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This  paper  considers  a class  of queueing  network  models  where  nodes  have  to  contend  with  each  other
to serve  their  customers.  In  each  time  slot,  a  node  with  a  non-empty  queue  either  serves  a  customer  or
is blocked  by  a node  in  its vicinity.  The  focus  of  our study  is on  analyzing  the  throughput  and  identifying
bottleneck  nodes  in  such  networks.  Our  modeling  and  analysis  approach  consists  of  two  steps.  First,
considering  the  slotted  model  on  a longer  timescale,  the  behavior  is  described  by  a continuous  time
tability
ontention

Markov  chain  with  state  dependent  service  rates.  In the  second  step,  the state  dependent  service  rates
are replaced  by  their  long  run  averages  resulting  in an  approximate  product  form  network.  This  enables  us
to determine  the  bottleneck  nodes  and  the  stability  condition  of  the system.  Numerical  results  show  that
our approximation  approach  provides  very  accurate  results  with  respect  to the  maximum  throughput
a  network  can  support.  It also  reveals  a  surprising  effect  regarding  the  location  of  bottlenecks  in  the
network  when  the  offered  load  is  further  increased.
. Introduction

Inspired by wireless ad hoc networks where interference pro-
ibits neighboring nodes to simultaneously transmit packets, this
aper considers a class of open queueing network models in which
ervers contend for service slots. In each time slot nodes that have
ackets available for transmission try to obtain the channel to
ransmit their packets. As nodes within each others interference
ange cannot transmit at the same time, an allocation mechanism,
.e. a medium access control protocol, is used to decide which
odes get the opportunity to transmit, i.e. to serve a packet. Once

 server in a node is allowed to transmit a packet, it blocks the
ervers in a specified set of other nodes corresponding to an inter-
erence neighborhood. Upon service completion, a packet either

oves to a next node for further service, or leaves the network.
he network is called stable when for each node the average
ervice rate exceeds the average arrival rate of packets. When
ultiple or large flows pass through a node, the service rate of

he node may  not suffice, making this node a bottleneck. This
aper investigates the stability range, the arrival rates of flows
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

t which nodes become bottlenecks, and the throughput of the
etwork.
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The behavior of the system under consideration can be described
by a state dependent discrete time Markov chain as we assume
that in each slot the contention between nodes takes place inde-
pendent of previous outcomes. Inspired by results obtained for
loss-networks, we  make a two step approximation to analyze this
network, see Fig. 1. As a first step, we  consider the long term
average behavior, which neglects the effect of the slotted time
and leads to a continuous time Markov chain. However, with the
transition rates of this chain still being state dependent, analy-
sis remains cumbersome and a further approximation is needed.
Using a long term average service rate, we introduce a product
form network approximation which enables us to find the bottle-
necks in networks of arbitrary size and topology and determine
the maximal throughput. Interestingly, it turns out that when the
load of the network is increased, a bottleneck node can become
stable again as a different node becomes the bottleneck. This
surprising behavior is predicted correctly by our product form
model.

The remainder of the paper is organized as follows. First, Section
2 gives a literature overview, after which Section 3 introduces the
discrete model and contention process. Section 4 describes the first
approximation step resulting in the continuous time model with
state dependent service rates, followed by the second approxima-
y in networks with contending nodes. Int J Electron Commun (AEÜ)

tion step in Section 5. Section 6 gives the results for the stability
analysis and Section 7 presents results from simulation to illustrate
the accuracy of the model presented in this paper. Finally, Section
8 concludes the paper.
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this example a network of 8 nodes is depicted. In the figure there
are three flows: f(t1) from node 1 through node 2 to node 3 (i.e. we
have that t1 = {1, 2, 3}), f(t2) from node 1 through nodes 4 and 6 to
node 8 and f(t3) from node 7 through nodes 6 and 5 to node 3.
Fig. 1. Appr

. Literature and contribution

The stability of networks, as considered in this paper, has
eceived considerable interest in the literature. Also inspired by
ireless networks, [1] analyzes a discrete time slotted ALOHA sys-

em. Bounds on the stability region are found using the concept
f dominance. A different approach is presented in [2] where the
ate stability and output rates are calculated for shared resource
etworks. Stability conditions for separate nodes are derived for
eneral allocation functions under mild assumptions. The model
iscussed in this paper however does not fall under the set of
llocation functions, as the overall capacity of the network is
ot constant. For a network of parallel servers with coupled ser-
ice rates, necessary and sufficient conditions for stability are
erived in [3].  Stability and performance of networks where the
ervice rate depends on the network state is also analyzed in [4],
here transmissions over links with a fixed capacity are con-

idered. Opposed to the work presented in these papers, the
ate allocated to a server does not depend on the number of
ackets present in the queue, but on the number of nodes com-
eting.

Similar assumptions regarding the contention between nodes,
here alive nodes block other nodes as discussed in this paper are
ade in [5]. The throughput in a multihop tandem network is con-

idered both under saturation, where each node generates its own
raffic and under a single flow over all nodes. The authors conjecture
hat a random access scheme severely degrades the throughput of
he network.

Analytic results for a multihop network with two contending
ueues are presented in [6].  Using the theory of Riemann–Hilbert
oundary value problems, the generating function of the station-
ry distribution is obtained. In [7] some performance measures of
his system are analyzed, focussing on the computational issues
hat occur. Even for such a small network as considered in these
apers, a complex analysis is needed to obtain analytical results.
he approach we present is applicable for general size networks,
owever we do not obtain results on the stationary distribution,
ut on stability and throughput.

The optimal throughput a network can support, often referred to
s the capacity of the network, is discussed in [8],  which however
oes not focus on multi-hop networks. This aspect is addressed

n [9],  where for a single multi-hop flow a new capacity limit is
erived. These results are limiting results for large networks. More
etailed models are discussed in [10] for a tandem and lattice net-
ork with saturated nodes. They calculate the optimal offered load,
reventing packet loss in a network with hidden nodes. This work is
xtended for multiple crossing flows in [11]. Instead of focussing on
he specific parameters of the MAC  protocol, as presented in these
apers, we take a higher level view, providing valuable insights for
eneral networks.

Next to limiting the capacity of a network, contention between
odes has an impact on the fairness of protocols, as in the equality

n rate allocated to nodes or the throughput of flows. In [12] the
uthors describe the border effects in a CSMA/CA network and its
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

mpact on fairness. The stability and throughput for a weighted fair
ueueing model with saturated nodes is discussed in [13] showing
hat the throughput, while taking into account the topology, routing
nd random access in the MAC  layer, in this setting does not depend
ation steps.

on the load in the intermediate nodes as long as the network is
stable.

Different aspects of importance for the stability and throughput
of networks have also received much attention. Focussing on the
impact of routing, [14] investigates the stability and throughput
of static wireless networks with slotted time. The authors show
that routing has a large impact on the stability properties and
that as long as the intermediate queues in a network are stable,
the throughput does not depend on the traffic generated at these
intermediate nodes. In [15] the focus is on the calculation of the
interference to noise ratio and show the influence of the network
size and the data rate on this ratio and link this to the throughput
of the network.

The contribution of this paper is that we provide a compre-
hensible model that very accurately predicts the bottlenecks and
maximal throughput of a network, which also is applicable for
networks with unstable nodes. The results provide insight in the
impact that contention between nodes has on the performance of
the network, without the need of a complex analysis.

3. Discrete time model

3.1. General model

Consider a network consisting of n queues with infinite buffers.
Due to contention between nodes not all nodes can transmit their
packets at the same time. We  define the contention set I(i), i = 1, . . .,
n, of a node i as the set of nodes blocked from transmission when
node i is transmitting. A typical example is the set of nodes within a
certain interference range. However, for the model there need not
be a relation between the network structure and the contention
set. The way  contention between nodes takes place will be elabo-
rated upon below. A set of J traffic flows f(tj), j = 1, . . .,  J, travel over
multihop paths, denoted by the ordered sets tj, from node tj(1) to
tj(mj), where we assume that no loops are made within a path, i.e.
paths are simple and packets automatically follow their path. Traf-
fic consists of equally sized packets that are transmitted one packet
per time slot. An example of such a network is depicted in Fig. 2. In
y in networks with contending nodes. Int J Electron Commun (AEÜ)

Fig. 2. Network with three traffic flows.

dx.doi.org/10.1016/j.aeue.2012.06.009


 ING

A

. Comm

a
fi
v
a
u
e
t
b
i
n

p
t
b
i
a
e
t
t

l
w
T
T
d
M
s
i
q
o
t
a
o
t

3

s
s
t
p
i
i
c
p

b
w
a
p

|

i
v

�

a
i

ARTICLE Model

EUE-50930; No. of Pages 10

T. Coenen et al. / Int. J. Electron

Packets arrive at the origin nodes tj(1) (i.e. nodes 1 and 7 in Fig. 2)
ccording to a Poisson process with rate �j for flow j and are served
rst come first served. A node is called stable when its average ser-
ice rate exceeds the average arrival rate of packets at the node,
nd a network is called stable when all its nodes are. A node that is
nstable is called a bottleneck node. The average number of pack-
ts of a flow that reach the destination node per time unit is the
hroughput of this flow, which is limited by the service rate of the
ottleneck nodes of the network. The main interest in this paper

s the throughput of the flows and the identification of bottleneck
odes.

A node is called alive when it has packets to transmit and thus
articipates in the contention. In each time slot, all alive nodes con-
end to be allowed to transmit a packet. The probability of a node
eing allowed to transmit depends on the set of nodes contend-

ng, which we focus on in the following section. In each time slot
 node is either not contending, blocked or allowed to transmit. In
ach time slot this process is repeated, where we assume the selec-
ion of nodes being allowed to transmit to be independent between
ime slots.

Let pi denote the probability that node i is alive and let � be a
iveliness vector, such that �i = 1 if node i is alive and �i = 0 other-

ise. The set of all 2n possible liveliness vectors is denoted by ˘ .
he probability that a liveliness vector � occurs is denoted by q� .
he probability that node i transmits under liveliness vector � is
enoted by ri,� . The network can be represented by a discrete time
arkov chain with the queue lengths at each node as the state of the

ystem. Actually, as packets are forwarded to a next node depend-
ng on the flow they belong to, also the type of the packets in the
ueue needs to be included in the state description. However, in
ur steady state description these types will not play a role and are
herefore omitted from the state description. The transition prob-
bilities depend on the state of the system via the liveliness vector
nly, i.e. the number or type of packets in a queue does not affect
he probability of a node transmitting in a slot, unless it is empty.

.2. Contention

Multiple nodes can only be transmitting simultaneously in the
ame time slot when they are outside of each others contention
et. If multiple nodes within each others contention set are alive,
he contention protocol decides which nodes may  transmit. The
robability that a node is allowed to transmit a packet in the follow-

ng slot can be determined when the contention sets, the protocol
n use and the competing nodes are known. We  assume an ideal
ontention protocol, where no collisions will occur and hence no
ackets will be lost.

As we are not interested in the details of the contention protocol
ut only the corresponding probabilities for nodes to transmit, we
ill use a simple protocol giving each node an initial equal prob-

bility of winning a contention. For other protocols, transmission
robabilities can also be calculated. Using

�| =
n∑

i=1

�i, (1)

.e. |�| equals the number of alive nodes and (taking em as the unit
ector of length n, with all zeros except a 1 on location m),

˜ (k) = � −
∑

em (2)
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

m∈I(k):�m=1

s the liveliness vector remaining after a node k blocks all nodes
n its contention set (as it won the contention), the probability ri,�
 PRESS
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that a node i may  transmit a packet under liveliness vector � can
be calculated using the following recursion:

ri,� =

⎧⎪⎨
⎪⎩

0 for �i = 0

(1 +
∑

k /=  i:�k=1

ri,�̃(k))/|�| for �i = 1 (3)

with ri,0 = 0, where 0 denotes a liveliness vector with no alive nodes.
This can be seen as follows: with equal probability of 1/|�| any non-
empty node (so node i itself or any other alive node k) wins the
direct contention. Assuming node k wins the contention, it blocks
all nodes in its contention region, reducing the liveliness state to
�̃(k), after which all remaining nodes contend again. Any node that
did not win  the contention, but was  not blocked hence can compete
again and might win  the new contention, with probability 1/|�̃(k)|.
This process continues until all non-empty nodes either are allowed
to transmit or are blocked.

As an example, consider the network as depicted in Fig. 2 with
contention sets chosen such that nearby nodes contend: I(1) = {2,
4}, I(2) = {1}, I(4) = {1, 5, 6}, I(5) = {4, 6}, I(6) = {4, 5, 7}, I(7) = {6}.
Assume that all 6 nodes have packets to transmit (as nodes 3 and
8 do not transmit packets they are never alive), so that � = (1, 1,
0, 1, 1, 1, 1, 0). The probability r4,� that node 4 will be allowed
to transmit by directly winning the contention is 1/|�| = 1/6. If for
example node 1 wins the contention, node 4 is blocked, as it is in
its contention set. As �̃(1) = (0,  0, 0, 0, 1, 1, 1, 0), we get r4,�̃(1) = 0
as �̃4(1) = 0. The same holds if node 5 or 6 wins the contention,
as r4,�̃(5) = 0 and r4,�̃(6) = 0. If node 2 or 7 wins the contention,
node 4 still could be allowed to transmit. The probability that node
4 wins contention after node 2 has won the contention is given
by r4,�̃(2), where �̃(2) = (0,  0, 0, 1, 1, 1, 1, 0). This probability can
be calculated by calculating r4,� , but with � = (0, 0, 0, 1, 1, 1, 1, 0),
showing the recursion. As after each step, but with the new value
of �, the number of zeroes in the liveliness vector increases, the
recursion will stop when � = (0, 0, 0, 0, 0, 0, 0, 0). For this example,
the probability the nodes may  transmit are given by [19/48, 29/48,
0, 14/48, 20/48, 19/72, 53/72, 0]. We  further analyze this network
in Section 7.2.

Note that the overall probability of being allowed to transmit
is not equal for all nodes. A similar analysis to obtain ri,� can
be done for any network, with any contention sets and protocol.
More extensive calculations will be needed for larger networks
with different topologies, but the principle will not change. In the
remainder of this paper, we will assume that the contention regions
and protocol are known, such that all conditional rates ri,� of the
nodes can be calculated.

4. Approximation step 1: continuous time

We are interested in the long term average behavior of the net-
work, especially the throughput and stability issues. Considering
the system on a higher level and a larger time scale, the discrete
character due to the time slots fades and the model can be seen
as a continuous time Markov process. The state of the system con-
sists of the number and type of packets at each queue, but as the
state of the system only influences the transition rates through the
liveliness of the network, we do not focus on the queue lengths.
The flow a packet being served belongs to determines the direction
in which it will be forwarded. We  incorporate this into the model
as described below. In the following we  will denote parameters
used for the continuous time approximation by adding a hat to the
equivalent parameter in the original discrete time model.
y in networks with contending nodes. Int J Electron Commun (AEÜ)

When a queue has packets available and the liveliness is given by
�, the probability of a packet being sent is given by ri,� . On average,
the number of packets sent per slot under state � hence is ri,� . For
the continuous time Markov chain, we approximate the service rate

dx.doi.org/10.1016/j.aeue.2012.06.009
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node tj(i) is given by (6) and the total arrival rate by (4). Using the n
Eq. (4) for ai, it is possible to solve the system of 2n unknown vari-
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nder state � of the node using the exponential distribution with
ate r̂i,� = ri,� . The probability of a node being alive or not depends
n the arrival rate of packets and the service rate at the node. We
rst focus on the arrival rate of packets.

Whenever the nodes on a multihop path tj preceding a node
j(i) are stable, the arrival rate from this flow will be �j, the external
rrival rate of the flow. The total arrival rate of traffic ai at node i is
iven by

i =
∑
j:i∈tj

�j(i) (4)

here �j(i) is the arrival rate at node i for flow f(tj). When the
etwork is stable, this simplifies to ai =

∑
j:i∈tj

�j . When there are

nstable nodes in the network, the arrival rate of packets at each
ueue can be determined as follows. Due to the multihop feed for-
ard structure of the network we have that the arrival rate �j(i) is
etermined by its preceding nodes. If one or more of the preced-

ng nodes are unstable, the average arrival rate for the nodes after
he bottleneck on this path will depend on the service rate of the
nstable nodes. The probability ptj(i−1)tj(i) that a served packet at
ode tj(i − 1) continues to node tj(i), the packet is of flow f(tj), is
iven by

tj(i−1)tj(i) = �j(tj(i − 1))
atj(i−1)

. (5)

The arrival rate �j(tj(i)) from flow f(tj) at node tj(i) is given by

j(tj(i)) = min(�j(tj(i − 1)),  ptj(i−1)tj(i) r̂tj(i−1)), (6)

here �j(tj(1)) = �j, the external arrival rate of packets at the first
ode in path tj. This can be seen as follows: either the preceding
ode can serve all its incoming traffic, or its service rate is too low.

n the latter case, the fraction of the service rate of node tj(i − 1) that
s used for flow f(tj), equal to ptj(i−1)tj(i), determines the arrival rate
t the next node for this flow. Here r̂tj(i−1) denotes the average state
ndependent service rate of node tj(i − 1), which will be determined
n the next section. Assuming this rate is known, Eqs. (5) and (6) give

 system of equations that can easily be solved, giving the arrival
ate per flow at each node. We  use these arrival rates in the analysis
f the liveliness of the system, which influences the service rate of
he nodes.

. Approximation step 2: product form network

The Markov chain with state dependent service rates is not
menible for analysis. For a network with only two  queues in tan-
em, this equals the model presented in [6] under deterministic
ervice times. Even for such a small network, a complex analysis
s needed to obtain analytical results. Therefore, for an arbitrary
etwork, we approximate the continuous time approximation by
btaining an appropriate state independent service rate for each
ode to analyze the behavior of the network.

The state independent service rate r̂i is obtained by considering
he long term average percentage of time the system is in a state
ith liveliness vector �. The probability of node i being alive is given

y

ai
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

ˆ i = min(
r̂i

, 1).  (7)

or the final approximation step, let q̂� denote the steady state
robability that the liveliness vector is � (to be calculated later)
 PRESS
un. (AEÜ) xxx (2012) xxx– xxx

and assume the state independent average service rate of a node i
in the network to be given by,

r̂i =
∑
�∈˘

r̂i,�q̂�

p̂i
(8)

We obtain Eq. (8) by considering a large time scale and weighing the
service rate over the possible liveliness of the system, i.e. by uncon-
ditioning on the liveliness, but conditioning on the node being alive.
The state independent service rate r̂i can be seen as the average rate
at which a node services packets, given that it is alive.

Theorem 1. The steady state probability q̂� that the system is in a
state with liveliness vector � is given by

q̂� =
n∏

i=1

(1 − p̂i)
(1−�i)p̂�i

i . (9)

�

Proof. Summarizing the above, we have the following assump-
tions for the state independent continuous time approximation:

1. The external arrival process of traffic at queues is a Poisson pro-
cess.

2. There is infinite waiting space at all the queues.
3. The service time at the queues has an exponential distribution

and is independent of the state of the system and arrival process.
4. After completion of service at queue i a packet instantaneously

moves to the next queue k with probability pik, k = 1, . . .,  n, for
additional service or with probability pi0 the packet completes
service and leaves the system, where we have that

∑n
k=0pik = 1.

The routing probabilities are independent of the history of the
system.

A network for which the assumptions (1)–(4) hold is a product
form network (c.f. [16]). Hence, the probability of a certain state of
the system occurring is the product of the probabilities of nodes
containing a certain number of packets. As the state of the system
directly implies a certain liveliness, also the liveliness vector can be
found as the product of the liveliness of separate nodes, showing
(9) holds. �

We  will now use Eqs. (4)–(9) as an approximation for the dis-
crete time model. This rather coarse approximation will provide
quite accurate results, as we are interested in the influence of the
load on average behavior of the network.

6. Stability

The average service rate r̂i at which each node operates deter-
mines the load under which the network is stable. As presented
earlier, the average service rate of a node i is given by (8) and the
probability that a node is alive by (7).  Writing out the expression
for q̂� and inserting (7) into (8),  we obtain n equations, with 2n
unknowns, which are the ai and the r̂i. Assuming that all nodes
are stable, that is when all ai < r̂i, the arrival rate at each node is
known. The values for r̂i can hence be calculated for a stable system.
However, it is still to be determined for which values of �j (and thus
ai) the network is stable.

As presented in Section 4, the arrival rate for a certain flow j at
y in networks with contending nodes. Int J Electron Commun (AEÜ)

ables, which entails solving polynomials of degrees that increase
exponentially with the network size. Solutions can be obtained
numerically, however, using for instance the following algorithm
to obtain the values of r̂i.

dx.doi.org/10.1016/j.aeue.2012.06.009
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lgorithm 2. Calculation of r̂i, i = 1, . . . , n

. Set all values r̂i to 1, i = 1, . . .,  n

. Calculate �j(k), j = 1, . . .,  J and k = tj(1), . . .,  tj(mk)

. Calculate ai = ∑
j:i∈tj

�j(i), i = 1, . . .,  n

. Calculate p̂i = min(ai/r̂i, 1), i = 1, . . .,  n

. Calculate q̂� =
∏n

i=1(1 − p̂i)
(1−�i)p̂�i

i
, � ∈ ˘

. Calculate new r̂i = ∑
�∈˘ (r̂i,�q̂�/p̂i), i = 1, . . .,  n

. Calculate the difference �i = r̂i(new) − r̂i(old), i = 1, . . .,  n

. Repeat step 2 till 7 until convergence occurs, that is |�| ≤ ı for an
appropriate value of ı.

e  have numerically established that Algorithm 2 converges to a
nique solution r̂i for any values of �j, j = 1, . . .,  J. For an analysis of
he algorithm we refer Appendix A.

Using Algorithm 2, the service rate of all nodes can be calculated
or any set of flows through the network. The corresponding arrival
ates at the destination nodes of the flows give the throughput of
he network. Whenever the network is stable, the total through-
ut will equal

∑
j�j. For a general network, the calculation of the

hroughput, independent of the topology of the network, involves
olving n equations in n unknowns. Using Algorithm 2, the arrival
ate(s) can be chosen arbitrarily. To determine the stability range of
he network, we separately consider each flow in the network. Fix-
ng the arrival rates of all but one flow (such that the system with
hese flows is stable), there exists a value �opt for the remaining
ow such that ak = r̂k for at least one k ∈ 1, . . .,  n, which provides the
aximal throughput �opt of this flow. Node k is then the bottleneck

f the network. In this manner the stability range of the network
an be calculated (examples are shown in the following section).

. Examples and validation

.1. Multihop tandem network

In the following we analyze a multihop tandem network. When
onsidering a general network, the analysis of the stability region
nvolves considering flows separately. First, we show how for a spe-
ific contention protocol the transmission probabilities ri,� can be
alculated in this network, which corresponds to a single multi-
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

op transmission in a network. Next, we use simulation to validate
esults obtained by our algorithm for different sizes of the network.
ome surprising results are obtained, which are correctly predicted
y our model.

able 1
ransmission probability for a fully alive tandem network.

Size/node 1 2 3 4 5 6 

1 1 – – – – – 

2  0.5 0.5 – – – – 

3  0.6666 0.3333 0.666 – – – 

4  0.625 0.375 0.375 0.625 – – 

5  0.6333 0.3667 0.4667 0.3667 0.6333 – 

6  0.6319 0.3681 0.4444 0.4444 0.3681 0.631
7  0.6321 0.3679 0.4488 0.4262 0.4488 0.367
8  0.6321 0.3679 0.4481 0.4297 0.4297 0.448
9  0.6321 0.3679 0.4482 0.4291 0.4334 0.429

10 0.6321 0.3679 0.4482 0.4292 0.4328 0.432
11  0.6321 0.3679 0.4482 0.4292 0.4329 0.432
12 0.6321 0.3679 0.4482 0.4292 0.4329 0.432
 PRESS
un. (AEÜ) xxx (2012) xxx– xxx 5

Consider a tandem network of size n. The average service rate at
which a node transmits depends on the position in the tandem net-
work. As indirectly all nodes in the network influence each other,
the total length of the network has an impact. This impact when
all nodes are alive is shown, using a contention protocol selecting
a node to transmit with equal probability among all alive nodes.

Consider the tandem network such that nodes cannot transmit
and receive at the same time. A node that is allowed to transmit
hence blocks its direct neighbor(s). When all n nodes are alive, each
node has a probability 1/n  of obtaining the channel directly and
blocking its neighbor(s). The remaining nodes continue contending
for the channel until they are either blocked or allowed to transmit.
The rate ri,1(n) for a node at position i in a fully alive tandem network
of length n can be calculated using

ri,1(n) = 1
n

[
i−2∑
k=1

ri−k−1,1(n − k − 1) + 1 +
n∑

k=i+2

ri,1(k − 2)

]
. (10)

The right hand side of (10) follows from the node winning the con-
tention: if the first node in the network wins the contention, it
blocks the second node and the remaining n − 2 nodes compete,
with node i now at position i − 2. Otherwise, in a similar manner,
a node before (but not a neighboring) node i wins the contention,
node i wins the contention itself, either of node i’s neighbors wins
the contention or a node k behind node i wins the contention. Each
of these events occurs with a probability of 1/n,  together giving the
recursive formula.

Note that a multihop tandem network (in this setting) with
nodes that are not alive can be decomposed into many smaller
multihop networks. For a fully alive tandem network where nodes
cannot transmit and receive at the same time, Table 1 shows the
rates for different lengths of the network.

Theorem 3. For the multihop tandem network with all alive nodes,
the rate allocated to the nodes converges when the network size
increases, where in particular

lim
n→∞

r1,1(n) = 1 − 1
e

and lim
n→∞

r2,1(n) = 1
e

. (11)

�

Proof. For the proof we  refer to Appendix A.2. �

Other limits are observed in Table 1, showing that the border
effects fade for the middle nodes as the length of the network
increases, in accordance with [12]. This border effect already starts
to fade for networks of size 12.
y in networks with contending nodes. Int J Electron Commun (AEÜ)

We  note that the calculation of the rates ri,� for the linear set-
ting has the pleasant property that the rate of a certain node i under
liveliness � is only dependent on the number of nodes that are alive
and directly connected to each other. When considering different

7 8 9 10 11 12

– – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

9 – – – – – –
9 0.6321 – – – – –
1 0.3679 0.6321 - – – –
1 0.4482 0.3679 0.6321 – – –
8 0.4292 0.4482 0.3679 0.6321 – –
2 0.4329 0.4292 0.4482 0.3679 0.6321 –
3 0.4323 0.4392 0.4292 0.4482 0.3679 0.6321

dx.doi.org/10.1016/j.aeue.2012.06.009
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Fig. 3. Simulated average queue length in a 3 hop n

ontention sets and protocol or network layout, this property how-
ver may  no longer be present.

To validate the results presented in this paper, a simulation
odel has been constructed that mimics the behavior of the dis-

rete time network under consideration. The arrival and processing
f the packets is modeled, with a simulation for each parameter
etting lasting one million simulated time slots after a warm up
eriod of 100.000 slots. The results are compared with the stabil-

ty ranges and the throughput of the network calculated with the
tate independent continuous time approximation, using the pro-
ided algorithm. For some settings, we provide the exact derivation
f the results.

Consider the multihop tandem network for n = 3. The average
ervice rates at which the nodes operate are given by (using (8)
nd (9))

ˆ1 = (1 − p̂2) + 1
2

p̂2(1 − p̂3) + 2
3

p̂2p̂3 (12)

r̂2 = (1 − p̂1)(1 − p̂3) + 1
2

p̂1(1 − p̂3) + 1
2

(1 − p̂1)p̂3 + 1
3

p̂1p̂3

r̂3 = (1 − p̂2) + 1
2

(1 − p̂1)p̂2 + 2
3

p̂1p̂2.

Obviously, the second node will be the bottleneck of the network
s r̂2 is smaller than r̂1 and r̂3, as it is the only node contending
ith two neighbors. When node 2 is unstable, we have that p̂2 = 1.

o determine at what arrival rate � this will occur, we use that
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

 = ai = r̂2, so that

ˆ1 = r̂2

r̂1
and p̂3 = r̂2

r̂3
. (13)
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Fig. 4. Simulated and calculated throughput of a 3 hop netw
al rate

k with the instability rates calculated by the model.

Combining Eqs. (12) and (13) with p̂2 = 1 we  find that p̂1 = p̂3 =
(9 − √

57)/2, resulting in the critical arrival rate of � = r̂2 = 8 −√
57. From this value of � on the second node will be unstable.

If we  increase the arrival rate even more, the first node will also
become unstable. The third node however will always remain sta-
ble, as its service rate will always be higher than the service rate
at the second node, which determines the arrival rate at the third
node. To find from which value of � on the first node will also be
unstable, we substitute p̂1 = p̂2 = 1 in (12) which leads to p̂3 = 0.6,
and the rate at which node 1 becomes unstable equals � = r̂1 = 0.6.
Also note that the rate of the second node has now fallen to a value
of r̂2 = 0.4, so that the throughput of the network has decreased.

For the three node tandem network, Fig. 3 shows the average
queue length at the three nodes for increasing load of the system
and Fig. 4 shows the throughput of the system. The calculated val-
ues of arrival rates for which queues become unstable are depicted
as dotted vertical lines in the figures.

As can be seen in Figs. 3 and 4, the arrival rates at which the
first and second node become unstable coincide with the calcu-
lated values. Additional simulations for the arrival rates near the
ones causing instability of nodes were performed to confirm the
results, but are not shown in the figures to maintain readability. The
throughput, which reaches a maximum of 8 − √

57 ≈ 0.4501 when
the second node becomes unstable, decreases after this value. This
decrease in throughput is caused by the decrease in service rate
at the second node, as the first node becomes more highly loaded.
y in networks with contending nodes. Int J Electron Commun (AEÜ)

This causes the first queue to be alive a larger fraction of the time,
blocking the second node. The throughput settles at 0.4 after the
first node has become unstable at an arrival rate of 0.6, which is in
agreement with the values calculated.

0.5 0.5 5 0.6

t Calculated throughput

ork with the instability rates calculated by the model.

dx.doi.org/10.1016/j.aeue.2012.06.009
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Fig. 5. Simulated average queue length in a 5 hop n

Next, considering a larger network with 5 hops, one might
xpect that it is the second node that becomes the bottleneck. Using
he presented model and setting p̂2 = 1 however shows that no
eal valued solution exists, meaning that node 2 cannot be the
ode to become unstable first. It actually is the third node that
ecomes the bottleneck first at an arrival rate of 0.4323, which is
he maximum throughput of the network. Increasing the arrival
ate to 0.4448 causes the second node to become unstable as well.
ncreasing the arrival rate further, the third node becomes sta-
le again. The presented model also determines the arrival rate at
hich this occurs by making a small adjustment to the equations.
s the third queue will become stable as soon as its average service
ate is lower than the second queue’s rate, we now set r̂2 = r̂3. As
oth queues are still unstable we have that p̂2 = p̂3 = 1 and that

ˆ4 = r̂2/r̂4 and p̂5 = r̂2/r̂5. Using the standard equations for the r̂i’s
nd setting p̂1 = �/r̂1, we solve the system to obtain � = 0.4803
nd r̂2 = r̂3 = 0.4306. Finally increasing the arrival rate to 0.6108
auses the first node to become unstable, resulting in a throughput
f 0.3892. Simulation of the network under consideration provided
he results as presented in Figs. 5 and 6 where the vertical lines
how the calculated values for which nodes become (un)stable.

That it is queue 3 that is the first node to become unstable can
e called surprising. When all queues are alive, the average service
ate of queue 2 is lower than that of queue 3. However, when queue

 and/or queue 5 are empty, the third queue has the lowest rate
see Table 1 for a 3–5 node network). As can be seen in Fig. 5, the
verage queue length at nodes 1 and 5 are low for the load when
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

ueue 2 and 3 are already reaching instability. This indicates that
hey frequently will not be alive, which is in the disadvantage of the
hird node, making it the bottleneck node. However, as the arrival
ate increases, nodes 1 and 5 will be alive more often, which is
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Fig. 6. Simulated and calculated throughput of a 5 hop netw
al rate

k with the instability rates calculated by the model.

beneficial for node 3, resulting in the queue becoming stable again.
Surprising as this behavior may  be, it is predicted correctly by the
model.

7.2. General eight node network

Consider the network as depicted in Fig. 2. Note that any set of
interfering nodes can be used, mimicking the behavior of any access
control protocol, i.e. to mimic  an RTS/CTS protocol all nodes within
transmission range of the sending and receiving node can be used
as the contention set. To avoid trivial results we  set the interference
ranges for this example to be (only showing the nodes that need to
transmit) I(1) = {2, 4}, I(2) = {1}, I(4) = {1, 5, 6}, I(5) = {4, 6}, I(6) = {4,
5, 7}, I(7) = {6}. First flow f(t1) is set up, with rate �1 = 0.1. Obviously
the network can handle this flow. Second, flow f(t3) is set up, with
rate �3 = 0.1 as well. Again, the network remains stable (note that
even though both flows have node 3 as endpoint, this does not cause
problems as we  assume perfect reception of all transmissions). Now
flow f(t2) is initiated and the open question is which rate can be
achieved for this flow. The arrival rates of traffic at the nodes, as
long as the network is stable, is given by

Node 1 2 3 4

Arrivalrate �2 + 0.1 0.1 0.2 �2

Node 5 6 7 8

Arrivalrate 0.1 �2 + 0.1 0.1 �2
y in networks with contending nodes. Int J Electron Commun (AEÜ)

and the probabilities q� of all possible liveliness vectors can easily
be calculated. Using these values in Eqs. (7) and (8) gives a set of 8
equations with 9 unknowns (all the r̂i and �2), which can be solved
when it is known which node becomes the bottleneck. Using �2 = r̂i

.5 0.5 5 0.6 0.65 0.7

al rate

t Calculated throughput

ork with the instability rates calculated by the model.
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Fig. 7. Simulated and calculated throughput in the 8 no

or i = 1, 4, 6 and solving shows that it is node 4 that becomes the
ottleneck at an arrival rate of �2 = 0.3789. Increasing the arrival
ate �2 further causes node 1 to become unstable as well, influ-
ncing the throughput of the first flow. Using the model, this is
alculated to happen at an arrival rate of �2 = 0.5092. Fig. 7 shows
he throughput of the separate flows for an increasing arrival rate
f the second flow. Both the values calculated by the model and the
imulation results are shown.

Numerical evaluation shows that the model gives very accurate
redictions of the throughput, where the error at each calculated
oint stays below 1%. The load at which node 1 and 4 become unsta-
le can be recognized as the points where the slope of the graph
hanges, where the simulation again shows that this is at the point
redicted by the model.

. Conclusion

Inspired by wireless ad hoc networks, where interference lim-
ts the capacity, networks with contending nodes are analyzed in
his paper. Each time slot, nodes compete to transmit a packet
rom their queue, where a winning node blocks other nodes in
ts neighborhood. The time slot system is approximated in two
teps. First, by considering the long run average behavior of the
iscrete time system, a continuous time model is obtained. As the
econd step, appropriate state independent service rates for the
odes in the network are determined. Combining relations between
he arrival and service rates of the nodes, bottleneck nodes are
dentified which determine the throughput of a multihop wireless
etwork. Using the two rather coarse approximation steps, we  pro-
ose a product form network approximation. Taking advantage of
he properties of product form networks, equations for the liveli-
ess vector (whether nodes have packets in their queues or not) and
he average service rates of the nodes are derived and solved using

 simple algorithm. Surprisingly, the continuous approximation for
he long term average behavior turns out to give accurate results
oncerning the stability and throughput of the network. Other per-
ormance measures, as the queue length and waiting time, have not
een considered.

Our approach provides very accurate results for the lowest
rrival rate of a flow at which one of the nodes becomes unstable,
hus giving the maximal throughput for this flow. Also, increas-
ng the arrival rate further, instability of the rest of the nodes
s analyzed. Our model correctly predicts surprising behavior in

 multihop tandem network, where a queue at first turning out
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

o be the bottleneck, returned to stability again after increasing
he arrival rate. The approach presented is applicable for general
etworks, with various contention settings and protocols. Using
imulations of the discrete time system, results were compared
 rate flow 2

work with the instability rates calculated by the model.

with the continuous time model, showing that the model provides
very accurate results.

Appendix A.

A.1. Analysis of Algorithm 2

To analyze the convergence of Algorithm 2, we consider the sep-
arate steps and the recursion. The initial value of r̂i = 1 corresponds
to a network without contention, immediately giving an indication
whether the network is stable or not. To calculate all �j(k)’s in step
2, Eqs. (6),  (4) and (5) need to be combined, giving Jm equations
with equally many unknown variables which can be solved. From
these values, obviously steps 3–6 can be calculated, leading to the
recursion.

Let g(r) denote the function that calculates the new value of
r using the steps described. The function g( · ) : R

n → R
n is a con-

tinuous function on the convex compact subset [0, 1]n. Following
Brouwers fixed point theorem (c.f. [17]), we consider the equation
g(r) = r, which has a solution, which we need to show to be the
unique fixed point. To achieve this, we use the Contraction Map-
ping Theorem (CMT, c.f. [17]), saying that the equation g(r) = r has
a unique solution if and only if

• The function g(·) maps [0, 1]n to [0, 1]n

• There is a constant G < 1 such that ||g(x) − g(y)|| ≤ G||x − y|| for all
x, y ∈ [0, 1]n

First, the algorithm needs to be shown to map any starting value
for r to another value of r that is within the possible range of [0, 1]n.
For this to be the case, we need that

0 ≤
∑

�

r̂i,�q̂� ≤ p̂i.

The first inequality is obvious, for the second one we note that r̂i,� =
0 for all � such that �i = 0 and that r̂i,� ≤ 1. This gives that

∑
�

r̂i,�q̂� ≤
∑

�:�i=1

q̂�

=
∑ n∏

(1 − p̂ )1−�j p̂
�j
y in networks with contending nodes. Int J Electron Commun (AEÜ)

�:�i=1 j=1

j j

= p̂i

∑
�:�i=1

∏
j /= i

(1 − p̂j)
1−�j p̂

�j

j
= p̂i,

dx.doi.org/10.1016/j.aeue.2012.06.009
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here the last equality holds as we sum over all possible liveliness
tates for the network without node i, proving the first part of the
ontraction mapping theorem.

The second part is more involved. We  provide a complete proof
or a two node network and indicate why the second condition is
onjectured to hold for larger networks.

When following the steps of the algorithm for a two node tan-
em network, we have that

a(1) = �(1) = � and a(2) = �(2) = min(�, r̂1)

p̂1 = min
(

�

r̂1
, 1

)
and p̂2 = min

(
min(�, r̂1)

r̂2
, 1

)

r̂1 = 1 − 1
2

p̂2 and r̂2 = 1 − 1
2

p̂1.

ote that as 0 ≤ p̂i ≤ 1 we have that r̂i ∈ [(1/2),  1]. First assuming
e are dealing with a stable network, the arrival rate at both nodes

quals �. We  now (by substituting pi) have the functional vector

(r̂) =
(

1 − �

2r̂2
, 1 − �

2r̂1

)
.

his gives, for x = (x1, . . .,  xn),

|g(x) − g(y)||2 =
(

�

2x2y2

)2

(x2 − y2)2 +
(

�

2x1y1

)2

(x1 − y1)2,

nd for this to be smaller than ||x − y||2 we need to have that
�/2xiyi)2 < 1. As we assumed a stable network, we  have that � < xi,
o that

�

2x2y2
<

1
2yi

≤ 1

ince yi ∈ [(1/2), 1] and so indeed the second condition holds prov-
ng that for a stable system the algorithm converges. If the system

ould be unstable, we have that

(r̂) =
(

1 − min((min(�, r̂1)/r̂2), 1)
2

, 1 − min((�/r̂1), 1)
2

)
,

here the following situations can occur: � ≥ r̂1 or r̂2 ≤ � < r̂1. In
he first case we have that

(r̂) =
(

1 − 1
2

min

(
r̂1

r̂2
, 1

)
,

1
2

)

hich within two steps of the algorithm leads to g(r̂) = (1/2, 1/2)
nd thus converges to this unique solution. In the second case we
ave that

(r̂) =
(

1
2

, 1 − �

2r̂1

)
,

|g(x) − g(y)||2 =
(

�
)2

(x1 − y1)2
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

2x1y1

nd (�/2x1y1)2 <1 as shown earlier completing the proof that the
lgorithm converges for this two node network.
 PRESS
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Considering a three node network, we obtain the following func-
tion (omitting the hat in the notation):

g(r) =
(

1 − min((min(�, r1)/r2), 1)
2

+ min((min(�, r1)/r2), 1) min((min(min(�, r1), r2)/r3), 1)
6

,

1 − min((�/r1), 1)
2

− min((min(min(�, r1), r2)/r3), 1)
2

+ min((�/r1), 1) min((min(min(�, r1), r2)/r3, 1)
)

3,

1 − min((min(�, r1)/r2), 1)
2

+ min((�/r1), 1) min((min(�, r1)/r2), 1)
6

)
.

As we  have that g(p) = (1 − (p2/2) + (p2p3/6),
1 − (p1/2) − (p3/2) + (p1p3/3), 1 − (p2/2) + (p1p2/6)), starting in
([(1/2), 1], [(1/3), 1], [(1/2), 1]), g(·) will also project on this range.
For the CMT  to hold, we  first consider the stable system again, so
that � < ri. In this case we  have that

g(r) =
(

1 − 1
2

�

r2
+ 1

6
�2

r2r3
, 1 − 1

2
�

r1
− 1

2
�

r3
+ 1

3
�2

r1r3
,

1 − 1
2

�

r2
+ 1

6
�2

r1r2

)
.

Checking whether ||g(x) − g(y)|| < ||x − y|| proves to be cumbersome,
even for such a small network. Therefore we  numerically analyzed
the function h(x, y) = ||g(x) − g(y)||(||x − y||)−1 which proved to be
smaller than one for all values of x and y. As in the two node net-
work, it is easy to show that for an instable network, either there is
an obvious direct convergence to the rates (2/3,1/3,2/3) or conver-
gence is proven by using parts of the approach for the stable case.
We postulate that for any network a similar analysis will show that
the algorithm constitutes a contraction, and thus converges.

A.2. Proof of Theorem 3

The formula for the rate ri,1(n) of a node on position i in an n
node network that is fully alive is given by

nri,1(n) =
i−2∑
k=1

ri−k−1,1(n − k − 1) + 1 +
n−2∑
k=i

ri,1(k) (14)

as described in the paper. Due to symmetry of the network we also
have that

ri,1(n) = rn−i+1,1(n) i = 1, . . . , n.

The rate of a node can never exceed one, but will be one if the
node is the only alive node within its interference region, i.e. its
neighbors are not alive. The minimal rate of a node is 1/n  as with
this probability it wins the contention over all other nodes.

In the following we  omit the 1 denoting the fully alive network.
To find an expression for ri(n), note that

nri(n) − (n − 1)ri(n − 1) = ri(n + 2)

+
i−2∑
k=1

[ri−k−1(n − k − 1) − ri−k−1(n − k − 2)]

and letting ci(n) = ri(n) − ri(n − 1) this gives
y in networks with contending nodes. Int J Electron Commun (AEÜ)

ci(n) = 1
n

[
i−2∑
k=1

ck(n + k − i) − ci(n − 1)

]
.

dx.doi.org/10.1016/j.aeue.2012.06.009
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s −1 ≤ ci(n) ≤ 1 for any value of i and n, we have that

i(n) ≤ 1
n

[(i − 2) − ci(n − 1)] ≤ 1
n

(i − 1)

o that for each i we have that lim
n→∞

ci(n) = 0, proving that ri(n)

onverges for n→ ∞.
For i = 1 this leads to

1(n) = −1
n

c1(n − 1)

hich gives

1(n) = (−1)n−1

n!
, r1(n) =

n∑
i=1

(−1)i−1

i!
.

imilarly, we have that

2(n) = (−1)n

n!
, r2(n) =

n∑
i=1

(−1)i

i!
.

aking the limit shows that

lim r1(n) = 1 − 1
, lim r2(n) = 1
Please cite this article in press as: Coenen T, et al. Bottlenecks and stabilit
(2012), http://dx.doi.org/10.1016/j.aeue.2012.06.009

→∞ e n→∞ e

nfortunately, for larger values of i, no nice expressions are found
or ci(n) or ri(n), but the limiting values can be calculated using the
ame approach. The results are presented in Table 1.
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