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A detailed understanding of the response of single microbubbles subjected to ultrasound is

fundamental to a full understanding of the contrast-enhancing abilities of microbubbles in

medical ultrasound imaging, in targeted molecular imaging with ultrasound, and in ultrasound-

mediated drug delivery with microbubbles. Here, single microbubbles are isolated and their ultra-

sound-induced radial dynamics recorded with an ultra-high-speed camera at up to 25 million frames

per second. The sound emission is recorded simultaneously with a calibrated single element trans-

ducer. It is shown that the sound emission can be predicted directly from the optically recorded ra-

dial dynamics, and vice versa, that the nanometer-scale radial dynamics can be predicted from the

acoustic response recorded in the far field. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Microbubbles are used as contrast agents for medical

ultrasound imaging.1 With a mean bubble radius between

1 and 5 lm the bubbles are resonant scatterers at typical

medical ultrasound frequencies of 1–6 MHz. The bubbles

scatter ultrasound more efficiently than a solid particle of the

same size, at up to 9 orders of magnitude, owing primarily to

the compressibility of the gas.2 In addition, microbubbles

scatter ultrasound nonlinearly at harmonic frequencies of the

driving frequency. The nonlinear acoustic response of the

bubbles allows for a discrimination from the linear tissue

echo, thereby improving the contrast-to-tissue ratio and

forming the basis for the development of harmonic imaging

methods, including power modulation imaging,3 and pulse

inversion imaging.4 Contrast agent microbubbles, unlike tis-

sue, are also seen to emit energy at the one-half subharmonic

frequency of the driving frequency, which may favor detec-

tion.5–9 More recent applications of microbubbles are in mo-

lecular targeting and in sonoporation.1,10 In molecular

targeting applications ligands are attached to the bubble

coating and bind to specific markers expressed by diseased

cells. In sonoporation applications the cell membrane opens

momentarily as a result of the local stress exerted by bubble

oscillations and jets.11,12 The transient opening of the cell

membrane facilitates drug uptake by the cell.

In order to predict the nonlinear echoes from microbub-

bles, necessary for the optimization of contrast detection

methods, detailed knowledge is needed on the physical ori-

gin of these echoes. Simply stated, microbubbles are

excited by the transmitted pulse into an oscillation, which

in turn converts into an acoustic response received by the

ultrasound system. This path is schematically represented in

Fig. 1. The first part of the path determines the bubble dy-

namics in response to the driving pressure pulse. In the case

of spherical oscillations, or volumetric oscillations, the dy-

namics of the bubble is described by the radius–time curve

R(t). For an uncoated bubble in an unbounded medium the

relation between the driving pressure and the dynamic

response is well described by the Rayleigh–Plesset (RP)

equation.13–15 The RP equation is an ordinary nonlinear dif-

ferential equation. In linearized form, i.e., for small radial

excursions, it takes the analytical form of a harmonic oscil-

lator.14,15 For larger radial excursions (on the order of 10%

and higher) a nonlinear relation between the driving pres-

sure wave and the radial response exists, and therefore the

radial dynamics can contain higher-harmonic and subhar-

monic frequency components of the fundamental driving

frequency.14–16
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To stabilize medical ultrasound contrast microbubbles the

interface is coated with a protein, lipid, or polymer layer,

which resists gas diffusion and decreases surface tension. The

coating can introduce additional linear and nonlinear compo-

nents to the dynamic response. The dilatational viscosity of the

shell material results in an overall damping of the oscillation,

while the elasticity of the shell material results in an increase

of the resonance frequency.17 Moreover, the viscoelastic prop-

erties can become nonlinear, which adds to the intrinsic non-

linear features of the bubble dynamics. The influence of a

viscoelastic coating has been extensively studied theoretically

and experimentally, see, e.g., Refs. 8, 9, 18–26. In general, the

RP equation is extended to model the contributions of the

shell. The viscoelastic properties are then captured by a set of

shell parameters, whose values can be determined experimen-

tally. A possible experimental approach would be to optically

record the radial dynamics of a microbubble for a set of ultra-

sound parameters, notably pressure and frequency, from which

the shell parameters are extracted by comparing the experi-

mental curves with those of the theoretical predictions.27

The second part of the path depicted in Fig. 1, the conver-

sion from radial excursion to the scattered sound wave Ps(t),
has had far less attention in literature. The theoretical deriva-

tion is based on conservation of mass and momentum2,14 and

the final equation has been used in literature to predict the

echo from experimentally or numerically obtained radial dy-

namics.2,14,25,28,29 The conversion of the pulsating bubble vol-

ume into acoustic energy depends on the geometrical size of

the bubble, and the velocity and the acceleration of the bubble

wall. The exact relation will be given in Sec. II. Only a few

studies hint at the implications of the conversion.25,30 The

equation assumes the bubble to be isolated in an infinite me-

dium and the bubble to remain spherical at all times. From in
vitro, ex vivo, and in vivo studies it is known that bubbles are

located in confined geometries, which leads to interactions

with adjacent walls.31–35 Neighboring bubbles are acoustically

coupled. For molecular imaging applications, microbubbles

are targeted to diseased cells through ligands introducing com-

plex biomolecular interactions. These interactions may also

lead to nonspherical bubble oscillations. In conclusion, a priori
it is not known whether the echo of a pulsating microbubble

can be predicted from an experimental radius vs time curve.

Furthermore, the implications of the conversion have not been

described in detail before.

Studying the applicability of the conversion requires si-

multaneous recordings of both the radial response R(t) and

the resulting acoustic response Ps(t) of a microbubble. Here

we present a detailed experimental investigation of the dif-

ferent contributions to the overall acoustic response of

coated microbubbles. We employ the ultra-high-speed cam-

era Brandaris 128 (Ref. 36) to resolve the radial dynamics of

a single microbubble and combine the results with a sensi-

tive and calibrated acoustic setup to quantitatively assess its

acoustic response. Through this combined setup we can

monitor both the bubble dynamics and the emitted sound

and verify the degree of correspondence of the signals. The

data are also used to investigate the estimation of the radial

dynamics of the bubble explicitly from its acoustic signature

and resting radius. This reverse calculation is nontrivial and

to our knowledge has never been described in the context of

ultrasound contrast agents.

II. THEORY

The scattering of an incident ultrasound field by an oscil-

lating microbubble consists of two contributions.2 The first is

a passive contribution that results from the perturbation in the

compressibility of the propagating medium (that may originate

from any body, oscillating or not) and the second is an active

contribution that results from the volumetric oscillations of the

bubble. In regular applications, ultrasound contrast microbub-

bles are gaseous and much smaller than the incident field

wavelength, which implies that the passive contribution can

be safely neglected as shown previously by Hilgenfeldt et al.2

The active contribution to the scattered ultrasound field

is determined by the radial dynamics of the microbubble,

described by R(t). The microbubble is assumed to be spheri-

cal at all times. From conservation of mass and momentum

it follows that the emitted pressure wave Ps(r, t) at distance r
is determined from the second time derivative of the volume

V(t) of the bubble, see, e.g., Refs. 2, 14, and 37,

P̂s r; t� r=cð Þ ¼ 1

4p
q
r

€V tð Þ ¼ 1

3

q
r

@2

@t2
R tð Þ3
h i

; (1)

where c denotes the speed of sound in the medium

(� 1500 m/s in water) and q is the density of the surrounding

liquid (�103 kg/m3 for water). It is assumed that the receiver

is sufficiently far from the microbubble r � Rð Þ to neglect

the Bernoulli pressure, also referred to as the kinetic wave,

which decreases with 1/r4. The finite time for the pressure

wave to travel a distance r from the bubble wall to the trans-

ducer surface is accounted for by the term r/c. We write P̂s

FIG. 1. (Color online) A schematic

view on the origin of ultrasound

scattering of a single coated micro-

bubble. PA(t) is the driving pressure,

R(t) is the radial response of the

microbubble, and Ps(t) the resulting

echo response.
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when the pressure is derived from the radial or volumetric

motion of the microbubble, and Ps when the pressure is

measured directly.

In order to understand the effect of Eq. (1) on the bubble

echo it is insightful to linearize Eq. (1). For this purpose we

assume the radial dynamics to be described by

R tð Þ ¼ R0 1� � sin xtð Þf g, where �� 1 is the relative radial

excursion and x is the angular frequency of the oscillation.

The initial bubble radius is given by R0. Inserting this into

Eq. (1) and ignoring terms of second and higher order yields

P̂s r; t� r=cð Þ ¼ qx2R3
0� sin xtð Þ

r
: (2)

First, this relation shows that the amplitude of the scattered

sound of the bubble increases with the third power of the ini-

tial bubble radius. Second, the amplitude of the scattered

sound of an oscillating bubble increases quadratically with the

frequency of oscillation. This is a result of the second time de-

rivative in Eq. (1). If the microbubble radial response contains

higher harmonics of the driving pulse, then the echo ampli-

tude of these harmonics will be enhanced with respect to the

fundamental echo amplitude of the driving pulse. For exam-

ple, the echo amplitude of the second harmonic is enhanced

by a factor of 4 compared to the fundamental echo amplitude.

Several assumptions are made in the derivation of Eq.

(1). We consider an isolated single bubble in an infinite me-

dium and exclude wall reflections and sound emission from

neighboring pulsating bubbles. Furthermore, Eq. (1)

accounts only for volumetric oscillations of the bubble; we

will validate later that nonspherical oscillations, or surface

modes, do not contribute significantly to the sound emission.

Translation of the bubble as a result of the acoustic driving

also contributes to the sound scattering.2,38 However, this

contribution is of the same order as that of the passive contri-

bution and can therefore be neglected.2

III. EXPERIMENTAL SETUP

To investigate the applicability of Eq. (1) we combined

the Brandaris-128 ultra-high-speed camera36 with an acoustic

setup capable of quantitatively recording the sound transmit-

ted by a single oscillating microbubble. The combined setup

is schematically shown in Fig. 2. Microbubbles are confined

in a 200 lm diameter cellulose capillary tube with a wall

thickness of 8 lm (Product No. 132294, Spectrum Europe,

Breda, The Netherlands). The capillary tube was mounted

horizontally in a cylindrical Plexiglas water-filled container

that also supports the acoustic parts. The contrast agent stud-

ied was BR-14 (Bracco Research S.A., Geneva, Switzerland),

an experimental contrast agent containing microbubbles with

a phospholipid coating and a perfluorocarbon gas core.

A. Single bubble selection

It is not straightforward to ensure that the acoustic

response received by the transducer results from a single

microbubble. It requires the isolation of a microbubble with

an initial bubble radius of around 2 lm in a volume as large

as 2 mm3 (i.e., dimensions comparable to the wavelength of

the ultrasound and focal region of the used transducers). We

have achieved the isolation with the use of a micropipette.

With reference to Fig. 3, a microbubble suspension was

injected into a small reservoir. On one side the reservoir was

connected to the capillary tube that leads to the measurement

section. The capillary tube entered the bubble reservoir

400 lm below the top surface of the reservoir; this prevented

FIG. 2. (Color online) A schematic

view of the setup. A Gaussian-apo-

dized driving pressure waveform was

transmitted by a focused ultrasound

transducer. The echo response of the

bubble was received by a second

focused calibrated transducer. Simul-

taneously, the radial dynamics of the

microbubble was recorded through a

100� microscope objective connected

to the Brandaris-128 ultra-high-speed

camera (Ref. 36). The inset at the top-

left corner shows in two side views

the positioning of the transducers with

respect to the microscope objective.
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bubbles that are touching the top surface from flowing into

the tube. The other side of the bubble reservoir was open to

the atmosphere, but nevertheless capillary forces prevented

the solution from flowing out. A micropipette that was

mounted on a three-dimensional-translation stage entered

the bubble reservoir from the open side. The micropipette

had a tip size of 0.5 lm, which is smaller than the bubble

size. A single bubble was grabbed by applying a negative

pressure with a syringe connected to the pipette. Then the

bubble was brought down into the capillary tube and

released.39 With a syringe pump connected to the other side

of the capillary tube we moved the bubble through the capil-

lary tube into the measurement section. Note that the bubble

remains in the capillary tube during the experiments.

B. Acoustic setup

A 2 MHz center frequency transducer (PA168, PVDF-

type, diameter 18 mm, focus 22 mm, 100% �6 dB relative

bandwidth, Precision Acoustics Ltd., Dorset, UK) was used

to excite the bubble with an ultrasound pulse. A second

transducer (C381-1 in. focus, 3.5 MHz, 100% �6 dB relative

bandwidth, Panametrics, Olympus NDT, Waltham, MA)

received the acoustic bubble response. The transducers were

aligned in the same plane of the capillary tube under an

angle of 50� to the capillary tube and at a 100� angle to each

other in order to minimize specular reflection of the driving

ultrasound on the capillary, see the inset at the top-left corner

of Fig. 2. Two calibrated 0.2 mm needle hydrophones (Preci-

sion Acoustic Ltd., Dorset, UK) were mounted in the Plexi-

glas container exactly opposite to the two transducers. The

hydrophones could be moved in and out of the focus of the

two transducers and were used to confocally align the two

transducers with the microscope objective. The transmit

transducer was excited with pulses generated by an arbitrary

waveform generator (AWG 8026, Tabor Electronics Ltd.,

Tel Hanan, Israel) and amplified by a linear power amplifier

(350L, ENI, Rochester, NY). The received bubble echoes

were amplified 59.3 dB by a low-noise amplifier (AU-1519-

10289, Miteq, Hauppauge, NY) and digitized by a digital os-

cilloscope (TDS 3012, Tektronix, Beaverton, OR). The digi-

tized data were stored on a personal computer through a

general-purpose interface bus-link for off-line analysis.

Gaussian-apodized driving pressure pulses with frequencies

ranging from 1 to 4 MHz were used to excite the bubbles.

All pulses had a peak negative pressure amplitude of 40 kPa

and had a length of 8.9 ls. The output of the transducer was

calibrated with a calibrated hydrophone. The accuracy of the

calibration procedure was 610%, which corresponds to

60.8 dB.

C. Optical setup

A 100� magnification microscope objective (LUMFPL

100� /W, NA¼ 1.0, Olympus, Tokyo, Japan) connected to

an upright microscope (BX-FM, Olympus) was focused in

the combined acoustical focus of the two focused trans-

ducers. The focal distance of the objective was 1.1 mm. In

the experiments described here the Brandaris 128 camera

recorded a series of six movies of 128 frames each at a frame

rate near 15� 106 frames/s. The time interval between the

recordings was 2.5 s. The microbubble was illuminated from

below with a high-intensity xenon flashlight (MVS 7010 XE,

Perkin Elmer, Waltham, MA). A continuous light source

(ACE I, Schott, NY) in combination with a single CCD

video camera (LCL-902K, Watec, Qwonn) was used to mon-

itor the bubble in between experiments.

D. Data processing

The measured voltage–time curves were converted into

pressure–time curves using the calibrated receive transfer

function of the transducer following the procedure described

by Sijl et al.22 The setup, including the capillary tube,

reflects the transmitted ultrasound pulse, thereby producing

an offset in the acoustic response. For each experiment the

background signal was recorded in the absence of a micro-

bubble and subtracted from the signal recorded in the pres-

ence of a microbubble.

FIG. 3. (Color online) Schematic of the bubble selection and isolation

method using a translating micropipette.
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The optical frames were analyzed to obtain the R(t)
curves through a semiautomatic minimum cost algorithm21

in MATLAB (The Mathworks, Natick, MA). A second order fi-

nite difference equation was used to calculate the second

time derivative of R3[n], n being the frame number,

@2

@t2
R tð Þ3
h i

� R3 nþ 1½ � � 2R3 n½ � þ R3 n� 1½ �
Dt2

: (3)

IV. RESULTS

A total of 16 different microbubbles were studied at

varying radii and frequencies, resulting in a set of 194

recordings. The initial bubble radius ranged from 1.4 to

6.7 lm. Depending on the initial bubble radius and the driv-

ing frequency, bubbles were observed to oscillate nonli-

nearly, i.e., when a higher-harmonic or subharmonic

component could be identified in the radius–time curve. Fig-

ure 4 shows a typical recording of the response of an isolated

bubble of 3.7 lm radius to pulses with an increasing fre-

quency of 1.7–2.7 MHz [Fig. 4(a)]. The optically recorded

radial responses are shown in Fig. 4(b). At the lowest driving

frequency (left hand side) the bubble follows the driving

pressure pulse, except that it displays the so-called

“compression-only” behavior. The compression-only behav-

ior was first described by de Jong et al.,40 where it was

observed that the bubbles compress efficiently while their

expansion is suppressed. Compression-only behavior occurs

when the surface of the bubble is fully saturated with phos-

pholipids and the bubble reaches a tensionless state. Upon

compression, the phospholipid coating then easily tends to

buckle. A detailed theoretical understanding of the source of

this nonlinear behavior was provided very recently by Sijl et
al.41 through a weakly nonlinear analysis of the shell buck-

ling model proposed by Marmottant et al.18 At higher driv-

ing frequencies a strong subharmonic component develops

after a few cycles of the driving pulse.9 The amplitude of the

radial excursion decreases with increasing frequency, which is

expected for bubbles that are driven with frequencies increas-

ingly higher than the resonance frequency. The simultane-

ously recorded acoustic response [Fig. 4(c)] shows similar

envelopes as the driving pulse, and also shows the subhar-

monic component, although at lesser extent than in the optical

data; this effect will be extensively addressed later.

A. Linear response

A typical example of the recorded oscillations of a

6.5 lm bubble subject to a 1 MHz, 40 kPa driving pulse is

shown in Fig. 5(a). The camera recorded at a frame rate of

12.5� 106 frames/s. From the absence of higher harmonics

in the spectra of the R(t) curve shown in Fig. 5(b), we con-

clude that the oscillations are a linear response to the driving

pulse. With Eq. (1) and the experimentally determined R(t)
curve we have calculated the resulting P̂s tð Þ, see Fig. 5(c).

The distance r in Eq. (1) was taken equal to 2.6 cm, the dis-

tance to the receiving transducer.

The higher frequency content in the R(t) curve is

enhanced in the calculated P̂s tð Þ curve by a factor x2, see

Eq. (2). The noise content on the R(t) curve determined from

the high-speed recording is around 35 dB lower than the fun-

damental response, as can be appreciated in Fig. 5(b).

Because of the x2 dependence, the high-frequency noise

level in the calculated pressure curve can become as high as

the bubble response signal, see Fig. 5(d). In the time trace

P̂s tð Þ the fundamental frequency response is barely visible

because of high-frequency noise.

Figure 5(e) shows the predicted P̂s tð Þ in the same graph

as the actually measured pressure–time curve Ps(t). Ps(t) was

obtained from the inverse Fourier transform of Ps(x), where

Ps(x) is the product of the Fourier transform of the pressure

amplitude–time curve (as measured with the receiving trans-

ducer) and the frequency transfer function of the transducer.

To compare the curves in the time domain a low-pass fourth

order Butterworth filter with a cut-off frequency of 2 MHz

was applied to the predicted P̂s tð Þ curve to reduce noise. The

agreement is remarkable since the curves are obtained with

two independent measurement methods. Interestingly, both

the acoustic setup and the optical setup in combination with

Eq. (1) are able to pick up and correctly predict pressure var-

iations on the order of 1 Pa on top of an ambient pressure of

105 Pa. Moreover, the agreement is excellent also in absolute

pressure.

In Fig. 5(f) the normalized power spectrum of the calcu-

lated and low-pass filtered P̂s tð Þ curve and the power spec-

trum of the measured pressure curve are shown. The

agreement between the two curves around the driving fre-

quency is very good, consistent with the agreement found in

time domain between the two curves.

The above-shown data processing for a single bubble

was repeated for all recordings. The traces were bandpass fil-

tered to keep the frequency content at the fundamental driv-

ing frequency, and the maximum amplitude of oscillation

was found by using a Hilbert transform to calculate the enve-

lope of oscillation. The amplitudes of all echoes are shown

in the scatter plot in Fig. 6. The solid line denotes equal

FIG. 4. (Color online) A typical example of the combined optical (b)

and acoustical (c) detection of the dynamics of an isolated 3.7 lm bubble.

Driving pressure pulses had a frequency of 1.7, 2, 2.3, and 2.6 MHz, respec-

tively (a).
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pressure amplitudes from the recorded and the derived pres-

sure traces. The dotted lines in Fig. 6 represent the difference

of 63 dB between the two data sets.

The data sets show larger difference in amplitude than

presented in Fig. 5(e). Nevertheless, in 65% of the experi-

ments the fundamental response predicted from the R(t)
curve is within 63 dB of the measured fundamental

response. In 93% of the experiments the difference is within

66 dB. We observe that the measured fundamental acoustic

response is typically 1 dB lower than the acoustic response

predicted from the R(t) curve. Several possible causes can be

identified for the variation and difference. The first possible

cause is the acoustic attenuation of the wall of the cellulose

capillary tube, which would lower the measured acoustic

response. Second, an error in the determination of the bubble

radius, R, could affect the predicted amplitude in the cubic

relation [see Eq. (2)]. Preliminary studies have shown that

small differences in optical focusing could result in a sys-

tematic measurement error in the radius of 15%. Third is a

possible error in the calibration value of the receiving trans-

ducer. The hydrophone used as a standard for the calibration

has an accuracy of 10%, or 0.8 dB, as stated by the

manufacturer.

B. Nonlinear response

In the example presented in Fig. 5 the bubble is oscillat-

ing linearly, and no signal appears at the higher frequencies.

The latter implies that high-frequency noise on the predicted

P̂s tð Þ curve can be removed by a low-pass filter without sig-

nal loss. However, a bubble oscillating nonlinearly may

show higher-harmonic oscillations and the use of a low-pass

filter would result in signal loss. Figure 7(a) shows an exam-

ple of a bubble with a subharmonic oscillation behavior. The

bubble has an initial bubble radius of 4.9 lm and it was

excited with a driving pulse with a frequency of 1.8 MHz.

Since the driving frequency was close to twice the eigenfre-

quency of the encapsulated bubble of 0.94 MHz,21 the bub-

ble responds nonlinearly with a subharmonic oscillation at a

frequency of 0.9 MHz. The radial subharmonic response

FIG. 5. (Color online) Example of predicted scattered pressure wave from experimentally obtained radial dynamics. The initial bubble radius was 6.5 lm.

The driving pressure pulse had a peak amplitude of 40 kPa and a frequency of 1 MHz. (a) The recorded radial response R(t). (b) The power spectrum of the

R(t) curve showing no higher harmonics. (c) Calculated Ps(t) curve with Eq. (1). (d) The power spectrum of the calculated P̂s tð Þ curve. (e) Comparison of the

low-pass filtered acoustic response calculated from the R(t) curve with Eq. (1) (dotted line) and the acoustic response (solid line) measured by the receive

transducer. (f) The power spectra of the measured Ps(t) curve (solid line) and of the low-pass filtered predicted curve (dotted line).

FIG. 6. (Color online) A comparison between the amplitude of the acoustic

bubble response at the driving frequency as measured by the receive trans-

ducer Ps(xfund) and the acoustic response as predicted from the measured

R(t) curve P̂s xfundð Þ for 194 different experiments with 16 different bubbles.

The driving pressure amplitude of 40 kPa is fixed for all experiments while

the driving pressure frequency was varied. The dotted lines represent a þ3

dB and �3 dB difference between the two data sets.
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is higher than the fundamental response at a frequency of

1.8 MHz. The resulting acoustic response from these nonlin-

ear oscillations is calculated with Eq. (1). Figure 7(b) shows

the power spectrum of the resulting acoustic response which

is compared to the power spectrum of the simultaneously

measured acoustic response. For the fundamental response

and the subharmonic response the agreement is very good.

As explained by the x2 dependence in Eq. (2) the subhar-

monic acoustic response has decreased fourfold, or 12 dB,

relative to the fundamental acoustic response.

C. The inverse problem

In the measured acoustic response shown in Fig. 7(b)

we observe higher-harmonic content at frequencies of 2.7

and 3.6 MHz, which is not visible in the radial response, and

therefore also not in the pressure response predicted from

the radial response. The signal-to-noise ratio (SNR) of R(t)
is about 25 dB [Fig. 7(a)]. The SNR of Ps(t) is about 40 dB,

thus showing a superior resolving power for higher-har-

monic responses and smaller oscillation amplitudes. More-

over, these data, in conjunction with the x2 dependence

presented in Eq. (2), suggest that higher-harmonic radial
excursions may be better detected from the acoustic record-

ings. Experimental recording of the acoustic response of a

microbubble may thus become complementary to optical

recordings. Inversion of Eq. (1) should then assist in finding

the radial dynamics from the experimental pressure–time

curve.

Here, we show that it is possible to reconstruct the radial

dynamics from the measured Ps(t) curve. The radial dynam-

ics can be recovered from a double integration of Eq. (1),

R̂3 tð Þ ¼ R3 0ð Þ þ
ðt

0

3R2 0ð Þ _R 0ð Þ þ 3r

q

ðt0

0

Ps r; sð Þdt

 !
dt0: (4)

The initial bubble radius was obtained from the optical

recordings and the initial bubble wall velocity was always

taken to be zero _R 0ð Þ ¼ 0
� �

: The distance r between the

microbubble and receiving transducer is known for this ex-

perimental setup. Finally, the acoustic response is integrated

numerically to obtain the bubble radius R(t) as a function of

time. The numerical integration is done with the trapezoidal

rule in MATLAB.

In Fig. 8 the result from solving this inverse problem is

shown for the acoustic response of the very same bubble as

presented in Fig. 5. The bubble had a radius of 6.5 lm and it

was subjected to a 1 MHz pulse. The measured acoustic

response Ps(t) was numerically integrated twice to give

R̂3 tð Þ. Noise in the recorded acoustic response gives the Ps(t)
curve a small offset. The double integration is extremely

sensitive to low frequencies and a small offset results in a

drift and an unphysical growth of the bubble size in the final

FIG. 8. (Color online) An example of the results obtained with the inverse

method. (a) The recorded acoustic response of a 6.6 lm radius bubble; the

distance between the focused transducer and the microbubble was 2.6 cm

[the same as in Fig. 5(a)]. (b) The power spectrum of the signals in (a).

FIG. 7. (Color online) (a) Power spectrum of the radial response of a bubble

with an initial radius of 4.9 lm. A subharmonic response is visible at a fre-

quency of 0.9 MHz, which is at half the driving frequency of 1.8 MHz. (b)

The spectrum of the pressure calculated from the R(t) curve P̂s fð Þ (dotted

line) and the pressure measured directly Ps(f) (solid line).
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R(t) curve. We corrected for this drift by applying a second

order Butterworth 0.2 MHz high-pass filter on _R3 tð Þ after the

first integration step. For small time steps (Dt< 5� 10�8 s)

the double integration was found to converge to the pre-

dicted R̂ tð Þ curve as shown in Fig. 8. The good agreement

between the predicted and recorded radial dynamics is re-

markable. Oscillations of the bubble wall of tens of nano-

meters are correctly predicted from an acoustic response

measured at a distance of 2.6 cm. Note that we can measure

changes in the radius with an accuracy of several tenths of a

nanometer. The measurement (the observed radius) is the

convolution of the optical point-spread function (PSF) with

the real radius of the bubble. The PSF does not change dur-

ing the measurement and therefore the change in the

observed radius is due solely to the change in the real radius

of the bubble. Moreover, the observed radius is deduced

from an area measurement, see van der Meer et al.21

A small offset in the radial excursion can be observed

between the predicted and the measured R(t) curves. As dis-

cussed before, compression-only behavior gives an offset to

the mean radius during the oscillation. The offset can be

looked upon as a low-frequency component. Since the

receive transducer is not sensitive to such low-frequency

components it is not detected; conversion from the recorded

Ps(t) into an R̂ tð Þ will therefore not predict the compression-

only behavior either. Note that a similar effect is also present

if no high-pass filter to _R3 tð Þ were applied.

In Fig. 9 the power spectrum of an optically recorded

R(f) curve is presented (R0¼ 4.9 lm) together with the spec-

trum of the radial dynamics R̂ fð Þ as predicted from the

measured Ps(t) curve. The curves are again normalized with

a common factor. We can identify a quantitative agreement

between the two curves. The higher-harmonic oscillations of

the bubble that are invisible in the optically recorded R(t)
curve are clearly visible in the dynamics determined from

the recorded acoustic response. Therefore, Fig. 9 confirms

the hypothesis that acoustic techniques can be used to study

the higher-harmonic radial dynamics of ultrasound contrast

agent microbubbles much more sensitively than the ultra-

high-speed camera can.

To investigate the accuracy of the inverse method for all

bubble recordings, the amplitudes of the optically recorded

radial responses were compared to those of the predicted

ones, at the fundamental frequency. The agreement between

the two was of similar quality as the one resulting from the

agreement seen with the forward method (see Fig. 6) and

therefore not plotted. In 60% of the experiments the funda-

mental response of the radial dynamics predicted from the

Ps(t) curve is within 3 dB of the measured fundamental

response. In 80% of the experiments the difference is within

6 dB. The reason for the differences being larger than in the

forward method may be the larger sensitivity for the estimate

of the bubble radius. On average, the acoustically derived ra-

dial response had a slightly lower amplitude of oscillation

than the optically observed radial response.

D. Surface modes

In some of the conducted experiments nonspherical

shape oscillations were observed. The oscillation of these

so-called “surface modes” is predominately of period-dou-

bling nature.42–44 For uncoated bubbles in an unbound me-

dium, Longuet-Higgins has shown that surface modes

radiate pressure waves at the subharmonic frequency, with

an amplitude that decays with 1/rn, see Ref. 42, with n the

surface wave mode number. Since the receiving transducer

is relatively far from the microbubble, the subharmonic

waves scattered by the surface mode oscillations may well

be below the noise level. However, the presence of the capil-

lary wall and a nonlinearly behaving coating are violating

the boundary conditions set in Ref. 42, namely a free gas

bubble in an unbounded fluid. Therefore, it has been

hypothesized that surface mode oscillations may contribute

to the subharmonic frequency content in the echo. If surface

mode oscillations would scatter significant ultrasound waves

at the subharmonic frequency then there should be a differ-

ence between the subharmonic content calculated from the

radius–time curve and the acoustically measured subhar-

monic content. We have therefore analyzed our data for both

the occurrence of subharmonic acoustic emission and the

occurrence of surface modes.

Of the set of 16 bubbles a total of 4 bubbles in 23 differ-

ent experiments showed an acoustic subharmonic response.

The threshold for the occurrence of a subharmonic response

was set at �20 dB compared to the fundamental-frequency

response. Examples of these subharmonic responses are

shown in Figs. 4 and 7. The subharmonic emission can also

be predicted from the optically measured R(t) curves. By

doing so, we found that the predicted and measured sound

emission at the subharmonic frequency overlap within

2.5 dB for 20 of the 23 experiments. Therefore, the occur-

rence of subharmonic emission can be estimated from the

acoustic data as well as from the optical data.

The images were found to be very similar to those

recorded earlier by Dollet et al.43 While a very similar

decomposition analysis as detailed in Ref. 43 could be uti-

lized to analyze the occurrence of surface modes, here the

FIG. 9. (Color online) Example of acoustically predicted higher-harmonic

radial responses that are not detected optically. The graph shows the power

spectra of the R(t) curves of a bubble with an initial bubble radius of 4.9 lm

subjected to a 1.8 MHz pressure pulse [the same response as in Fig. 7(a)].

The noise in the optical data is higher than the levels of the expected higher-

harmonic oscillations.
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images were scored manually. The typical surface mode am-

plitude grows exponentially over time and in our experi-

ments they reached an amplitude of 0.3 lm, which is of the

same order as the volumetric radial oscillations. In 69 cases,

surface mode oscillations were visible. Remarkably, in 54

cases the surface mode oscillations were not accompanied

by significant subharmonic ultrasound emission, while in the

other 15 cases they were. See Table I for the statistics. More-

over, the absence of surface mode oscillations did not predict

the occurrence of subharmonic ultrasound emission either.

These data suggest that there is no direct correlation between

the presence of surface mode oscillations and the presence

of subharmonic ultrasound emission in the current experi-

mental settings.

A short note should be addressed to the coupling of pe-

riod-doubling surface modes to fundamental frequency

sound emission. Longuet-Higgins42 predicts that the period-

doubling surface modes induce a forcing of the gas volume

at the fundamental frequency, which in turn produces an

additional fundamental frequency sound emission. Since we

are measuring the radial dynamics directly, this possible con-

tribution of the surface modes is already contained in R(t)
and we cannot distinghuish the contribution of the surface

mode from the contribution of the driving pressure wave.

Surface modes may still play a role in the initiation of

volumetric subharmonic oscillations. Furthermore, the opti-

cal plane of the microscope is parallel to the wall, and any

nonspherical modes with an orientation normal to the wall

will not be visible in the optical images.35 Therefore, a more

detailed investigation of the sound emission of surface

modes requires a “side view” microscope to visualize the

nonspherical modes of the bubble normal to the wall.35

V. DISCUSSION

A. Noise, sensitivity, and bandwidth

The summarized results presented in Fig. 6 show that

Eq. (1) can be used to predict the scattered sound from the

recording of radial dynamics. Sound levels on the order of

1 Pa could be detected and predicted using both optical and

acoustical techniques. The inverse method, predicting the ra-

dial dynamics from the echo, also shows good correlation

between the predicted and recorded radial dynamics. For a

single bubble, the difference between predicted and meas-

ured time traces can be large, up to a factor of 3. We have

suggested that both noise and calibration play a major role in

the observed differences. The influence of both is further dis-

cussed in this section.

The examples of acoustic measurements presented in

Figs. 7(b) and 9 show a signal level of about 10 Pa and a

noise level of about 0.1 Pa (SNR 	40 dB). For equal relative

radial excursion and frequency the echo amplitude grows

with the third power of the radius [see Eq. (2)], while noise

in the receiving system is independent of the radius. There-

fore, the SNR will decrease dramatically in acoustic record-

ings of smaller microbubbles. On the other hand, it can be

shown that noise in the optical recordings is inversely pro-

portional to the bubble radius because of the finite pixel size

of the CCD sensor (with the 100� objective the resolution

is	 0.20 lm/pixel). Therefore, the SNR decreases also in

optical recordings of smaller bubbles, although to a lesser

extent. We found that the acoustic recordings of the smallest

bubbles in our data set (R0< 2 lm) show a SNR of about

20–30 dB while the optical recordings have a SNR of about

10 dB or worse. Thus, the acoustic recordings show an over-

all higher SNR than the optical recordings.

The x2 dependence in the conversion from radial dy-

namics to a pressure wave implies that acoustical methods

are more sensitive to detect higher-harmonic emission. This

is demonstrated in Fig. 9, in which the higher-harmonic ra-
dial dynamics were not detected by optical recordings but

only through acoustical recordings. The x2 dependence also

implies that optical methods are more sensitive to detect sub-

harmonic emission. This effect is visible in, for example,

Fig. 7. Strictly speaking, the high acoustical sensitivity is

only present in a limited frequency band. The transducer has

a frequency band of about 1–5 MHz and outside this range

the SNR is much lower. Therefore, low-frequency features

of the radial dynamics such as compression-only behavior

might not be captured by the present transducer. In future

experiments this drawback could be worked around by the

addition of a dedicated low-frequency transducer. Trans-

ducers such as hydrophones that have much larger band-

width also generally have higher noise levels and therefore

may not be able to detect pressure levels of 1–10 Pa with

sufficient SNR. The Brandaris 128 ultra-high-speed camera

has an effective bandwidth of 0–12.5 MHz when operated at

its maximum frame rate and can therefore inherently capture

the low-frequency contents.

The sensitivity of the optically recorded radial response

could be improved. One could try to increase the optical

zoom to decrease the influence of the finite pixel size. Another

improvement would be to reduce motion blur of the oscillat-

ing bubble wall by decreasing the exposure times within the

design of the Brandaris-128 camera. This also requires either

more sensitive CCDs or an increased intensity of the illumina-

tion. A third option would be to use laser-induced fluores-

cence techniques and high-intensity illumination to increase

the contrast of the bubble wall with respect to the background

illumination. Finally, improved data processing of the images

may lead to noise reduction in the R(t) curves. The R(t) curves

are derived from a simple minimum cost algorithm applied to

the derivative of the grayscale values in the image, to deter-

mine the contour of the bubble. However, no sophisticated

preprocessing has been applied until now. Edge enhancement

and noise reduction algorithms could lead to R(t) curves with

a significantly reduced noise level.

With respect to the calibration of the receiving trans-

ducer it may be concluded from the good data agreement

that the calibration procedure suffices. However, time trace

analysis of the recorded and predicted echoes sometimes

TABLE I. Overview of occurrence of subharmonic scattering and surface

modes. Total number of recordings is 192.

Acoustic subharmonic No acoustic subharmonic

Surface modes 15 54

No surface modes 8 115
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show a different trace despite a good agreement in the fre-

quency domain of the two signals. Analysis showed that this

was caused by the frequency-dependent phase response of

the receiving transducer and subsequent acquisition system.

The phase response produces a different delay of the various

frequency components in the recorded acoustic signal. The

optical system has an almost frequency-independent phase

response and therefore a difference in the time trace between

the recorded and predicted time traces can be expected. A

future setup may benefit from the calibration of the phase

response of the receiving transducer as suggested by van

Neer et al.45

It is convenient to use the linearized form Eq. (2) instead

of the nonlinear equation, Eq. (1), since the frequency spec-

tra of radius and pressure are related to each other only

through x2. The data shown in Fig. 5 can be used to exem-

plify this. A bubble with a radius of 6.5 lm oscillates at a

frequency of 1 MHz with a radial amplitude of 0.2 lm [Fig.

5(a)] and produces a 1 MHz pressure amplitude of 12.5 Pa at

a distance of 2.6 cm [Fig. 5(e)], well in line with what is pre-

dicted with Eq. (2). While this may work well for the funda-

mental response at small amplitudes of oscillations, a note of

caution is in order here. A nonlinear second harmonic signal

can be picked up in the acoustic response, see, e.g., Figs. 5(f)

and 7. To what extent these nonlinear contributions originate

from the nonlinear Rayleigh–Plesset equation, including a

potentially nonlinear description of the bubble shell, or from

Eq. (1) is not clear a priori. The higher order harmonics in

the scattered signal may arise from a nonlinear conversion

from a linear response R(t) to Ps(t), necessitating the use of

Eq. (1). Conversely, a nonlinear acoustic response could be

calculated form a nonlinear radial response through Eq. (2).

The optical sensitivity near the second harmonic frequency

was limited to �40 dB and made an experimental interpreta-

tion of the exact origin of the nonlinear contributions in the

acoustic response rather inconclusive. These are interesting

subjects for future numerical investigations.

B. Remote acoustic detection of radial dynamics

The inverse acoustic method may have advantages over

optical recordings in in vitro studies of the radial dynamics

of ultrasound contrast agent microbubbles, in addition to the

higher SNR. Optical recordings with a microscope inher-

ently need an objective mounted close to the bubble, regu-

larly at a distance on the order of 1 mm. Such an objective

may produce acoustic reflections that interfere with the bub-

ble signals. Acoustic recordings can be performed remotely,

at a distance of 10 cm or more from the bubble. A disadvant-

age of the acoustical method is the precarious isolation of

single microbubbles, a requirement less stringent in the opti-

cal microscope method.

The inverse method could potentially provide a new

tool to investigate the relation between local mechanical

action and enhanced drug uptake by cells11,12,46 in vivo. In

literature it is suggested that strain caused by oscillating bub-

bles close to a cell membrane results in opening of the cell

and enhanced drug uptake. Strain could be estimated from

the oscillation amplitude of the bubble.12,46–48 Thus, in the

future a remote acoustic detection method may give direct

feedback on the locally controlled mechanical forcing near

cells. One requirement for such an application is to know

the initial bubble radius to enable the integration of Eq.

(4). Acoustic techniques based on off-resonant bubble siz-

ing49–51 or optical techniques based on laser light scatter-

ing52 could provide an estimate of the initial bubble radius.

More elegantly, the size requirement could be fulfilled by

the use of monodisperse ultrasound contrast agent microbub-

bles that can be produced through flow focusing in a lab-on-

a-chip device.53,54

VI. CONCLUSIONS

In conclusion, we have experimentally shown that the

radial dynamics of an isolated oscillating microbubble can

be used to predict its acoustic emission. It is shown that

higher order harmonics in the radial dynamics of the micro-

bubbles are enhanced in the acoustic emission. Conversely,

the measured acoustic emission resulting from an isolated

oscillating microbubble with a known initial bubble radius

can be converted to correctly describe the radial bubble dy-

namics. Ultra-high-speed imaging and acoustic recordings

are shown to complement each other in the characterization

of both the dynamic and the acoustic behavior of ultrasound

contrast agent microbubbles. Small amplitude behavior and

the higher-harmonic response is shown to be characterized

more sensitively by acoustic techniques. Nonspherical oscil-

lations and low-frequency behavior such as compression-

only behavior, which are important features in modeling and

predicting bubble behavior, are exclusively captured in the

optical configuration.
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