, the data of the experimental groups were
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also compared with students in a control condition using the
same learning environment as used in the experimental condi-
tions, but without a representational tool.

The findings show that representational tools with a concep-
tual or a textual format are more readily used than a tool with
an arithmetical format. With regard to tool-use by students, lit-
erature about tool appropriation suggests a distinction between
knowing how to use a tool in the sense of knowing how to oper-
ate it and knowing how to apply or utilize the tool in such a
way that its contribution to the learning process is maximized
(Overdijk, Bernard, van Diggelen, & Baker, 2008; Overdijk &
van Diggelen, 2008). If students understand how to operate the
tool, but do not utilize it as intended by its designers, the extent
to which the tool contributes to the learning process can be re-
duced or take a form that is different from what was intended.
In the current study, operating the representational tools, includ-
ing the arithmetical tool, was learned easily and quickly by stu-
dents. The observation that the arithmetical tool was used less
frequently during the learning process therefore could to have
to do with problems regarding utilizing the tool rather than
operating it. Apparently, the arithmetical format prevented many
students from utilizing the tool, possibly because the format is
too difficult for students to be used to express their understand-
ing and construct a domain representation. This would to some
extent corroborate the observation by Tarr and Lannin (2005)
that students initially avoid using conventional, formal ways of
representing probabilities, using instead alternative
representational forms. When they reach more advanced levels
of knowledge, some of them start using more formal representa-
tions. This could indicate that the affordances of different for-
mats in this domain can change as a function of time and
expertise. Such an expertise reversal effect (Kalyuga, Ayres,
Chandler, & Sweller, 2003) was also observed by Leung, Low,
and Sweller (1997) in the case of learning from arithmetical rep-
resentations. They found that for arithmetically less able stu-
dents, learning from words was more effective than learning
from equations. The formal notations were found to interfere
with learning. However, with practice and increasing expertise,
the formal notations were found to be more effective for learn-
ing than words. In the case of the current study the participants
were novices. Therefore, the arithmetical format might not have
fitted their level of expertise, but it might be suited for students
with advanced levels of expertise. In further research, post-treat-
ment interviews with students could possibly reveal more
about the affordances of the different formats as they perceive
them.

It was found that the construction of a domain representation
in general is related to higher post-test scores. Furthermore, it
was found that constructing representations, regardless of the
format, is associated with significantly higher levels of situa-
tional knowledge. This type of knowledge is a prerequisite for
going beyond the superficial details of problems in order to rec-
ognize the concepts and structures that underlie the problem
and to decide which operations are required to solve it (e.g.,
Fuchs et al., 2004). In the case of probability instruction, the ap-
proach that needs to be taken to solve a problem is very depen-
dent on the correct classification of the problem (Lipson et al.,
2003). The differences could not be attributed to time-on-task.
Students in all conditions and regardless whether or not they
constructed a domain representation, all spent the same amount
of time on their learning task. It was also observed that formats
do not have a differential effect on the quality of the constructed
representations. The post-test scores show that there is no direct
relation between the format of the domain representation and
learning outcomes in terms of conceptual, procedural, or situa-
tional knowledge.

In Section 1 it was discussed that students often have a hard
time understanding the domain of combinatorics and probability
theory. The question was raised as to what could be done to
improve instruction about this domain. In a previous study it
was shown that the representational format in which the domain
is presented to the learners affects learning outcomes (Kolloffel
et al., in press). What the current study adds to the understanding
of how instruction in this domain can be improved is that creat-
ing a representation of the domain can also be beneficial for
learning outcomes. The format used to create this representation
is found to play a critical but indirect role. Although format
affects neither the quality of the representation nor the learning
outcomes, it does influence the likelihood that students engage
in constructing a representation. The activity of constructing a do-
main representation is primarily associated with becoming more
knowledgeable about the problem categories in this domain so as
to identify these categories in problem statements. Choosing a
format that stimulates students to externalize their knowledge
is a useful first step towards having them utilize and take advan-
tage of this type of learning support. The findings also suggest
that it is worthwhile to search for ways in which more students
will engage in constructing representations, for example by
exploring the use and the effects of the representational tools in
a collaborative learning setting. In other studies (e.g., Gijlers &
de Jong, 2005; Gijlers, Saab, van Joolingen, de Jong, & van Hout-
Wolters, 2009; Suthers & Hundhausen, 2003; van Drie et al.,
2005), in which the effects of representational tools were studied
in other domains, they were found to mediate communication
and knowledge construction processes between students. Study-
ing the effects of the collaborative use of representational tools
could be a promising option in the search for new ways to
improve the instruction of combinatorics and probability theory
as well.
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Appendix A

Represented? Conceptual tool Arithmetical tool Textual tool PNT

A The concept of
‘‘replacement”

Literally, or descriptive Two formulas or calculations in
which ‘‘replacement” varies

Literally, or descriptive 1

Examples:
– ‘‘Replacement”
– ‘‘Category 1: without replace-

ment; order important”
– ‘‘. . .[Runners, BK]. . . then you

have to do 1/7 � 1/6 � 1/5
because each time there is
one runner fewer”

Examples:
– ‘‘(1/n) � (1/n) � (1/n) = p(1/n) � (1/

(n � 1)) � (1/(n � 2)) = P”
– ‘‘1/5 � 1/4 � 1/3 � 1/5 � 1/5 � 1/

5”
– ‘‘p = 1/10 � 1/10 � 1/10 p = 1/

5 � 1/4 � 1/3”

Examples:
– ‘‘Replacement”
– ‘‘Category 1: without replace-

ment; order important”
– ‘‘. . .If there are 7 runners, then

the chance is 1 out of 7 (1/7),
if that runner passes the finish,
then there are 6 runners left,
then there is a chance of 1 out
of 6 (1/6), and so on”

B The concept of
‘‘Order”

Literally, or descriptive Two formulas or calculations in
which ‘‘order” varies

Literally, or descriptive 1

Examples:
– ‘‘Order”
– ‘‘Category 1: without replace-

ment; order important”
– ‘‘. . .If there are 7 runners and

you predict the top 3 without
specifying the positions of spe-
cific runners in the top 3. . .”

Examples:
– ‘‘(1/n) � (1/n) � (1/n) (k/

n) � ((k � 1)/n) � ((k � 2)/n)”
– ‘‘1/5 � 1/4 � 1/3 3/5 � 2/4 � 1/3”

Examples:
– ‘‘Order”
– ‘‘Category 1: without replace-

ment; order important”
– ‘‘. . .At a game of Bingo, order is

not important”

C Calculation Formal, literally, descriptive, or a
concrete calculation

Formal (formula) or a concrete
calculation

Formal, literally, descriptive, or a
concrete calculation

1

Examples:
– p = acceptable outcomes/possi-

ble outcomes1/5 � 1/4 � 1/3
– . . . when you also bet ont he

order in which the marbles will
be selected, your chance is: 1/5
and 1/4 is 1/20. . .”

Examples:
– ‘‘(1/n) � (1/n) � (1/n)”
– ‘‘1/5 � 1/4 � 1/3”

Examples:
– p = acceptable outcomes/possi-

ble outcomes
– 1/5 � 1/4 � 1/3
– . . . when you also bet ont he

order in which the marbles will
be selected, your chance is: 1/5
and 1/4 is 1/20. . .”

D Probability Literal reference to the term
‘‘probability”/p, or a description of
the concept

Literal reference to the term ‘‘p” Literal reference to the term
‘‘probability”/p, or a description of
the concept

1

Expression of a concrete
probability (e.g., a fraction), but
then it need to be made clear in
the context (e.g., by a calculation)
where the probability comes from

Expression of the outcome of a
calculation

Expression of a concrete
probability (e.g., a fraction), but
then it need to be made clear in
the context (e.g., by a calculation)
where the probability comes from

Examples:
– ‘‘In order to calculate ‘p’ the

chances need to be multiplied”
– p = 1/5 � 1/4 � 1/3
– ‘‘. . .In that case [student refers

to a situation outlined earlier],
the probability is 1/10”

Examples:
– ‘‘p = (1/n) � (1/n) � (1/n)”
– ‘‘p = 1/5 � 1=4 � 1/3”
– ‘‘1/5 � 1/4 � 1/3 = 1/60”

Examples:
– ‘‘In order to calculate ‘p’ the

chances need to be multiplied”
– p = 1/5 � 1/4 � 1/3
– ‘‘. . .In that case [student refers

to a situation outlined earlier],
the probability is 1/10”

E Effect of n on
probability

Descriptive or on basis of
calculations showing the effect
(in the latter case, k needs to be
constant)

A formula or a series of calculations
showing the effect (in the latter case,
k needs to be constant)

Descriptive or on basis of
calculations showing the effect
(in the latter case, k needs to be
constant)

1

Examples:
– ‘‘fewer options = higher

chance”
– ‘‘If fewer runners attend the

race, the chance your predic-
tion is correct will increase”

Examples:
– ‘‘(1/n) � (1/n) � (1/n) = 1/n3”
– ‘‘1/5 � 1/4 � 1/3 = 1/60 1/6 � 1/

5 � 1/4 = 1/120”

Examples:
– ‘‘If the number of elements you

can choose from increases, the
chance will be smaller that you
will select a specific element”

– ‘‘If fewer runners attend the
race, the chance your predic-
tion is correct will increase”

(continued on next page)
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Appendix A (continued)

Represented? Conceptual tool Arithmetical tool Textual tool PNT

F Effect of k on
probability

Descriptive or on basis of
calculations showing the effect
(in the latter case, n needs to be
constant)

A formula or a series of calculations
showing the effect (in the latter case,
k needs to be constant)

Descriptive or on basis of
calculations showing the effect
(in the latter case, n needs to be
constant)

1

Examples:
Ù ‘‘with 1 choice ? 1/possible;

with more choices ? number
of choices/possible outcomes”

– ‘‘If you only predict who will
win the race and not the top
3, then the chance is greater
that your prediction will be
correct”

Examples:
– ‘‘(1/n) � (1/n) = 1/n2

– (1/n) � (1/n) � (1/n) = 1/n3”
– ‘‘1/5 � 1/4 = 1/20 1/5 � 1/4 � 1/

3 = 1/60”

Examples:‘‘When your prediction
is less elaborate, the probability
that your prediction will be
correct increases”‘‘If you only
predict who will win the race and
not the top 3, then the chance is
greater that your prediction will
be correct”

G Effect of
replacement
on probability

Descriptive or on basis of
calculations showing the effect
(in the latter case, n and k need to
be constant)

A series of formulas or calculations
showing the effect, but the outcome
(p) needs to be represented as well
and n and k need to be constant

Descriptive or on basis of
calculations showing the effect
(in the latter case, n and k need to
be constant)

1

Examples:
– ‘‘If it is a matter of replace-

ment, your chances will
decrease”

– ‘‘. . .if you have 10 different cell
phones and you need to select
one, your chance will be 1 out
of 10, if you put the phone back
your chance will be 1 out of 10
again, but if you leave it out
your chance will increase that
you will select the next phone
as predicted”

Examples:
– ‘‘(1/n) � (1/n) = 1/n2(1/n) � (1/

(n � 1)) = 1/(n2 � n)”
– ‘‘1/5 � 1/4 � 1/3 = 1/60 1/5 � 1/

5 � 1/5 = 1/125”

Examples:
– ‘‘If it is a matter of replace-

ment, your chances will
decrease”

– ‘‘. . .if you have 10 different cell
phones and you need to select
one, your chance will be 1 out
of 10, if you put the phone back
your chance will be 1 out of 10
again, but if you leave it out
your chance will increase that
you will select the next phone
as predicted”

H Effect of order
on probability

Descriptive or on basis of
calculations showing the effect
(in the latter case, n and k need to
be constant)

A series of formulas or calculations
showing the effect, but the outcome
(p) needs to be represented as well
and n and k need to be constant

Descriptive or on basis of
calculations showing the effect
(in the latter case, n and k need to
be constant)

1

Examples:
– ‘‘ If order is important, the

chance your prediction will be
right will decrease”

– ‘‘. . .If there are 7 runners and
you predict the top 3, then the
probability is 1/7 � 1/6 � 1/
5 = 1/210, but without specify-
ing the positions of specific
runners in the top 3 the proba-
bility is 3/7 � 2/6 � 1/5 = 6/
210. . .”

Examples:
– ‘‘(1/n) � (1/n) = 1/n2(k/

n) � ((k � 1)/n) = (k2 � k)/n2”
– ‘‘1/5 � 1/4 � 1/3 = 1/60 3/5 � 2/

4 � 1/3 = 6/60”

Examples:
– ‘‘ If order is important, the

chance your prediction will be
right will decrease”

– ‘‘. . .If there are 7 runners and
you predict the top 3, then the
probability is 1/7 � 1/6 � 1/
5 = 1/210, but without specify-
ing the positions of specific
runners in the top 3 the proba-
bility is 3/7 � 2/6 � 1/5 = 6/
210. . .”

Maximum number of points 8
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