
European Journal of Mechanics B/Fluids 36 (2012) 115–119
Contents lists available at SciVerse ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Applying laser Doppler anemometry inside a Taylor–Couette geometry using a
ray-tracer to correct for curvature effects
Sander G. Huisman ∗, Dennis P.M. van Gils, Chao Sun ∗

Physics of Fluids, Faculty of Science and Technology, Burgers Center for fluid dynamics, University of Twente, The Netherlands

a r t i c l e i n f o

Article history:
Received 21 July 2011
Received in revised form
1 February 2012
Accepted 27 March 2012
Available online 10 April 2012

Keywords:
Laser Doppler anemometry
Taylor–Couette
Curvature
Ray-tracer
Refraction
Correction

a b s t r a c t

In the present work it will be shown how the curvature of the outer cylinder affects laser Doppler
anemometry measurements inside a Taylor–Couette apparatus. The measurement position and the
measured velocity are altered by curved surfaces. Conventional methods for curvature correction are not
applicable to our setup, and it will be shown how a ray-tracer can be used to solve this complication.

By using a ray-tracer the focal position can be calculated, and the velocity can be corrected. The results
of the ray-tracer are verified by measuring an a priori known velocity field, and after applying refractive
corrections good agreement with theoretical predictions are found. The methods described in this paper
are applied to measure the azimuthal velocity profiles in high Reynolds number Taylor–Couette flow for
the case of outer cylinder rotation.

© 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

A Taylor–Couette (TC) apparatus consists of two coaxial,
differentially rotating, cylinders, see Fig. 1. The annulus between
the cylinders is filled with a working fluid; most commonly, as
in our case, water is chosen. The apparatus has been used to
study hydrodynamic instabilities, pattern formation, turbulence,
and was found to have a rich phase diagram with different types
of flow structures [1–11]. To get a deep understanding of these
phenomena it is crucial to measure the local flow velocity.

Measuring the velocity field inside a TC apparatus was done for
a long time using intrusive measurement techniques, e.g. constant
temperature anemometry [12–15] and Pitot tubes [16]. Though
these techniques are robust and proven to work, they are not
ideal for measuring the velocity in TC flow. The aforementioned
methodsmeasure themagnitude of the velocity, not the individual
components, and are directionally ambiguous using a single probe.
Of course, one could use multiple probes [17] to obtain the flow
direction. Another problem is that they alter the flow under
consideration. Though this is not an issue for non-recirculating
setups, like an open-ended wind tunnel, it can be a severe issue in
recirculating (closed) setups, e.g. a TC apparatus, a rotating drum, or
a Rayleigh–Bénard cell [18]. For a large range of Reynolds numbers
it is known that vortices will be shed [19] from these probes, either
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in the form of a Kármán vortex street or as a turbulent wake,
depending on the geometry and Reynolds number. These vortices
can survive a full revolution, which has been observed in rotating
drum experiments [20].

The TC setup used in the present work, the Twente Turbulent
Taylor–Couette (T3C) [21–23], distincts itself from other setups
by many features: variable gap and radius ratio, precise temper-
ature control, independently rotatable cylinders, and a fully opti-
cally accessible gap. The outer cylinder is constructed from 2.5 cm
thick PMMA (Poly-(methyl methacrylate)), which enables opti-
cal measurement techniques, e.g. Particle Tracking Velocimetry
(PTV) [24,25], Particle Imaging Velocimetry (PIV) [26,27], and Laser
Doppler Anemometry (LDA) [28,29]. These methods, by their very
nature, will not disturb the flow under consideration. In addition
these techniques are able to measure the velocity components and
are directionally sensitive, such that they are capable of detecting
flow reversals. The addition of seed particles is imperative for these
techniques, and one should check if these particles accurately re-
flect the velocity of the flow, as discussed below. Additionally, par-
ticles should not change the dynamics of the flow, in particular,
some particles act as a surfactant in two-phase flows [30–32].

2. Laser Doppler anemometry

LDA is based on the Doppler effect. The most common version
of LDA, is a so-called dual beam heterodyne configuration [29],
see Figs. 2 and 3. In this configuration two beams are crossed and
focused in the flow, creating an interference pattern. Seedparticles,
added to the flow, passing through the interference pattern will
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Fig. 1. Left: Top view of TC apparatus, two concentric cylinders are rotating. Control
parameters are the rotation rates ωi and ωo , where the subscripts denote inner
cylinder and outer cylinder, respectively. The inner cylinder has a radius of ri =

20 cm, and the outer cylinder has an inner-radius of ro = 28 cm. Right:Vertical cross
section of a TC apparatus. The outer cylinder has anouter-radius of re = 30.5 cmand
a height L = 92.7 cm. The outer cylinder is made from optically transparent PMMA
(Poly-(methyl methacrylate)), and is attached to the top and bottom end plates.

Fig. 2. Left: The azimuthal and axial components of the velocity aremeasured, laser
beams are in the green and blue planes respectively. Right: Vertical cross section
showing two laser beams. The dashed lines are beamswithout refraction, the angle
between the beams is denoted θa , where a stands for air. The solid lines are beams
with refraction, θw is the angle between the beams in water. rLH is the position of
the laser head and rLH − f is position of the focus without refraction, while rf is
the real position of the focus. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

scatter light with a specific frequency. This light is then captured
by a photo detector and converted to a current from which the
Doppler shift can be calculated. Knowing the optical geometry of
the setup one can directly calculate the velocity from the Doppler
shift [29]:

fd =
2 sin(θ/2)

λ
|vk| (1)

where fd is the Doppler shift, λ the wavelength of the laser, θ the
angle between the beams, and vk the component of the velocity
along k1 − k2, where ki are the propagation vectors of the laser
beams. To add directional sensitivity one has to frequency shift one
of the beams, accomplished by a Bragg cell. More details about the
Bragg cell, the fringe-model, and LDA in general, can be found in
e.g. Refs. [29,33].

Laser Doppler anemometry is a so-called absolute measure-
ment method and therefore does not require calibration against
a known flow. This, however, does not mean that a measurement
of velocity is error free. Any misalignment in the optical arrange-
ment, and any imperfection in the lenses (e.g. astigmatism [34])
will cause errors. In addition, any particle traveling through the
beams prior to focussing can have adverse effects on the formation
of a well-defined measurement volume. Similarly, any spatial in-
homogeneity of the refractive index causes the focal point to shift,
and the waists to mismatch in the measurement volume [35]. Fur-
thermore, the number of particles in the interference zone fluc-
tuates; particles move in and out the measurement volume and
induce noise in the collected signal.
Fig. 3. Left: Typical geometry of LDA, equivalent to the vertical plane in the current
application. The beams are passing through flat interfaces, and θ does not vary with
laser-head position. Right: Horizontal plane: laser beams are affected by the curved
interfaces, and therefore θ is a function of radial position.

2.1. Curvature effects

In most LDA applications the laser beams travel through flat
surfaces, see Fig. 3. In this case, Eq. (1) can be simplified by invoking
Snell’s law:

fd
2|vk|

=
sin(θw/2)

λw

=
sin(θa/2)

λa
(2)

where quantities with a subscripts denote quantities in air, and
w in water. Eq. (2) is only applicable if the interfaces are flat
and the optical axis is perpendicular to those interfaces; it is only
then that θa/2 is the angle of incidence and θw/2 the angle of
refraction. The difference in refractive index is absorbed by the
changing wavelength. So for the case of flat interfaces, θa can
be obtained from the focal length and the beam separation, and
together with λa, given by the laser, the velocity can be calculated
from the Doppler shift (Eq. (2)). Note that the refractive indices of
the container and water are irrelevant; they are not used in the
calculation of the velocity.

For the case of a curved surface, see Fig. 3, Eq. (2) does not
hold. For this case Snell’s law cannot (easily) be applied in order to
transform θw to θa. A prerequisite of calculating the correct velocity
is therefore the knowledge of θw as a function of gap-position.

Most commonly the calculation of the velocity is implemented
in the supplied software and implicitly assumes Eq. (2) to hold.
For the case of curved interfaces this equation does not hold, and
therefore themeasured velocity has to be corrected bymultiplying
it with a correction factor Cθ :

Cθ =
uφ,real

uφ,measured
=

na sin(θa/2)
nw sin(θw/2)

, (3)

where a subscripts denote quantities in air, and w in water; see
also Fig. 2.

3. Solutions

The problem at hand is predominantly solved by mounting
prisms (see e.g. [36]) to the outer cylinder of the TC apparatus, or
by putting the entire apparatus inside a liquid bath (see e.g. [37])
with flat windows. The latter has two purposes: the liquid bath
can act as a coolant and match the refractive index of the working
fluid. In this way the beams travel through the outer cylinder with
less deflection; this solution is, however, not perfect because of
the finite thickness of the outer cylinder. Matching the refractive
indices of the working fluid, the liquid bath, and the outer cylinder
does solve the issue, but becomes cumbersome for large scale
devices, or impossible if the studied fluid is a gas. The use of
prisms is tantamount to the use of a liquid bath, and is also
unable to fully correct for the problem. Furthermore, applying
prisms is technically demanding once the outside is in motion.
Theoretically one can derive the trajectories of the laser light.
Ref. [38] derives these trajectories and even finds simplifications
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Table 1
Parameters describing the optical geometry of the presently used Taylor–Couette
apparatus: the T3C [21].

Parameter Symbol Value (m)

Radius inner cylinder ri 0.20
Inner-radius outer cylinder ro 0.28
Outer-radius outer cylinder re 0.305
Refractive index PMMA nPMMA 1.49
Refractive index water nwater 1.333

Fig. 4. The position of the two foci as a function of the position of the laser-head.
Colors are in accordance with Fig. 2. The trajectory of the blue focus (bottom line)
can bedescribed by apiece-wise linear function,while for the green focus it deviates
from a linear function due to the curvature of the interfaces. The foci diverge once
rLH − f < re . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

for the solutions found. This analysis is, however, not complete,
as it only considers 1 plane of refraction; the inside of the outer
cylinder. In our application our cylinder is very thick compared
to our measurement range; the gap of our apparatus is 8 cm
versus a cylinder of thickness 2.5 cm. Here we will consider both
interfaces, and calculate the trajectories by using a ray-tracer, and
we will show that taking into account both interfaces is crucial
for our experiments. Utilizing a ray-tracer has several advantages
compared to a theoretical derivation for the present experimental
setup (e.g.Ref. [38]): a theoretical derivationbecomes cumbersome
if one tries to find a formula after more than one refraction. The
T3C system will be equipped with multiple outer cylinders to alter
the gap-width, a ray-tracer is then more generalized and is able
to handle multiple interfaces. The next section describes the use
of a ray-tracer in order to account for the effects of the curved
interfaces.

4. Ray-tracer

A3D ray-tracer is built in order to calculate two parameters: the
angle θw for the green beam pair in the horizontal plane, and the
position of the crossings of the blue and green beam pairs in the
vertical and horizontal plane, respectively. For the blue beam pair
(in the axial–radial plane), the curvature effects does not affect the
flowvelocitymeasurements, and therefore Eq. (2) is applicable; the
axial velocity does not require correction. The azimuthal velocity,
however, does need correction.

The ray-tracer is based on simple principles: starting at point pi
with direction ki, it checks which interfaces are hit for some t > 0
at position pi + tki. The next point in the ray-trace can be defined
from the interface that is hit first: pi+1 = pi + tminki. The normal of
this interface is calculated at position pi+1, and is denoted ŝ, where
the hat means the vector has unit length. For the case of reflection
the new direction is given by

ˆki+1 = k̂i − 2(k̂i · ŝ)ŝ. (4)
Fig. 5. The separation between the measurement positions is normalized with the
gap width and plotted versus the focal position of the ‘axial’ beams. Near the inner
cylinder the distance between the two foci is the highest and constitutes more than
11% of the gap. Due to the thickness of the outer cylinder there is non-zero distance
between the two foci when focused at r = ro .

For the case of refraction, Snell’s law:

ni(k̂i × ŝ) = ni+1( ˆki+1 × ŝ), (5)
is solved for ki+1 under the constraint that it has unit length and in
the plane spanned by ŝ and k̂i. This can be implemented without
the use of trigonometric functions, which can be troublesome in
certain fringe cases; see the Appendix for more details.

Once the new position and new direction are found, the
algorithm can be repeated until it exits the apparatus, or until it
is absorbed by a surface.

This algorithm has been applied to the geometry of our LDA and
TC setup. Our focal length f = 0.5m, our beamseparation is 76mm
for the green beams, and 73 mm for the blue beams. The optical
geometry of the TC apparatus used in the present work [21] can be
characterized by 3 radii and 3 refractive indices; see Figs. 1 and 2
and Table 1.

4.1. Shift of focal position

In this section the location of the foci (i.e. the measurement
position) for both pairs of beams are calculated. The position of
the laser-head rLH is varied, see Fig. 2. The focal position of the
undisturbed beams is given by rLH− f . For each beam-pair the focal
position rf is calculated as a function of rLH, see Figs. 2 and 4.

If the focus is outside the apparatus, i.e. rLH − f > re, the focal
position is given by rf = rLH − f . If the laser head is moved inward
(decreasing rLH − f ) the beams will first hit the outer cylinder at
rf = re = rLH − f . Moving the laser head further inward will cause
the foci to lie inside the PMMA, and moving even further, inside
the water. The blue beams are in the azimuthal–radial plane and
refract differently from beams traveling in the axial–radial plane.
The focus of the blue beams hits the inner cylinder (rf = ri) at
rLH − f ≈ 0.228 m, while the focus of the green beams hits the
inner cylinder at rLH − f ≈ 0.22 m. The distance between the two
foci as a function of the radial position is depicted in Fig. 5.

A pronounced shift of the focal positions is observed, see Fig. 5;
the foci never coincide, and the maximum separation is 11.5% of
the gap. The effects due to curved interfaces can therefore not be
neglected. Furthermore, note that the foci do not even coincide at
r = ro; this is due to the finite thickness of the outer cylinder, it is
therefore necessary to consider both interfaces in the analysis.

4.2. Beam angle correction

For the case of flat surfaces (the axial–radial plane) the velocity
calculated by the supplier’s software does not have to be corrected.
Eq. (2), however, does not hold in the azimuthal–radial plane
due to the curved surfaces, and the velocity has to be corrected



118 S.G. Huisman et al. / European Journal of Mechanics B/Fluids 36 (2012) 115–119
Fig. 6. Correction factor Cθ (see Eq. (3)) as a function of the radial position r . The
azimuthal velocity uφ has to be corrected: uφ,real = Cθ (r)uφ,measured .

by multiplication with Cθ , see Eq. (3). The refractive indices are
known, and θa can be found from the focal length and the beam
separation. θw can be found by calculating the angle between the
focussing rays, see Figs. 2 and 3. The correction factor can then be
calculated, see Fig. 6.

The velocity has to be corrected by 3% to 9%, depending on the
radial position. Note that there is a finite correction (about 3% for
the optical geometry of the current apparatus) at thewater–PMMA
interface at r = ro, this is due to the non-zero thickness of the
outer cylinder and taking into account both interfaces of the outer
cylinder in the analysis.

5. Experimental verification

The results obtained from the ray-tracer can be verified by
measuring a known flow state. The temperature of the TC system
is kept at 20 °C with water as the working fluid. Dantec polyamide
seed particles (rseed = 2.5 µm) with a density of 1.03 · 103 kg/m3

are used. One can estimate theminimum velocity difference1v =

|vseed−vfluid| between a particle vseed and its surrounding fluid vfluid
needed for the drag force Fdrag = 6πµrseed1v to outweigh the
centrifugal force Fcent(r) =

4
3πrseed3 (ρseed − ρfluid)

v2

r . A typical
velocity in the middle of the gap (r = 0.24 m) is v = 5 m/s,
combining with the density and viscosity of water around 20 °C,
resulting in1v ≈ 4×10−6 m/s. This is several orders ofmagnitude
smaller than the typical velocity fluctuation inside the TC-gap
of order 10−1 m/s and hence centrifugal forces on the seeding
particles are negligible.

For TC flow a stable and well-known flow state is solid body
rotation; the inner and outer cylinder are both rotated at a fixed
speedω. After sufficient waiting the fluid will have a velocity uφ =

ωr , and uz = ur = 0. The experiment has been performed for
three rotation rates ω (ω/2π = 1 Hz, 2 Hz, and 4 Hz), where the
azimuthal velocity has been measured at several radial positions
and at mid height. Similar results were found for all three cases,
Fig. 7 shows the results for the case of ω/(2π) = 2 Hz.

The measured velocities are shown in red squares, after
applying the beam angle correction the data points (blue circles)
are found to agree with the theoretical flow profile within 0.75%.
Any remaining deviation can be due to e.g. optical misalignment
or imperfection, spatially inhomogeneous refractive index in
the working fluid, or noise created by the amplification and
digitalization of the optical signal.

6. Application

Here the results are shown for the measurement of the
azimuthal velocity profile for the case that the inner cylinder is
stationary and the outer cylinder is rotating. This case has been
Fig. 7. In red squares the uncorrected azimuthal velocity as a function of radial
position is shown, and in blue dots the corrected azimuthal velocity. The black
solid line is the theoretical flow profile uφ = ωr , the deviation from this profile is
plotted with green dots, the corresponding scale is on the right. The theoretical and
correctedmeasured profiles are found to be in good accordance. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. For three rotation rates the azimuthal velocity is measured along the gap.
This velocity is normalized by the driving velocity in order to collapse the data, and
compared to the laminar velocity profile for infinite aspect ratio (dashed line). The
profile is found to be nearly independent of the Reynolds number.

studied before [12,16], and because the flow is laminar, even
for high Reynolds number, any perturbation due to a measuring
probe is likely to survive a full revolution. To accurately obtain
the speed of the (undisturbed) flow, it has to be measured non-
intrusively. Fig. 8 shows the results of three experiments having
varying Reynolds number (Re = ωoro(ro − ri)/ν).

For three rotation rates the obtained profiles are found to
collapse over a decade of Reynolds number, but deviate from the
laminar velocity profile for infinite aspect-ratio. Due to a finite
aspect ratio of the setup the presence of the end plates will
create a secondary flow, modifying the azimuthal velocity profile.
The velocity close to the inner cylinder is currently unattainable
by LDA due to reflections coming of the inner cylinder surface.
These reflections create spurious, unreliable data and therefore the
profiles are shown dashed in that region. The present system will,
in the future, be equippedwith a transparent inner cylinder, which
will significantly reduce the reflections.

7. Conclusion

In order to measure correct velocities inside a TC apparatus
using LDA, one has to correct for the effects of the curved interfaces.
Not only do the positions of the measurement volumes depend
non-trivially on the position of the laser head, but also the
measured velocity has to be corrected. A ray tracer has been used
in order to calculate the position of the foci, but also to calculate the
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Fig. 9. Sketch of the rays in the plane of refraction.

correction factorCθ as a function of radial position.We showed that
for our application it is crucial to take into account both interfaces
of the outer cylinder. The measurement positions do not coincide
and the velocity has to be corrected even at r = ro. Our ray-tracer
is verified by measuring the velocity for the case of solid body
rotation; good agreement with the theoretical prediction has been
found. For pure outer cylinder rotation it is found that the velocity
deviates from the laminar velocity profile for infinite aspect ratio
due to the presence of the end plates.
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Appendix

For each interface one has to solve Snell’s law ni(k̂i × ŝ) =

ni+1(k̂i+1 × ŝ) for ki+1. From the vector equation one can see that
the solution is not unique; but the solution is unique if we require
the solution to be in the plane spanned by ŝ and k̂i (called the plane
of refraction). In this plane the solution can be rewritten as follows:
ni sin(θi) = ni+1 sin(θi+1). ki+1 can be decomposed in to two
parts; one in the direction of ŝ and one that is tangential to the
interface and in the plane of refraction, denoted t̂, see Fig. 9.
By simple geometry one can find that ki+1 = sin(θi+1)t̂ +

cos(θi+1)(−ŝ). The direction of t can be found by subtracting the
normal component of the incident ray: t = k̂i − (k̂i · ŝ)ŝ. From
the definition of the cross product (|a × b| = |a||b| sin(α), where
α is the angle between vectors a and b) and Snell’s law, one can
derive that sin(θi+1) =

n1
n2

k̂i × ŝ
, and using the Pythagorean

identity one writes cos(θi+1) =

1 − sin(θi+1)2. Note that one

does not need to calculate the angles θi or θi+1, it is only necessary
to know the sine and or cosine of the angles. The direction for
the outgoing ray can now be found by substituting all the values:
ki+1 = sin(θi+1)t̂ + cos(θi+1)(−ŝ).
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