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ABSTRACT: This article deals with experimental, theoretical, and FE characteriza-
tion of the local buckling in foam-core sandwich beams. In the theoretical approach,
this phenomena is considered in a periodic formulation (unbounded wrinkle wave);
a nonlinear stress–strain response of the face material is accounted for. In the FE
approach, nonlinearity of the core material is also modeled. Full-field strain
measurement is employed in the tests showing that the commonly used edgewise
compression set-up can cause premature waviness of the faces, and therefore,
nonlinear local deformations in the core layer.
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INTRODUCTION

T
HE WRINKLING (LOCAL BUCKLING) problem is an important part of the
sandwich design, since the core layer provides a limited support for the

in-plane compressed face sheets. This has been investigated in many studies,
and a number of experimental findings and theoretical approaches
appeared, e.g., [1–5]. The known solutions usually assume an explosive
(bifurcation type) and unbounded propagation of the wrinkle waviness and
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a purely elastic behavior of the core material. The face sheet material is also
often considered as ideally elastic. However, many materials (polymer
composites, metals, etc.) exhibit a nonlinear deformation prominent under
high stresses. The foam materials can also show a nonlinear response even at
small strains. Finally, the local buckling usually does not occur simulta-
neously on the entire sandwich panel. All these features can cause the failure
onset at a significantly lower load than that predicted by a linear-elastic
model [1,4].

In this article, the local buckling of a typical foam-core sandwich is
studied under uniaxial edgewise compression. The test set-up is shown to
produce a complex stress–strain field in the core layer. Due to the nonlinear
core material response, this effect results in a premature failure that can
adequately be predicted only using an FE model.

EXPERIMENTAL

The object of study are straight beams (47� 270mm2 in-plane dimension)
comprised of thick Rohacell WF51 foam core and relatively thin
transversely quasi-isotropic faces. The latter is made of four layers
(symmetric lay-up) of E-glass noncrimp fabric impregnated with vinylester
resin. Basic material data (the Young’s modulus E, ultimate stress, �ult, �ult,
and strain, "ult, gult) are listed in Table 1. The Poisson’s ratio, �, is either
estimated by the laminate theory or taken from the core manufacturer’s data
sheet [6]. Figures 1 and 2 show typical load curves and tangent moduli
(derived by differentiation of the curves) of these materials under a quasi-
static uniaxial loading. Large drop in the tangent moduli prior to the failure
is seen in Figure 2, especially for the compressed foam material.

Standard Procedure

The edgewise compression tests are performed according to ASTM C364-
94. The specimen edges are reinforced with 15mm long tabs made of the

Table 1. Basic mechanical properties of the sandwich constituents
(tension/compression).

Material
Thickness

(mm) E (MPa) m eult (%) rult (MPa) cult (grad) sult (MPa)

GFRP 2.4 24540b 0.25 2.2a/1.4b 295a/291b – –
WF51 50 85c 0.32 3.3d/2.3c 1.42d/0.90c 1.2e 0.5e

aASTM D 638M, bASTM D 3410, cASTM D 1623-78 (out-of-plane of the foam block), dASTM D 3039
(in-plane of the foam block), eASTM C 273 (in-plane of the foam block).
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same laminate as the face sheets and glued at their outer surfaces. Then, the
edges are milled to ensure that they are flat and parallel. The specimens are
compressed between two rigid plates at the cross-head displacement rate of
2mm/min. Series of 10 specimens is tested.

A full-field displacement registration equipment (one digital camera
with 1 fps picture frequency and Limess software) is used for several tests.
Figure 3 shows a typical transversal strain field observed prior to the failure.
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Figure 2. Tangent moduli for GFRP (left) and WF51 (right) under uniaxial loading. Fitted with
the fifth order polynomials, since the original data show a large scatter.
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Figure 1. Stress–strain curves for GFRP (left) and WF51 (right) under uniaxial loading.
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Figure 3. Typical strain field ("y) in the core prior to the failure. Undeformed coordinate
system.
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It is seen that the core undergoes a significant local deformation due to the
face sheet waviness. This waviness appears already at the early loading stage,
obviously due to (1) a load eccentricity (because of tabs) and (2) self-fixation
of the edges at the loading plates that results in a slight swell of the specimen
(because of the Poisson’s effect). In principle, the first difficulty can be
overcome by gluing extra tabs into the core underneath the face sheets,
section ‘Modified Procedure’. The second difficulty seems to be an inherent
property of this standard test, since the friction inevitably prevents free
transversal displacements of the specimen edges.

Figure 4 shows typical strain distributions along the face–core interface
(at about 1mm distance below the interface) for two loading stages.
Particularly, Figure 4 (right) shows the strain components measured under
the bottom face in Figure 3 (i.e., less than 1 s before the failure). Data shown
in Figure 4 (left) are measured at the same line but much earlier (under
approximately 1/2 of the ultimate load). Both plots exhibit waviness having
prominent maximums near the tabs. At the moment of failure, the maximal
compressive strain underneath the face–core interface is about 4% that is
two times more than the yield strain typical for this foam grade, Table 1.
Corresponding inward transversal displacements are about 0.6–0.8mm.
The tensile strain in the adjacent bulges approaches 1%; the maximal
outward displacement is about 0.4–0.5mm. Taking into account the
nonlinear material response, Figure 1 (right), it is obvious that
the supporting effect of the core layer decreases or even vanishes (due to
the core crushing in compression) in these local areas.

Figure 5 (left) shows progression of several strain maximums (compres-
sive and tensile) during the loading. The strains are measured and averaged
within small circles near the bottom face as shown in Figure 3. The first and
second maximums show almost constant strain rate until a certain moment,
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Figure 4. Typical distribution of strains at the face–core interface (bottom face in Figure 3):
step #51 (left) and #102 (right). Vertical lines indicate ends of the tabs.
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when it increases suddenly. This can be attributed to the local buckling
onset. The third and fourth maximums do not show such a behavior. Thus,
the buckling is localized near the tabs and, in spite of a continuous waviness
of face sheets, does not occur in the central part of the specimen, obviously
due to almost intact (stiffer) support of the core layer. The face sheet
debonding apparently starts in the second zone, most likely by a shear or
tensile fracture of the foam material at the face–core interface.

The load curve (load cell signal vs. edge displacement), especially after its
differentiation as shown in Figure 5 (right), can also be an indicator of the
local buckling onset. It is seen that, after a short period of the clearance
adjustment, the overall stiffness culminates in step #20 and then decreases
gradually by about 25%. This effect should be attributed to a gradually
increasing face sheet waviness as well as to a nonlinear behavior of the face
and core materials. At step #98, the stiffness starts to degrade rapidly. This
moment coincides with the local buckling onset seen in Figure 5 (left).

The test data are given in Table 2 in comparison with the theoretical and
FE results discussed below. The ultimate stress is used, because it differs
very little from the buckling onset value. Since the in-plane stiffness of the
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Figure 5. Typical growth of the max. strain in the core (left) and typical load–displacement
response (right, � is given by Equation (1)) under edgewise compression. L is the beam
length; u is the edge displacement.

Table 2. Ultimate strength (rult, MPa): test data vs. theoretical and
FE predictions.

Test data
All linear-

elastic
Nonlinear-
elastic face

All nonlinear-
elastic

Equation
(1)

Equation
(2) FE

Equation
(3) FE FE

168.3–192.4 317 344a/378b/378c 280 293a/314b/320c 217a/234b/275c

aFace as 1D elements, bface as 2D elements, cextra tabs and face as 2D elements.
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laminate is much larger than that of the core layer, the compressive stress in
the face sheet is calculated as:

� ¼
P

2hfb
, ð1Þ

where P is the total load, hf is the face thickness, and b is the beam width.

Modified Procedure

The modified specimen is manufactured by cutting gaps in the core under
the face sheets and gluing there extra tabs (of the same size and material
as the ‘outer’ tabs). Only one specimen is tested; the test procedure is
identical to the one used before. Unfortunately, the overall bending occurs
due to a slight initial curvature, and thus the obtained ultimate strength may
not be taken into consideration. Nevertheless the strain distribution
demonstrates that the modified configuration allows to eliminate the
inward face dent and core crushing near the tabs. This is seen in Figure 6
(right); the image on the left shows the same area of interest in a standard
specimen.

THEORETICAL

Consider static bending of an infinite beam (which represents the face
sheet) having thickness hf and bonded to an isotropic half-plane (which
represents an infinitely thick core layer). The beam is axially compressed by
a ‘dead’ force �hf (per unit width). The face sheet is assumed to be thin,
nonstretchable, and to keep the straight form of equilibrium up to the

–0.60 % 0.28 % –0.18 % 0.56 %

Figure 6. Typical "y strain field in the core at step #60 for standard (left) or modified (right)
specimen. Detail. Undeformed coordinate system.

482 V. KOISSIN ET AL.



critical state. Thus, there is no difference between displacements at its
midplane and at the face–core interface, and no influence of the interfacial
shear stress. As a first approximation, both the face and core materials are
considered as ideally linear-elastic. Using the thin plate Kirchoff–Love
theory for the face and Lamé equations for the core, the critical (in the
Euler’s sense) stress for this model is [7]:

�ult ¼
3ffiffiffi
43
p

xn
hf

E1, x3n ¼
Df

E1
, Df ¼

Efh
3
f

12
,

E1 ¼
2Ec

ð1þ �cÞð3� �cÞ
, l ¼ �

ffiffiffi
2

3
p

xn ð2Þ

where Df is the flexural rigidity of the face sheet, E1 is the reduced elastic
modulus of the core layer (plane stress state is assumed), and l is the natural
wavelength. The refined approach accounting for a finite core thickness is
given in the Appendix.

Using Equation (2) and elastic properties from Table 1, the critical stress
is easily calculated. However, its value exceeds the average test data
(175.7MPa) in 80%, Table 2. The natural wavelength is estimated to be
about 33mm that also disagrees with Figure 4 (about 17mm).

Of course, a better approach is to account for the nonlinear behavior of
the face sheet material. For example, the reduced modulus of elasticity
(called also the von Kármán’s modulus) can be used. In the present case of a
rectangular cross-section its reads as:

Erð�Þ ¼
4EfEtð�Þffiffiffiffiffi

Ef

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
Etð�Þ

p� �2 , ð3Þ

where Et is the tangent modulus, Figure 2 (left). The reduced modulus
theory assumes that a stress release occurs on the convex side of the beam
simultaneously with the buckling onset. For a short-length wrinkle wave the
use of Equation (3) is even conservative, since certain portions of the face
sheet undergo mainly rotation with a minor bending and thus have a stress
release on both sides. This is because the wrinkled face sheet is less shortened
than in the case of an ideally uniaxial deformation. Therefore, the ‘correct’
critical stress will lie somewhere above the value calculated using the reduced
modulus [8,9].

After substitution of Equation (3), Equation (2) becomes nonlinear and
requires a numerical procedure. Solution is given in Table 2. As can be seen,
the reduced modulus theory gives more realistic estimation of the critical
stress if compare with the purely elastic solution; however, the predicted
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value is still 60% higher than the experimental one. The natural wavelength
is estimated to be about 29mm that is also still not realistic.

Thus, the face sheet material nonlinearity has important but not primary
destabilizing influence on the structure. To approach a more accurate
solution, it is necessary to account for localization of the face sheet bending
and for local nonlinear deformation of the core material, which are observed
in the experimental study. Obviously this cannot be achieved analytically,
and an FE analysis should thus be applied.

FE ANALYSIS

The FE package COSMOSM is used. Since the core layer is thick, and the
strains decay rapidly through its thickness, Figure 3, only one face sheet and
half of the core thickness are modeled. Schematic of the model with applied
boundary conditions is shown in Figure 7.

Simplistic Model: 1D Elements for the Face Sheet

The core is meshed as a rectangular domain with 4-node isotropic shell
elements (SHELL4). The face and tabs are meshed with 2-node beam elements
(BEAM2D).The model is composed of 10 elements through the core and 108
elements lengthwise, i.e., a 2.5� 2.5mm2mesh is created. The tabs have the
same mesh density and are coupled node-to-node to the face, enforcing
the two nodes to rotate and move by the same amount.

A conservative compressive load (concentrated force) is applied at the
edge of one of the tabs. Actually, it should be applied somewhere in between
the tab midplane and the face midplane, or applied in two portions at both
mid-lines. The used way is a conservative simplification resulting in a larger
load eccentricity.

The linear-elastic analysis is performed first. The buckling mode (only the
first mode is considered here) is shown in Figure 8 (top); a slight
nonsymmetry is seen which can be attributed to a limited length of
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the model. The critical stress agrees well with the theoretical estimation by
Equation (2), Table 2; the difference does not exceed 10%. The wavelength
is about 30mm that is also close to the theoretical results.

A more refined model accounts for the nonlinear elastic response of the
face sheet material, Figure 1 (left). In the software, the nonlinear elastic
model relies on the assumption of proportional loading, when components
of the stress tensor vary monotonically in a constant ratio to each other.
Then, the total strain vector is used to compute the effective strain to obtain
the current position at the defined stress–strain curve [10].

Result of a geometrically linear FE analysis is given in Table 2 and shows
a minor (about 5%) discrepancy with the theoretical value calculated using
the reduced modulus theory. The buckling mode (again nonsymmetric with
respect to the center) is shown in Figure 8 (bottom). However, the
wavelength is about two times smaller than the theoretical one (12mm vs.
29mm). The reason for this effect is not yet clear for the authors.

Finally, nonlinear response of the core material is also introduced into the
FE model, according to Figure 1 (right). The same nonlinear elastic material
model is used as for the face sheet; the foam crush plateau is modeled as
almost horizontal line producing very low tangent modulus, see the dash-
and-dot line in Figure 1 (right). Geometrically nonlinear analyses are
performed to calculate the equilibrium displacement solutions for a number
of given loads, by using the modified Newton–Raphson method under the
load control.

The deformed shape and strain fields are shown in Figure 9 for load step
#18 at which, as proved below, the local buckling occurs. Comparison with
the full-field measurements, Figure 3, reveals a good agreement of the strain
pattern. However, the FE analysis overestimates the maximal strains by a
factor of 2. This can be due to (1) significantly increased, if compare to a real
specimen, load eccentricity and (2) localization of the core ‘crushing’ in the
elements adjoining the face sheet (in a real specimen, the foam cells are filled
with the resin at the interface and thus have a smoother strain field).

Figure 10 (left) shows growth of the maximal strains in the core during the
loading. It is seen that the tensile strain under the bulge (that corresponds to

Figure 8. Buckling modes: linear-elastic face and core (top) or nonlinear elastic face and
linear-elastic core (bottom). Geometrically linear solutions.
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zone #2 in Figure 3) cannot initiate the failure, since the ultimate value
(3.3%, Table 1) is not reached. The model can most likely fail by the shear
fracture, since the maximal shear stress exceeds the ultimate value of
1.2 grad. But these are very rough speculations hardly applicable to the real
sandwich beams, because the shear strength data are obtained on large foam
specimens, which failed due to a stress concentration [11]. Last but not the
least, the used rheological model (nonlinear elasticity with proportional
strain growth) and uniaxial test data cannot provide a quantitatively correct
results for the strain fields.

The load curve is shown in Figure 10 (right), along with the stiffness
function. They generally resemble Figure 5 (right), although the FE model
produces a stiffer response. As in the real specimens, the stiffness
degradation accelerates at a certain moment (step #18), which may be
considered as the local buckling onset. The corresponding stress, Table 2, is
close to the upper limit of the test data, the difference is only 13%. Taking
into account imperfections existing in the real specimens and simplifications
introduced in the FE analysis, such a result is wholly satisfactory.
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Figure 10. Growth of the max. strains in the core (left) and load–displacement response
(right) in the nonlinear FE analysis. L is the beam length; u is the edge displacement.
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Figure 9. Strain fields at the load step #18: transversal, "y, (top) and shear, g, (bottom).
Nonlinear elastic face and core, geometrically nonlinear solution. The deformed shape is
scaled by a factor of 5.

486 V. KOISSIN ET AL.



Refined Model: 2D Elements for the Face Sheet and Tabs

In the refined approach the face sheet and tabs are modeled using two
SHELL4 elements through the thickness of each of them. Then there is no
need to couple the tab and face nodes. The load is applied in three equal
portions at y¼ 0 (face–core interface), y¼ hf (face–tab interface) and y¼ 2hf
(top of the tab). The transversal Young’s modulus is estimated with the
Chamis’ theory (10.7GPa, taking typical E-glass stiffness of 72GPa and
matrix stiffness of 3.1GPa). The rest of the model stays the same as shown
in Figure 7.

In the geometrically linear analysis, the behavior generally resembles the
previous case, although the ultimate loads are a little higher, Table 2, and
the eigen modes are more nonsymmetric, Figure 11. The latter is especially
prominent for the model with nonlinear face and linear core responses; its
buckling is now confined near the right (loaded) tab. This is obviously due
to a strain localization that cannot be attained with simplistic BEAM2D

elements but easily appears when SHELL4 elements are used for the face
sheet.

The deformed shape and strain fields for the model with nonlinear
response of both materials are very similar to these shown in Figure 9.
At the buckling onset, the strain maximums in the core are larger:
�13.3%5"y53.1% and |g|52.72 grad (although the ultimate state is now
reached later, at step #24; for step #18 the strains are smaller than for the
case with BEAM2D elements). The load curve and the strain growth response
are also similar to Figure 10.

Refined Model: Modified Variant

To model the modified test set-up, ‘Modified Procedure’ section, the same
FE model described above is used. The only difference is in additional tabs
inserted under the face sheet (with the same dimensions, mesh, and
properties as the ‘outer’ ones). The load is now divided between four points;
the fourth component is applied at y¼�hf (‘inner’ tab-core interface).

Figure 11. Buckling modes: linear-elastic face and core (top) or nonlinear elastic face and
linear-elastic core (bottom). Geometrically linear solutions. The face sheet and tabs are
meshed with SHELL4 elements.
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As expected, the geometrically linear analysis yields almost the same
ultimate loads, Table 2. The eigen modes are shown in Figure 12. For the
purely linear case the mode returns the symmetry, while it becomes
antisymmetric for the case of the nonlinear face and linear core material
responses.

Figure 13 shows the deformed shape and strain fields for the model with
nonlinear behavior of both materials, prior to the local buckling (when the
solution becomes unstable). Comparison with Figure 9 shows that the
modified model gives more mild strains. The most important point is that
the core crushing is not reached, since no dent occurs near the tabs. Thus the
local bending of the face sheet cannot significantly affect the ultimate load.

There is also a stress concentration at the tips of the ‘inner’ tabs but this
obviously does not play a role for the local buckling and can be eliminated
by using a smoother tab profile, instead of the right angle. The experimental
observations do not show this strain gradient, Figure 6 (right). In the FE
model the outward face bending occurs at about 30mm distance from the
tabs, while it happens at about 10mm distance in the real specimen, Figure 6
(right). The reason for this discrepancy is not yet clear.

Figure 14 shows growth of the maximal strains in the core during the
loading as well as the load curve and the stiffness function. With the

1.4%–0.3%

–0.55 grad 0.53 grad

Figure 13. Strain fields at the load step #35: transversal, "y, (top) and shear, g, (bottom).
Nonlinear elastic face and core, geometrically nonlinear solution. The deformed shape is
scaled by a factor of 5. The face sheet and tabs are meshed with SHELL4 elements. Case with
additional ‘inner’ tabs.

Figure 12. Buckling modes: linear-elastic face and core (top) or nonlinear elastic face and
linear-elastic core (bottom). Geometrically linear solutions. The face sheet and tabs are
meshed with SHELL4 elements. Case with additional ‘inner’ tabs.
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exception of the load curve, the general appearance is changed when
compared with Figure 10. The rate of the stiffness degradation is almost
constant up to the final load step; this indicates that the stability is lost close
to the bifurcation manner. The same is seen for the strain responses shown
in Figure 14 (left). The ultimate load (Table 2), approaches the analytical
solution by Equation (3). This is a reasonable result, since the nonlinear
effects mostly confine now within the face sheet.

CONCLUSIONS

The main results of this study can be outlined as

. the specimen configuration commonly used for the edgewise compression
testing of sandwich beams has a load eccentricity due to the presence of
tabs. This causes a local bending of the face sheet accompanying by a
nonlinear deformation of the foam core. As a result, the buckling is
localized, and the ultimate load can significantly be lower than that
predicted by a linear stability analysis;

. therefore, for some combinations of the sandwich constituents, non-
linearity of the face sheet and core materials can be very important for a
correct prediction of the ultimate load. These effects can adequately be
accounted for only in an FE analysis. It is demonstrated that the simplest
uniaxial test data combined with a low-CPU FE model can provide a
solution sufficient for the engineering purposes;

. a modified test specimen is proposed, with additional tabs glued under
the faces. This configuration is proved to produce smaller local bending
of the face sheets and, therefore, much lower local degradation of the core
support. In this case the ultimate load significantly exceeds the one
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Local Buckling in Foam-core Sandwich Beams 489



attained with the standard specimen and approaches the theoretical
estimation;

. the results can be improved by introducing more realistic rheological
behavior and by using more complex test data (e.g., for multi-axial strain
state) in the FE model, especially for the core material. Also, a better load
application can be achieved by meshing the loading plates (and then
solving the contact problem). Accounting for nonuniformity of the
density distribution through-the-thickness of the foam core [11], can also
provide a better solution.
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APPENDIX: ELASTIC WRINKLING FOR A FINITE

CORE THICKNESS

There are three modes of wrinkling mentioned as ‘classic’ ones in the
literature, Figure A1. To obtain the critical stress, consider the static
bending of a transversely isotropic face sheet (thickness hf) bonded to an
isotropic core layer (thickness hc). Axial strain in the face as well as shear
stress at the face-core interface are neglected. The governing equation for the
face deflection, wf, is given by the thin plate Kirchhoff theory as

DfwfðxÞ
0000
þ �hfwfðxÞ

00
¼

P

2
�ðxÞ þ �ifðxÞ, ðA:1Þ

hc/2

hc/2
x

y

Figure A1. Wrinkling modes: asymmetric, symmetric, and anti-symmetric.
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where 0� x�1, Df is the bending stiffness, �hf is the axial compressive load
per unit width, � is the Dirac delta-function, �if is the interfacial normal
stress. Parameter P is a trial line load introduced at x¼ 0 to allow for the
integral transforms technique employed below.

The Lamé equations are used for the core:

2ð1� �cÞw
00
yy þ ð1� 2�cÞw

00
xxþu

00
xy ¼ 0,

2ð1� �cÞu
00
xx þ ð1� 2�cÞu

00
yyþw

00
xy ¼ 0,

ðA:2Þ

where �c is the Poisson’s ratio, w�w(x,y), u� u(x,y). Assuming symmetry
with respect to x axis, this system is solved by means of Fourier integral
transformation [12]. For symmetric functions (e.g., w and �if), the cosine
transform is used:

�fð!Þ ¼

Z 1
0

fðxÞ cosð!xÞdx, fðxÞ ¼
2

�

Z 1
0

�fð!Þ cosð!xÞd!:

Analogously, the sine transformation is used for other functions
(u, w0x, etc.). After integration by parts, the transformed system (A.2) is:

2ð1� �cÞ �w
00
yy � ð1� 2�cÞ!

2 �wþ! �u0y ¼ 0,

2ð1� �cÞ!
2 �u� ð1� 2�cÞ �u

00
yyþ! �w0y ¼ 0,

ðA:3Þ

where �w � �wð!,yÞ and �u � �uð!,yÞ. Thus the problem of solving the partial
differential equations is reduced to that for the ordinary ones.

First consider the case when one of the faces (e.g., the bottom one,
y¼�hc/2) undergoes no deflection, while another one, y¼ hc/2, is allowed to
buckle under the in-plane compression, Figure A1 (left). Then the boundary
conditions are:

y ¼ hc=2 : w ¼ wfðxÞ, u ¼ 0, y ¼ �hc=2 : w ¼ 0, u ¼ 0,

The solution for (A.3) is taken in the form:

�w ¼ expð!zÞða1 þ a2!zÞ þ expð�!zÞða3 þ a4!zÞ

�u ¼ expð!zÞða5 þ a6!zÞ þ expð�!zÞða7 þ a8!zÞ:

Omitting cumbersome calculations, relation between the images of the face
deflection and normal interfacial stress reads as: ( ��if � ��ifð!Þ, �wf � �wfð!Þ)

��if ¼ �E1!Fð!Þ �wf,

Fð!Þ ¼
coshð!hcÞ sinhð!hcÞ þ  !hc

sinh2ð!hcÞ � ð !hcÞ
2

ðA:4Þ
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with (Ec is the Young’s modulus of the core material):

E1 ¼
2 Ec

ð1þ �cÞ
2
,  ¼

1þ �c
3� �c

or

E1 ¼
2 Ecð1� �cÞ

1þ �c
,  ¼

1

3� 4�c

for the plane stress or plane strain formulations, respectively.
Transformed Equation (A.1) is:

Df !
4 �wf � �hf !

2 �wf ¼
P

2
þ ��if: ðA:5Þ

Substitution of Equation (A.4) into Equation (A.5) gives the image:

�wf ¼
P=2

Df !4 � �hf !2 þ E1!Fð!Þ
: ðA:6Þ

Inverse transform of Equation (A.6) produces the original function:

wf ðxÞ ¼
P

�E1

Z 1
0

cosðtxÞdt

t4 � kt2 þ tFðtÞ
,

where t¼!xn (!hc¼ t/"), "¼xn/hc, k¼ �hfx
2
n/Df, xn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Df=E1

3
p

. The solution
vanishes when the denominator becomes zero at minimal t. This occurs
when:

t3 � ktþ FðtÞ ¼ 0 and 3t2 � kþ FðtÞ0t ¼ 0:

In another form the critical value of the load parameter is:

kcr ¼ t2 þ
FðtÞ

t
, where t is given by 2t2 � FðtÞ þ tFðtÞ0t ¼ 0: ðA:7Þ

Two ultimate cases correspond to an infinitely thick or very thin core layer:

Fð!Þ �!
!hc!1

¼ 1, Fð!Þ �!
!hc!0
¼

1

!hcð1�  Þ
:

The former case produces:

kcr ¼
3ffiffiffi
43
p or �cr ¼

3ffiffiffi
43
p

Df

hfx2n
¼

3ffiffiffi
43
p

xn
hf

E1, ðA:8Þ

which is in agreement with Equation (2) used above, ‘Theoretical’ Section.

492 V. KOISSIN ET AL.



The case of a symmetric deformation, Figure A1 (middle), is solved in a
similar approach, with the following boundary conditions and functions:

y ¼
�hc
2

: w ¼ �wfðxÞ,

�w ¼ a1 sinhð!zÞ þ a2!z coshð!zÞ,

�u ¼ a3 coshð!zÞ þ a4!z sinhð!zÞ,

that yields:

Fð!Þ ¼
coshð!hcÞ þ 1

sinhð!hcÞ �  !hc
:

For the antisymmetric case, Figure A1 (right), the boundary conditions and
general solution are:

y ¼
�hc
2

: w ¼ wfðxÞ,

�w ¼ a1 sinhð!zÞ þ a2!z sinhð!zÞ,

�u ¼ a3 sinhð!zÞ þ a4!z coshð!zÞ,

which leads to:

Fð!Þ ¼
coshð!hcÞ � 1

sinhð!hcÞ þ  !hc
:

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Core thickness, hc  (mm)

k cr

Asymmetric mode
Symmetric mode
Antisymmetric mode

Figure A2. Critical value of the load parameter kcr vs the core thickness for different
wrinkling modes shown in Figure A1. Elastic properties from Table 1 are used.
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The critical value of k is again determined with Equation (A. 7), after F(!) is
transformed into F(t) by replacing !hc for t/". The variation of kcr vs. the
core thickness is shown in Figure A2. It is seen that for the present case of
hc¼ 50mm the difference between the critical stresses is negligibly small;
they all approach the value of 3=

ffiffiffi
43
p
ðhc ¼ 1Þ. Thus the simplest estimation

(A.8) may be used.

REFERENCES

1. Stiftinger, M.A. and Rammerstorfer, F.G. (1997). On Face Wrinkling in Sandwich Shells –
Theoretical and Experimental Investigations, Thin-walled Structures, 29(1–4): 113–127.

2. Fleck, N.A. and Sridhar, I. (2002). End Compression of Sandwich Columns, Composites
Part A, 33: 353–359.

3. Fagerberg, L. (2003). Wrinkling of Sandwich Panels for Marine Applications, PhD Thesis,
Department of Aeronautics & Vehicle Engineering, Royal Institute of Technology,
Stockholm, Sweden.

4. Gdoutos, E.E., Daniel, I.M. and Wang, K.-A. (2003). Compression Facing Wrinkling of
Composite Sandwich Structures, Mechanics of Materials, 35(3–6): 511–522.

5. Birman, V. and Bert, C.W. (2004). Wrinkling of Composite-facing Sandwich Panels Under
Biaxial Loading, Journal of Sandwich Structures and Materials, 6: 217–237.

6. ROHACELL (1987). Technical Manual, Röhm GmbH, Darmstadt.
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