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Abstract 

A straightforward method of extensive modeling of a lossy stub resonator system for online fingerprinting of fluids is 
presented in this paper. The proposed model solves the telegrapher’s equations including the skin effect and dielectric 
losses and describes the amplitude versus frequency response of lossy coaxial stub resonators with a fluid under 
investigation as dielectric. The adequacy of the method is demonstrated by comparing simulations with 
experimentally obtained data. Even though we applied the model to a coaxial stub resonator for the online 
fingerprinting of fluids (e.g., for water quality monitoring), the potential applicability of the method reaches further. 
Indeed, the method introduced here may be useful for different types of sensors based on lossy transmission line 
theory. 

© 2012 Published by Elsevier Ltd. 
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1. Introduction 

Coaxial stub resonator systems can be simulated by the electrical equivalent of open-ended or closed 
circuits. Previously, we applied the lumped element model for the description of a quarter wave length 
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open-ended coaxial stub resonator [1, 2]. This first model was shown to adequately predict the amplitude 
versus frequency plot near the base resonant frequency of the stub resonator but was limited to the first 
(basic) resonance frequency. The extensive model introduced here allows simulation of all resonance 
frequencies within a defined frequency range. Our method, based on transmission line theory, is a general 
solution of the telegrapher’s equations and takes into account both the skin effect and dielectric losses [3 
pp.49-64, 4] 

2. Model of the lossy stub resonator system 

Fig. 1 gives a schematic overview of the coaxial stub resonator sensing system applied in this study for 
analyzing the dielectric properties of a fluid. 

       

Fig. 2 shows an electrical equivalent circuit of the experimental set-up in fig. 1 comprising the 
frequency generator (FG) with internal resistance ZS, transmission line TL1, connecting the function 
generator with the coaxial stub resonator, and transmission line TL2, connecting the coaxial stub 
resonator to spectrum analyzer (SA) with internal resistance ZSA. The coaxial stub resonator is described 
by a distributed elements model. 

Based on the equivalent electric circuit of the sensor system in fig. 2, we will now derive a 
straightforward model for predicting the amplitude versus frequency plot (A-f plot) of a coaxial sensing 
system. Close inspection of fig. 2 reveals that the input impedance Zin of the stub resonator is in parallel 
with the internal resistance of the spectrum analyzer ZSA and in series with the internal resistance of the 
function generator ZS. 

From the electrical equivalent circuit in fig. 2, the following relation between the voltage supplied by 
the function generator Vin and the voltage recorded by the spectrum analyzer Vout can be derived (1): 

Vout=Vin(Zs·ZSA+ZS·Zin+Zin·ZSA)/(Zin·ZSA)      (1) 

For the open-ended coaxial stub resonator i.e., a transmission line of length x, the input impedance Zin

is given by equation (2) [3]: 

Fig. 1. Basic principle of the coaxial stub resonator 

sensing system consisting of a function generator (FG), a 

spectrum analyzer (SA) and the coaxial stub resonator (RE). 

The dotted structures indicate that the flow-through 

resonator can be optionally used as batch resonator by 

plugging inlet and outlet. The liquid sample under 

investigation is applied as dielectric between inner and outer 

conductor.

Fig. 2. The electrical equivalent circuit of the sensor 

system. Parameters L x, C x, G x and R x represent the 

resonator’s distributed element inductance, capacitance 

conductivity losses due to the skin effect in the inner and outer 

conductor, respectively, all with length x. Note, the dotted line 

on T stands for either an open-circuit or short-circuit, 

representing a /4 or /2 resonator, respectively.
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Zin=Zc·tanh( x)        (2) 

The complex characteristic impedance Zc of the lossy transmission line and the complex propagation 
constant  can be calculated using general expressions (3) and (4) [3]: 

Zc=((R+j L)/(G j C))1/2       (3) 

=((R+j L)·(G j C))1/2= +j        (4) 

In these equations R is the resistance per unit length, [ /m]; L is the inductance per unit length, [H/m]; 
G is the conductance of the dielectric per unit length, [S/m]; C is the capacitance per unit length, [F/m]; 
is the angular frequency, =2  f, [rad/s]; is the phase of the propagation constant , [rad/m] and is the 
attenuation of propagation constant , [Np/m]. 

The attenuation of the propagation constant  i.e., Re( )=  represents all losses in the stub resonator 
comprising metal resistive losses (in inner and outer conductors), dielectric losses and radiation losses. In 
coaxial transmission lines, radiation losses are negligible. 

3. Experimental 

All experiments were performed with a HAMEG HMS3010 3 GHz Spectrum Analyzer with Tracking 
Generator, both with an internal resistance Zs of 50 . 

Table 1 gives an overview of the dimensions of the flow-through coaxial stub resonator and the batch 
resonator applied in this study respectively; see also Fig.1. 

Table 1. Geometric parameters of the coaxial batch and flow-through resonators. The outer and the inner conductors were made 

from copper for both resonators. 

The main algorithm for the model simulations was written in MATLAB code (MATLAB 2007b). 

4. Results and Discussion 

Fig. 3 shows A-f plots for ethanol as determined with the experimental set-up shown in fig.1 while 
using either the batch resonators or the flow-through resonators of table 1 (red curves). The blue curves 
show model simulations performed with literature values of r, the resistance per unit length R and values 
of L and C calculated from the stub resonator geometry respectively. Subsequently, equations (1) to (4) 
were solved with the loss tangent (tan ), which is related to G, as only unknown parameter. By 
minimizing the difference between the measured A-f plot and the model simulation, the value of tan , 
which is frequency dependent, was determined. Table 2 summarizes some major modeling results. 

Parameters Flow–through  Resonator Batch resonator 

Length, x 101.0 [cm] 34.0  [cm] 

Inner conductor diameter, d 0.5     [mm] 0.5    [mm] 

Inner diameter of the outer conductor, D 22.0   [mm] 22.0  [mm] 

Diameters of the fluid inlet and outlet 7.0     [mm]  

Conductivity of copper, 5.7·107       [S· m-1] 



313 N.A. Hoog-Antonyuk et al.  /  Procedia Engineering   47  ( 2012 )  310 – 313 

Fig. 3. Experimentally obtained amplitude versus frequency plot of ethanol (red) using a quarter wave length open-ended batch 

(left) or flow-through (right) resonator, respectively. Simulation data are shown for comparison (blue). 

Table 2. Modeling results for the coaxial resonator stubs in Table 1, filled with ethanol as dielectric respectively. 

Resonator Resonance frequency [MHz]  [-], experimental R, [ /m] tan [-] 

1st     44.1 25.0±0.3 1.0 0.040 Batch 
2nd    130 25.9±0.6 1.8 0.110 
1st     14.8 25.2±0.5 0.6 0.010 Flow-through 
2nd    44.1 25.5±0.8 1.0 0.035 

Literature  values of ethanol are 25.13 and 24.35 [5]. 

5. Conclusions 

The extensive model proposed here can be used to assess the dielectric characteristics of fluids, using a 
coaxial stub resonator in batch or flow-through mode. The result of this characterization can be used, e.g., 
to monitor water quality. 
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