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This paper deals with the synthesis of the motion of the center of mass (CoM) of linkages as
being a stationary or invariant point at one of its links. This is of importance for the design
of inherently shaking force balancedmechanisms, static balancing, andother branches ofmechanical
synthesis.
For this purpose Fischer's mechanism is investigated as being a composition of pantographs. It
can be shown that linkages that are composed of pantographs and of which all links have an
arbitrary CoM can be inherently balanced for which Fischer's method is a useful tool.
To calculate the principal dimensions for which linkages have their CoM at an invariant link
point, an approach based on linear momentum is proposed. With this approach it is possible
to investigate each degree-of-freedom individually. Equivalent Linear Momentum Systems are
proposed to facilitate the calculations in order to use different convenient reference frames.
The method is applied to planar linkages with revolute joints, however it also applies to linkages
with other types of joints. As a practical example a shaking force and shaking moment balanced
2-DoF grasper mechanism is derived.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Analysis of the motion of the center of mass (CoM) of a system of rigid bodies is important in many applications. For this analysis
the computer is often of great help. However in the past, investigations had to be done by hand calculations. Geometric understanding
in combination with graphic solutions then was highly important in order to facilitate the laborious calculations.

One illustrative example is presented in the studies by the German biomechanician Otto Fischer around 1900. He was involved
in studying the motion of living creatures (human beings and animals) and approached them as systems of rigid bodies. To reduce
the effort of calculating the internal forces and moments, he was particularly interested in the motion of the CoM of the system.
He published various books considering these studies of which one published in 1906 [1] may be the most interesting.

For his studies, Fischer introduced a method to geometrically trace the CoM of multiple jointed rigid elements. This method
was named the method of principal vectors by Lowen and Berkof [2]. Well known is the application of this method to the three
degrees-of-freedom (DoF) chain shown in Fig. 1. The three principle links are jointed together with revolute pairs at G1,2 and
G2,3. The CoMs of these links are S1, S2, and S3. On each of these links a principal point Hi is determined. Subsequently with a geometric
construction of lines that are parallel to linesG1,2H1, G1,2H2, G2,3H2, andG2,3H3, point S0 is determined being the CoM of the three links.
Physically, these parallel lines can be jointed (massless) links, leaving the DoFs of the linkage unaffected. For all motion, point S0 is the
location of the CoM of the linkage. Since this point is fixed in at least one of the links, in this case on both links H1,2S0 and H2,3S0, it is
referred to in this paper as an invariant link point.
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Fischer proved that his method works for a variety of simple and complex, open and closed chains of any number of elements.
In [1], examples are shown of a chain of six links and of a spatial system of twenty elements with multiple open and closed chains.
Fischer limited himself mainly to mass symmetric links, i.e. links of which the CoM is at the line connecting the joints.

Fischer's method is described by various authors. Wittenbauer in 1923 developed Fischer's method by applying it to some
more complex closed chains and by illustrating the procedure of applying the method to parallel linkages [3]. Among others,
Beyer [4] and Federhofer [5] summarized the method while Kreutziger [6] and Wunderlich [7] applied Fischer's method to
show that the motion of the CoM of a 4R-four-bar mechanism describes a curve similar to a coupler-curve of the mechanism.

Nowadays Fischer's method remains interesting for the field of dynamic balancing and static balancing. In order to balance all
shaking forces, i.e. to make the resultant dynamic reaction forces on the base of the mechanism zero, the CoM of the mechanism
should remain stationary (or move with constant velocity). One approach to static balancing is also to have a stationary CoM.
Fischer already related his method with shaking force balancing and studied the balancing of a crank-slider mechanism [1]. In
1957, Shchepetil'nikov [8] used Fischer's method and introduced the method of double contour transformation to find auxiliary
mechanisms that describe themotion of the CoM of a linkage, not being restricted to four-bar mechanisms as in [6,7]. These auxiliary
mechanisms were force balanced with additional counter-masses in order to make the CoM of the system stationary.

Hilpert in 1965 showed how in addition to Fischer's method a pantograph with counter-mass can be used to bring the CoM of a
mechanism to a stationary position [9]. Shchepetil'nikov in 1975 extended themethod of principle vectors by applying it to systems of
unsymmetrical links, i.e. links with arbitrary CoM [10].

More recently, Agrawal et al. presented some articles, including notably [11], in which they mounted the mechanism of Fig. 1
on a pin at the CoM at S0. The CoM then is stationary and the mechanism becomes a two degree-of-freedom (DoF) shaking force
balancedmanipulator. They also considered themass of the parallel links and showed experimentally that this mass can be included
such that point S0 is the CoM of the complete linkage. However, theoretically the problem of including these masses was not solved.
Their research was also restricted to mass symmetric links.

The advantage of applying Fischer's method for the purpose of force balancing is that no additional balancing elements such as
counter-masses are needed. This results in balanced linkages that have a relatively low mass and inertia [12,13], which is
advantageous for having, among others, low input torques, increased payload capabilities, and low bearing forces [14,15]. In
fact, Fischer's mechanism is an example of what will here be referred to as an inherently force balanced linkage, i.e. a linkage
that is kinematically arranged such that its CoM is at an invariant point in one of its links.

Although Fischer's method is well known and widely applied, the physical meaning of the principal points (and therefore the
principal vectors) is not clear.

The purpose of this paper is twofold. It has the purpose to clarify the physical meaning of the principal points by showing that
Fischer'smethod consists of a union of pantograph linkages, which proves that solutions exist evenwhen all links have an arbitrary CoM.
In addition, the paper has the purpose to propose amore fundamental approach to the calculations of the principal points. This approach
is based on linear momentum equations, which for each DoF of the linkage can be investigated individually. The study concentrates on
planar linkages with revolute joints, but this is not a fundamental restriction.

First the physical meaning of the principal points will be given scientific basis by studying the pantograph linkage. Then the
derivation of Fischer's linkage of Fig. 1 from a union of pantograph linkages is presented. By using linear momentum equations
and an equivalent linear momentum system, the principal points of the generalized Fischer's mechanism in which each link
has an arbitrary CoM are calculated. Subsequently it is shown how this method can be applied to more complex linkages.

Fig. 1. Fischer's mechanism to trace the CoM of three links at S0 by additional links [1].
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2. CoM at invariant link point of a 2-DoF pantograph linkage

In this section the principal points of a pantograph are studied and determined. An approach by linear momentum equations is
compared to a common approach to derive the balancing conditions of a pantograph.

Because of their properties of similarity, pantographs are well known for the purpose of shaking force balancing [9,16–18].
Fig. 2 shows the commonly applied pantographwhich can be considered a specific version of Sylvester's pantograph or a modified
version of Scheiner's pantograph [19]. Characteristic of a pantograph is that the links form a parallelogram.

In Fig. 2a a massless pantograph is shown of which point B traces the CoM of the two massesmA andmB for any motion of the
pantograph if mAe1=mBe2. This joint forms a revolute joint between links AB and BC and is therefore an invariant link point of
each of these links. The pantograph has two DoFs with respect to any invariant link point of the mechanism. From the similarity
ΔABQ~ΔCRB it follows that e1/e2=e1′/e2′=e1″/e2″=k with k being a constant, which leads to the conditions mAe1′=mBe2′ and
mAe1″=mBe2″. These conditions are also obtained from Fischer's method, which states that the principle point on link DQ is
found by calculating the CoM of mA at Q and mB considered to be at point D. The principle point on link DR then is found by
calculating the CoM of mA considered to be at D and mB at R. The resulting principal points of the linkage are points A and C.

Fig. 2b shows a generalized version of the pantograph including arbitrary CoMs in each pantograph link. Points Q and R here
can be interpreted as the effective mass locations of the pantograph. The common way to determine the conditions for which B is
the CoM of the complete linkage is to develop the equations of the CoM position. Another possibility is to develop the linear momentum
equations, which describe the motion of the CoM. These two approaches will be compared.

Assuming B to be the origin of the reference frame xy, the position of the CoM of the pantograph of Fig. 2b can be written
as

CoM ¼ m2
p2cθ2−q2sθ2
p2sθ2 þ q2cθ2

� �
þm3

p3cθ1 þ q3sθ1
p3sθ1−q3cθ1

� �
þm1

e″1cθ2−p1cθ1−q1sθ1
e″1sθ2−p1sθ1 þ q1cθ1

" #
þmA

e″1cθ2−pAcθ1−qAsθ1
e″1sθ2−pAsθ1 þ qAcθ1

" #

þm4
e′2cθ1−p4cθ2 þ q4sθ2
e′2sθ1−p4sθ2−q4cθ2

" #
þmB

e′2cθ1−pBcθ2 þ qBsθ2
e′2sθ1−pBsθ2−qBcθ2

" #
ð1Þ

In order to find the conditions for which the CoM is stationary at B, these equations should be equal to zero for all motion, i.e.
for any value of the time dependent parameters cos θ1, sin θ1, cos θ2, and sin θ2. Rearranging the equations by writing them in
terms of these four time dependent variables then results in the four conditions that need to hold

m2q2 ¼ m4q4 þmBqB ð2Þ

m3q3 ¼ m1q1 þmAqA ð3Þ

m1 þmAð Þe″1 þm2p2 ¼ m4p4 þmBpB ð4Þ

m4 þmBð Þe′2 þm3p3 ¼ m1p1 þmApA ð5Þ

This procedure for this relatively simple linkage requires already a considerable effort, especially for the rearrangement of the
equations.

By using the linear momentum equations per DoF independently, these conditions can be found more conveniently. The linear
momentum for the first DoF θ1 is written with respect to reference frame x1y1 when θ̇2=0 being

Lx1
Ly1

� �
¼ m4 þmBð Þe′2 þm3p3−m1p1−mApA

−m3q3 þm1q1 þmAqA

� �
θ̇1 ð6Þ
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Fig. 2. (a) Pantograph mechanism with the CoM of masses mA and mB at B, which is an invariant point in both links AB and BC; (b) The CoM of the masses mA and
mB and the pantograph link masses m1, m2, m3, and m4 is at B for any motion of the linkage.
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The linear momentum for the second DoF θ2 is written with respect to reference frame x2y2 when θ̇1=0 and becomes

Lx2
Ly2

� �
¼ m1 þmAð Þe″1 þm2p2−m4p4−mBpB

þm2q2−m4q4−mBqB

� �
θ̇2 ð7Þ

This way, the conditions for which B is the mechanism CoM, for which the linear momentum equations need to be zero for all
motion, are readily found.

Generally, the main advantages of using linear momentum equations are that solely the moving masses are considered for
which constant terms (e.g. positions) do not appear, and that different reference frames for each DoF can be used. This results in having
as many equations as conditions to find (two per DoF), while with the CoM position there are just two equations, independent of the
linkage.

The complete set of principal dimensions of the pantograph of Fig. 2b are calculated with

e′1 ¼ m1p1 þmApA−m3p3
m1 þmA

e′2 ¼ m1p1 þmApA−m3p3
m4 þmB

ð8Þ

e″1 ¼ m4p4 þmBpB−m2p2
m1 þmA

e″2 ¼ m4p4 þmBpB−m2p2
m4 þmB

ð9Þ

Herewith the positions of Q and R are known.

3. CoM at invariant link point of a 3-DoF chain of 9 links

3.1. Derivation of Fischer's mechanism

The combined CoM of the three links of Fischer's mechanism in Fig. 1 can be traced by pantographs in various ways, as illustrated in
Fig. 3. Fig. 3a shows a solution with two pantographs which both are fully auxiliary and can be applied in three different ways. Shown is
the result when a first pantograph traces the CoMofm1 andm3 and a second pantograph traces the CoMofm1+m3 andm2, which is the
CoMof all links. It is also possible (not shown) to have a first pantograph trace the CoMofm1 andm2 or the CoMofm2 andm3. For each of
the three ways eight links are added to the mechanism.

Fig. 3b shows a solution with two pantographs of which one traces the CoM ofm1 andm2 and has two links incorporated with
principal links 1 and 2. The second pantograph is fully auxiliary and traces the CoM of all links. This solution can be applied in two
different ways for which in each case a total of six links is added.

In Fig. 3c three pantographs are used to trace the CoM. Two of them have two links incorporated with the principal links 1, 2,
and 3 and one is fully auxiliary. The two incorporated pantographs trace the CoM of m1 and part of m2, and the remaining part of
m2 and m3, respectively, while the auxiliary pantograph traces the CoM of all links. In total eight links are added to the
mechanism.

Fischer's mechanism can be derived from the configuration of Fig. 3c by unifying the three pantographs which will be
explained graphically in three steps. The first step is to have the auxiliary pantograph be parallel to the other two for any motion
of the linkage, as shown in Fig. 3d. In this intermediate result the kinematics of the auxiliary pantograph remain unchanged by an
additional parallelogram at each side. This implies that point P2 must be an invariant link point in link 2 and therefore the
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Fig. 3. (a) CoM of three links traced by two auxiliary pantographs; (b) CoM traced by one incorporated pantograph and one auxiliary pantograph; (c) CoM traced
by two incorporated pantographs and one auxiliary pantograph; (d) Deduced from (c) when theauxiliary pantograph is parallel to the two incorporated pantographs;
(e) Deduced from (d) when parallelograms are united; (f) Specific dimensions for which Fischer's configuration is obtained.
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parallelograms at each side of the auxiliary pantograph can be united to a single parallelogram. This results in the configuration of
Fig. 3e in which two new incorporated pantographs appear. Without effecting the kinematics, the dimensions of the links can be
adapted to the configuration of Fig. 3f with which Fischer's mechanism is obtained.

The newly incorporated pantograph on the left is tracing the CoM of m2+m3 at K1 and m1. The right pantograph traces the
CoM ofm1+m2 at K2 andm3. K1 represents the CoM ofm3 considered at A2 andm2, while K2 represents the CoM ofm1 considered
at A1 and m2.

The principal points of Fischer's mechanism are P1, P2, and P3. Equivalent to the pantograph of Fig. 2, these points are the joints
of the pantographs.

3.2. Fischer's mechanism with arbitrary CoMs in each link

Generalizing Fischer'smechanismby including arbitrary CoMs in each link results in the configuration of Fig. 4,which is a 3-DoF chain
of 9 links. The masses of the principle links jointed at A1 and A2, m1, m2, and m3, are located at positions M1, M2, and M3, respectively.
Themassesmij of the other links are located at distancespij along and at distances qijnormal to the line connecting the joints, respectively.
The mechanism has three DoFs with respect to any invariant link point which are indicated with the angles of the principle links θ1, θ2,
and θ3.

When the locations of the principal points P1, P2, and P3 are known, all principal dimensions of the mechanism are determined.
In order to find the principle points, lengths a1, a21, a23, and a3 and angles α1 and α3 need to be calculated.

Length a1 and angle α1 can be calculatedwith the linearmomentum equations for θ1, having θ̇2= θ̇3=0. This can be interpreted as
having parallelograms A1P1B1P2 and P2B1SB2 movewith respect to parallelogram A2P2B2P3. With S chosen as invariant link point to be
the mechanism CoM for all motion, the linear momentum of the moving masses must be equal to the linear momentum of the total
mass of the mechanismmtot moving at S.

For an instantaneous position of the mechanism, a practical reference frame x1y1 is chosen to be perpendicular and parallel to
the line a1, respectively, as indicated in Fig. 4. With parallelogram A2P2B2P3 being stationary with respect to the reference frame,
the linear momentum equations of the mechanism can be written as

Lx1 ¼ m1s1cosα1 þ m11 þm33ð Þa1 þm12p12 þm13p13ð Þθ̇1 ¼ mtota1θ̇1 ð10Þ

Ly1 ¼ −m1s1sinα1 þm12q12 þm13q13ð Þθ̇1 ¼ 0 ð11Þ
with mtot=m1+m2+m3+m11+m12+m13+m31+m32+m33. These linear momentum equations are constant for all motion
for the conditions

m1s1cosα1 þ m11 þm33−mtotð Þa1 þm12p12 þm13p13 ¼ 0 ð12Þ

−m1s1sinα1 þm12q12 þm13q13 ¼ 0 ð13Þ

When the mass values and the CoMs of the links are known, α1 and a1 become

α1 ¼ sin−1 m12q12 þm13q13
m1s1

� �
ð14Þ
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Fig. 4. A 3-DoF chain of 9 links with an arbitrary CoM in each link. Invariant link point S is the CoM of the complete mechanism.
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a1 ¼ m1s1cosα1 þm12p12 þm13p13
mtot−m11−m33

ð15Þ

Similarly α3 and a3 can be calculated with the linear momentum equations for θ3, having θ̇1= θ̇2=0. Then parallelograms
A2P2B2P3 and P2B1SB2 move with respect to parallelogram A1P1B1P2, which is stationary with respect to reference frame x3y3.
The linear momentum equations of the mechanism then write

Lx3 ¼ m3s3cosα3 þ m31 þm13ð Þa3 þm32p32 þm33p33ð Þθ̇3 ¼ mtota3θ̇3 ð16Þ

Ly3 ¼ m3s3sinα3−m32q32−m33q33ð Þθ̇3 ¼ 0 ð17Þ

These equations are constant for all motion for the conditions

m3s3cosα3 þ m31 þm13−mtotð Þa3 þm32p32 þm33p33 ¼ 0 ð18Þ

m3s3sinα3−m32q32−m33q33 ¼ 0 ð19Þ

with which α3 and a3 are calculated with

α3 ¼ sin−1 m32q32 þm33q33
m3s3

� �
ð20Þ

a3 ¼ m3s3cosα3 þm32p32 þm33p33
mtot−m31−m13

ð21Þ

For the calculation of a21 and a23, the linear momentum equations for θ2 are written, having θ̇1= θ̇3=0. Then parallelograms
A1P1B1P2 and A2P2B2P3 move with respect to parallelogram P2B1SB2. It turns out to be useful to first write the linear momentum of
the mechanism with respect to the three different reference frames x21y21, x23y23, and x2y2 and unifying them afterwards. With
P2B1SB2 being stationary with respect to each reference frame, the linear momentum of the mechanism is written with the six
equations

Lx21 ¼ m1a21 þm11p11ð Þθ̇2 Ly21 ¼ m11q11ð Þθ̇2
Lx23 ¼ m3a23 þm31p31ð Þθ̇2 Ly23 ¼ −m31q31ð Þθ̇2
Lx2 ¼ m2c2ð Þθ̇2 Ly2 ¼ 0

ð22Þ

These equations were obtained by writing the linear momentum of m1 andm11 with respect to frame x21y21, m3 and m31 with
respect to frame x23y23, and m2 with respect to frame x2y2. Since joint S is stationary, the term mtot does not appear in the
equations.

To unify the linear momentum equations to a single reference frame, the relations among the reference frames could be defined.
However, this gives complications since the relations (e.g. angles among reference frames) depend on P2, which is yet to be found.
Another way is to project the linear momentum of the mechanism onto link A1A2. This means that the moving masses of the
mechanism are projected on link A1A2 such that the linear momentum equations derived from this projection are equal to
the original linear momentum equations. Since element A1A2 rotates about P2 and since its linear momentummust be constant,
P2 then is the CoM of the projected masses.

Fig. 5 shows the mass projection for the linear momentum Eq. (22), which is referred to as the Equivalent Linear Momentum
System (ELMS). Masses m1, m2, and m3 are projected at A1, M2, and A2, respectively, a mass m11 is projected at both I1 and J1,
and a massm31 is projected at both I2 and J2. It can be verified that the equations of the linear momentum of the ELMS with respect to
the three reference frames are equal to Eq. (22).
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J2 J1
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a21 a23
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m3m11 m31
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Fig. 5. Equivalent Linear Momentum System for θ2 to find P2; the moving masses are projected on link A1A2 by which P2 is the CoM of the mass projection.
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Since P2 is the CoM of the projected masses, the linear momentum can be written from the ELMS in [x y z]T notation as

→
L ¼ u1·

→
A1P2 � ẑ þ v1·

→
A1P2 þ u2·

→
A2P2 � ẑ−v2·

→
A2P2 þ u3·

→
M2P2 � ẑ

� �
θ̇2 ¼ →

0 ð23Þ

with unit vector z ̂=[0 0 1]T and

u1 ¼ m1 þ
m11p11
a21

u2 ¼ m3 þ
m31p31
a23

u3 ¼ m2

v1 ¼ m11q11
a21

v2 ¼ m31q31
a23

ð24Þ

in which a21 ¼ →A1P2
��� ��� and a23 ¼ →A2P2

��� ���. The only unknown in the equation is
→
P2 . The cross product with unit vector ẑ is used to

calculate perpendicular directions within the xy-plane.
When distances q11 and q31 are zero and the ratios p11

a21
¼ λ1 and p31

a23
¼ λ2 are known, for instance if m11 is halfway length a21 by

which λ1 ¼ 1
2, an algebraic solution for P2 can be found which is

P2 ¼ u1
→
A1 þ u2

→
A2 þ u3

→
M2

u1 þ u2 þ u3
ð25Þ

with u1=m1+m11λ1, u2=m3+m31λ2, and u3=m2. In fact this solution implies that P2 is the CoM of masses with values u1, u2,
and u3 positioned at positions A1, A2, andM2, respectively. When q11 and q31 are unequal to zero, finding an algebraic equation for
P2 becomes difficult because of the dependency of positions I1, I2, J1, and J2 and lengths a21, a23, and c2 on P2. P2 then needs to be
found numerically.

From Fischer's method, P2 in Fig. 3f is the CoM ofm1 considered at A1,m2 atM2, andm3 considered at A2, which is true when in
the ELMS m11 and m31 are zero.

4. CoM at invariant link point of a 4-DoF chain of 16 links

In this section, the principal points are calculated of the 4-DoF chain of 16 links with arbitrary mass distribution of Fig. 6. It will
be shown that the principal points of extended chains are determined in a similar way as the 3-DoF chain of 9 links.

As for Fischer's mechanism, themechanism of Fig. 6 can also be derived from a union of pantographs. The pantograph representation
is shown in Fig. 7a, consisting of in total six pantographs. Three of these pantographs have each two links incorporatedwith the principle
links. Equivalently as for Fisher's mechanism in Fig. 3, the mechanism of Fig. 7b can be derived from Fig. 7a.

The masses of the four principle links are m1, m2, m3, and m4, which are located at positions M1, M2, M3, and M4, respectively.
Themassesmij of the other links are located at distancespij along and at distances qijnormal to the line connecting the joints, respectively.
The mechanism has four DoFs with respect to any invariant link point which are indicated with the angular velocities of the principle
links θ̇1, θ̇2, θ̇3, and θ̇4.

Also for this mechanism holds that when the four principle points P1, P2, P3, and P4 are known, all principal dimensions of the
mechanism are determined. Principle points P1 and P4 are calculated equivalently as P1 and P3 in Fig. 4, while P2 and P3 are
obtained with an ELMS as P2 in Fig. 5.
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P1, which is defined by a1 and α1, can be calculated with the linear momentum equations for θ1 with θ̇2= θ̇3= θ̇4=0. This can
be seen as having parallelograms A1P1B1P2, P2B1C1B2, and B2C1SC2 move with respect to A2P2B2P3, P3B2C2B3, and A3P3B3P4 with the
latter parallelograms being stationary with respect to reference frame x1y1. The linear momentum equations write

Lx1 ¼ m1s1cosα1 þ m11 þm32 þm44ð Þa1 þm12p12 þm13p13 þm14p14ð Þθ̇1 ¼ mtota1θ̇1 ð26Þ

Ly1 ¼ −m1s1sinα1 þm12q12 þm13q13 þm14q14ð Þθ̇1 ¼ 0 ð27Þ

with mtot=m1+m2+m3+m4+m11+m12+m13+m14+m21+m22+m31+m32+m41+m42+m43+m44. These equations are
constant for all motion for the conditions

m1s1cosα1 þ m11 þm32 þm44−mtotð Þa1 þm12p12 þm13p13 þm14p14 ¼ 0 ð28Þ

−m1s1sinα1 þm12q12 þm13q13 þm14q14 ¼ 0 ð29Þ

With the mass values and their locations at their links known, α1 and a1 become

α1 ¼ sin−1 m12q12 þm13q13 þm14q14
m1s1

� �
ð30Þ

a1 ¼ m1s1cosα1 þm12p12 þm13p13 þm14p14
mtot−m11−m32−m44

ð31Þ

Equivalently P4 can be calculated for θ4 with θ̇1= θ̇2= θ̇3=0. Then parallelograms A3P3B3P4, P3B2C2B3, and B2C1SC2 move with
respect to A1P1B1P2, P2B1C1B2, and A2P2B2P3 with the latter parallelograms being stationary with respect to reference frame x4y4.
The linear momentum writes

Lx4 ¼ m4s4cosα4 þ m41 þm22 þm14ð Þa4 þm42p42 þm43p43 þm44p44ð Þθ̇4 ¼ mtota4 θ̇4 ð32Þ

Ly4 ¼ m4s4sinα4−m42q42−m43q43−m44q44ð Þθ̇4 ¼ 0 ð33Þ

These equations are constant for all motion for the conditions

m4s4cosα4 þ m41 þm22 þm14−mtotð Þa4 þm42p42 þm43p43 þm44p44 ¼ 0 ð34Þ

m4s4sinα4−m42q42−m43q43−m44q44 ¼ 0 ð35Þ

The equations for α4 and a4 then become

α4 ¼ sin−1 m42q42 þm43q43 þm44q44
m4s4

� �
ð36Þ

a4 ¼ m4s4cosα1 þm42p42 þm43p43 þm44p44
mtot−m41−m22−m14

ð37Þ

P2 can be calculated with the ELMS shown in Fig. 8a. This is obtained by calculating the linear momentum of m1 and m11 with
respect to reference frame x21y21, the linear momentum ofm2 with respect to x2y2, and the linear momentum ofm3,m4,m41,m42,
m21, and m22 with respect to x23y23.
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Fig. 7. (a) Six pantographs represent the configuration of Fig. 6; (b) Configuration when pantographs are unified.
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For P2 with θ̇1= θ̇3= θ̇4=0, for which parallelograms P2B1C1B2 and B2C1SC2 are stationary with the reference frames, the linear
momentum can be written as

→
L ¼ u1·

→
A1P2 � ẑ þ v1·

→
A1P2 þ u2·

→
A2P2 � ẑ−v2·

→
A2P2 þ u3·

→
M2P2 � ẑ

� �
θ̇2 ¼ →0 ð38Þ

with

u1 ¼ m1 þ
m11p11
a21

v1 ¼ m11

u2 ¼ m3 þm4 þm41 þm42 þ
m21p21 þm22p22

a23
v2 ¼ m21 þ

m22q22
q21

u3 ¼ m2

ð39Þ

being the projected masses at A1, A2, M2, J1, and J2, respectively.
P3 can be calculated with the ELMS shown in Fig. 8b. This is obtained by calculating the linear momentum of m1, m2, m11, m12,

m31, and m32 with respect to reference frame x32y32, the linear momentum of m3 with respect to x3y3, and the linear momentum
of m4, and m41 with respect to x34y34.

For P3 with θ̇1= θ̇2= θ̇4=0 with parallelograms P3B2C2B3 and B2C1SC2 being stationary with the reference frames, the linear
momentum can be written as

→
L ¼ u4·

→
A2P3 � ẑ þ v4·

→
A2P3 þ u5·

→
A3P3 � ẑ−v5·

→
A3P3 þ u6·

→
M3P3 � ẑ

� �
θ̇3 ¼ →0 ð40Þ

with

u4 ¼ m1 þm2 þm11 þm12 þ
m31p31 þm32p32

a32
v4 ¼ m31 þ

m32q32
q31

u5 ¼ m4 þ
m41p41
a34

v5 ¼ m41

u6 ¼ m3

ð41Þ

being the projected masses at A2, A3, M3, J4, and J5, respectively.

5. CoM at invariant link point of a 4-DoF chain of 19 links

A 4-DoF chain of 16 links can also be arranged with multiple chains as in Fig. 9a. This planar mechanism is derived from a
union of six pantographs, resulting in six parallelograms. This can be applied in three different ways. Shown is the solution centered
around principle link 11, while this is also possible with principle links 21 and 31. When the three solutions are combined, this results
in the overconstraint mechanism of Fig. 9b.

Fig. 10 shows the mechanism of Fig. 9b including an arbitrary CoM of each link. The principle points are P1, P11, P21, and P31,
which determine all principal dimensions of the mechanism and are calculated equivalently to the principal points of the linkages
in Figs. 4 and 6.

The masses of the principle links are m1, m11, m21, and m31 which are located at M1, M11, M21, and M31, respectively. The
massesmijk of the other links are located at distances pijk along and at distances qijk normal to the line connecting the joints, respectively.
The four DoFs are indicated with angular velocities θ̇1, θ̇11, θ̇21, and θ̇31.

P11, which is defined by a11 and α11, is calculated for θ11 with θ̇1= θ̇21= θ̇31=0. With respect to reference frame x111y111 the
linear momentum equations can be written with

Lx111 ¼ m11s11cosα11 þ m111 þm214 þm215 þm313 þm314ð Þa11 þm112p112 þm113p113 þm114p114 þm115p115ð Þθ̇11
¼ mtota11 θ̇11

ð42Þ

Ly111 ¼ −m11s11sinα11 þm112q112 þm113q113 þm114q114 þm115q115ð Þθ̇11 ¼ 0 ð43Þ
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Fig. 8. Equivalent Linear Momentum Systems for (a) θ2 to find P2 (b) θ3 to find P3. P2 and P3 are the CoMs of their mass projections.
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with mtot=m1+m11+m21+m31+Σi=1
5 (m11i+m21i+m31i). The conditions for which these equations are constant for all motion

are

m11s11cosα11 þm112p112 þm113p113 þm114p114 þm115p115 þ m111 þm214 þm215 þm313 þm314−mtotð Þa11 ¼ 0 ð44Þ

−m11s11sinα11 þm112q112 þm113q113 þm114q114 þm115q115 ¼ 0 ð45Þ

from which a11 and α11 are calculated with

α11 ¼ sin−1 m112q112 þm113q113 þm114q114 þm115q115
m11s11

� �
ð46Þ

a11 ¼ m11s11cosα11 þm112p112 þm113p113 þm114p114 þm115p115
mtot−m111−m214−m215−m313−m314

ð47Þ
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Fig. 10. A 4-DoF chain of 19 links with an arbitrary CoM of which invariant link point S is the CoM of the complete mechanism.
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19 links, here joint S is overconstraint.
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P21, which is defined by a21 and α21, is calculated for θ21 with θ̇1= θ̇11= θ̇31=0. With respect to reference frame x211y211 the
linear momentum equations can be written with

Lx211 ¼ m21s21cosα21 þ m211 þm314 þm315 þm113 þm114ð Þa21 þm212p212 þm213p213 þm214p214 þm215p215ð Þθ̇21
¼ mtota21 θ̇21

ð48Þ

Ly211 ¼ −m21s21sinα21 þm212q212 þm213q213 þm214q214 þm215q215ð Þθ̇21 ¼ 0 ð49Þ

The conditions for which these equations are constant for all motion are

m21s21cosα21 þm212p212 þm213p213 þm214p214 þm215p215 þ m211 þm314 þm315 þm113 þm114−mtotð Þa21 ¼ 0 ð50Þ
−m21s21sinα21 þm212q212 þm213q213 þm214q214 þm215q215 ¼ 0 ð51Þ

from which a21 and α21 are calculated with

α21 ¼ sin−1 m212q212 þm213q213 þm214q214 þm215q215
m21s21

� �
ð52Þ

a21 ¼ m21s21cosα21 þm212p212 þm213p213 þm214p214 þm215p215
mtot−m211−m314−m315−m113−m114

ð53Þ

P31, which is defined by a31 and α31, is calculated for θ31 with θ̇1= θ̇11= θ̇21=0. With respect to reference frame x311y311 the
linear momentum equations can be written with

Lx311 ¼ m31s31cosα31 þ m311 þm114 þm115 þm213 þm214ð Þa31 þm312p312 þm313p313 þm314p314 þm315p315ð Þθ̇31
¼ mtota31 θ̇31

ð54Þ

Ly311 ¼ −m31s31sinα31 þm312q312 þm313q313 þm314q314 þm315q315ð Þθ̇31 ¼ 0 ð55Þ

The conditions for which these equations are constant for all motion are

m31s31cosα31 þm312p312 þm313p313 þm314p314 þm315p315 þ m311 þm114 þm115 þm213 þm214−mtotð Þa31 ¼ 0 ð56Þ
−m31s31sinα31 þm312q312 þm313q313 þm314q314 þm315q315 ¼ 0 ð57Þ

from which a31 and α31 are calculated with

α31 ¼ sin−1 m312q312 þm313q313 þm314q314 þm315q315
m31s31

� �
ð58Þ

a31 ¼ m31s31cosα31 þm312p312 þm313p313 þm314p314 þm315p315
mtot−m311−m114−m115−m213−m214

ð59Þ

For the calculations of P1, which is determined by a111, a211, and a311, the ELMS of principle link 1 is used, which is drawn in
Fig. 11. For θ̇11= θ̇21= θ̇31=0 the linear momentum of m11 and m111 are calculated with respect to reference frame x11y11, of m21

and m211 with respect to x12y12, of m31 and m311 with respect to x13y13, and of m1with respect to x1y1. The parallelograms
P1B1C1B2, P1B2C2B3, P1B3C3B1, SC3B1C1, SC1B2C2, SC2B3C3 then are stationarywith respect to the reference frames. The linearmomentum
of the mechanism is written as

→
L ¼ u1·

→
A1P1 � ẑ þ v1·

→
A1P1 þ u2·

→
A2P1 � ẑ þ v2·

→
A2P1 þ u3·

→
A3P1 � ẑ þ v3·

→
A3P1 þ u4·

→
M1P1 � ẑ

� �
θ̇1 ¼ →

0 ð60Þ
with

u1 ¼ m11 þ
m111p111

a111
u2 ¼ m21 þ

m211p211
a211

u3 ¼ m31 þ
m311p311

a311
u4 ¼ m1

v1 ¼ m111 v2 ¼ m211 v3 ¼ m311

ð61Þ

being the projected masses at A1, A2, A3, M1, J1, J2, and J3, respectively. Also here P1 must be the CoM of the ELMS since the linear
momentum has to be zero and P1 is the only stationary point.

6. Discussion

When the principal points need to be found for a set of linkswith knownmass and CoM, each of them can be obtained independently
with linear momentum equations. When the mass or CoM of the links would depend on the principle dimensions, i.e. they are not a
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priori known, the principle points need to be found in an iterativeway. However, the iterativemethodwill obtain solutions quickly since
there is an equation for each parameter to be found.

Instead of choosing joint S as invariant link point being the mechanism CoM, other points on the linkage could be chosen to
have this property. The presented approach for the calculations of the principle points is applicable for any chosen invariant
link point.

The presented mechanisms are principal configurations of inherently balanced linkages. From these configurations, various
mechanisms can be derived by e.g. changing link dimensions, exchanging links with gears, replacing joints with other types of
joints,etc. As long as the pantograph relations are maintained, the property of being inherently balanced remains for the derived
mechanisms.

One example of an engineering application is presented in Figs. 12 and 13. Fig. 12 shows a 2-DoF grasper mechanism which is
derived from the configuration of Fig. 6. The CoM of the grasper at S is jointed to the base and by actuating the slider at A2 the grasper
opens and closes. By moving the joints C1 and C2, having joint B2 slide along the symmetry line, the orientation of the fingers is changed
to, for instance, the poses of Fig. 12b and c. Fig. 13 shows a prototype of a variation of the graspermechanism inwhich B2 is jointed to the
base (the aluminium part) and also C1 and C2 are fixed but can be manually altered. Then the CoM at S is stationary with respect to the
base without needing links C1S and C2Swhich therefore are left out. Without the slider at A2 this joint can move freely with two DoF for
which the prototype has 2-DoF motion allowing symmetric and asymmetric grasping.

2
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a) b) c)

B2

S

A2

C1 C2

Fig. 12. 2-DoF grasper mechanism derived from the configuration of Fig. 6 which is both shaking force balanced and shaking moment balanced for all motion. The
mechanism CoM is in S which is a fixed joint with the base. By moving slider A2 the mechanism grasps with parallel motion of the fingers while by moving slider
B2 the mechanism grasps by rotating the fingers.
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Fig. 11. Equivalent Linear Momentum System for θ1 to find P1. P1 is the CoM of the mass projection.
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Both the mechanisms of Figs. 12 and 13 are shaking force-balanced for all motion. Although shaking moment balancing has
not been considered in this paper, all motion of the grasper in Fig. 12 are perfectly shaking moment balanced too. This is due
to the symmetric design and the synchronous opposite motion of the left and the right side which balance one another. For
this synchronous motion, the prototype of Fig. 13 also exhibits perfect shaking moment balance, while for asymmetric grasping
shaking moments exist.

The importance of dynamic balance for a grasper mechanism is that, when e.g. mounted on a manipulator, the manipulator
motion does not affect the dynamics of the grasper, and vice versa. Unbalanced graspers tend to act as a pendulum, that tends to
swing due to accelerations of the manipulator. Balanced graspers therefore help to reduce the pick and place cycle time, to increase
the accuracy while actuators remain small since they don't need to counteract dynamic and also static forces [12,14,20].

Except for the fingers of theprototype, the linkswere designedmass symmetrical. An asymmetric design of the links is possible and
may be used to adapt the range of motion, to improve the compactness or to include additional components in the balance such as
electric cables or sensors attached to some of the links.

Although planar mechanisms were considered in this paper, the obtained results can be extended to spatial mechanisms. When
the pantographs in this paper were 3-DoF spatial pantographs [21] with for instance spherical joints such that the parallelogram
can also move out of plane (different from a 2-DoF planar pantograph beingmoved spatially), all presented linkages would be spatial
linkages. Since spatial pantographs are balanced for equivalent balance conditions as planar pantographs [21], all linkageswould become
inherently balanced spatial linkages.

7. Conclusion

In this paper Fischer's mechanismwas investigated as being a composition of pantographs. It was shown that linkages that are
composed of pantographs, can be inherently balanced for all links having an arbitrary CoM. This is since any such pantograph can
have a point at one of its links, an invariant link point, which is characterized as being the combined CoM of all links for all motion
of the linkage. This aspect is useful for the synthesis of shaking force balanced mechanisms for which the invariant link point has
to be a stationary point with respect to the base.

To calculate the principal dimensions for which pantograph based linkages have their CoM at an invariant link point, an approach
based on linear momentumwas proposed. With this approach it is possible to investigate each degree-of-freedom individually.
Equivalent Linear Momentum Systems (ELMS) were proposed to facilitate the calculations in order to use different convenient
reference frames. The method was applied to various planar linkages with revolute joints. The method also applies to related
mechanisms with other types of joints and to spatial linkages that are based on spatial pantograph motion. As a practical example
a shaking force and shaking moment balanced 2-DOF grasper mechanism was derived and presented.
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