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We study the phase behavior of mixtures of oppositely charged nanoparticles, both theoretically and experimentally.
As an experimental model system we consider mixtures of lysozyme and lysozyme that has been chemically modified
in such a way that its charge is nearly equal in magnitude but opposite in sign to that of unmodified lysozyme. We
observe reversible macroscopic phase separation that is sensitive not only to protein concentration and ionic strength,
but also to temperature. We introduce a heterogeneous PeiBsttzmann cell model that generally applies to
mixtures of oppositely charged nanoparticles. To account for the phase behavior of our experimental model system,
in addition to steric and electrostatic interactions, we need to include a temperature-dependent short-ranged interaction
between the lysozyme molecules, the exact origin of which is unknown. The strength and temperature dependence
of the short-ranged attraction is found to be of the same order of magnitude as that between unmodified lysozyme
molecules. The presence of a rather strong short-ranged attraction in our model system precludes the formation of
colloidal liquid phases (or complex coacervates) such as those typically found in mixtures of globular protein molecules
and oppositely charged polyelectrolytes.

Introduction nanoparticles. More specifically, we use the protein lysozyme
and its chemically modified analogue, succinylated lysozyme.
These two globular molecules are rather spherical and virtually
Wentical in size and shape, but differ in their net charge. By
changing the pH, one can find conditions where the two molecules
have a charge that is roughly equal in magnitude but opposite
in sign. We also introduce a simple statistical thermodynamical
model that generally applies to mixtures of oppositely charged
nanoparticles. Electrostatic free energies are calculated using a
heterogeneous PoisseBoltzmann (PB) cell model, an extension

of a previous model for the formation of complex coacervate
(f)thases in mixtures of oppositely charged flexible polyelectro-
lytes?

Solutions of colloidal spheres, with sizes from hundreds of
nanometers down to a few nanometers have been used extensivel
as models for simple liquids. Conversely, theories of simple
liquids have been used to interpret experiments on suspension
of colloidal spheres, including solutions of globular proteins.

Colloidal analogues have not yet been widely studied f6BA
mixtures in which A-A and B—B interactions are repulsive, but
A—B interactions are attractive, such as in electrolyte solutions.
Above a critical coupling strength, electrolyte solutions exhibit
phase transitions to dense phases, which have been the subje
of renewed theoretical interesMixtures of oppositely charged
nanoparticles are a colloidal analogue of electrolyte solutions . . ) . .
that could provide novel ways to test theoretical predictions and ~ Prévious studies of mixtures of oppositely charged protein
provide a stimulus for further theoretical work, as demonstrated molecule§™*°have mainly been concerned with cross-interactions
beautifully by recent results on crystal phases formed by under conditions where macroscopic phase separation d.oes not
oppositely charged colloids of dissimilar si%e. yet take pl_ace. However, macroscopic phase sepa_ratlon for

Mixtures of oppositely charged nanoparticles are also a aqueous rr_nxtures qftwotypssyz)fcrystallln,alens proteln,ha_s
convenient model system for electrostatic complexation in beer_1 StUd'ed. by Liu et ‘r?“l' Compared to systems used in
mixtures of oppositely charged macromolecules in general. previous studies on opp(_)sne_lycharged globularproteln molecules,
Experimental studies have been performed for a wide variety of OUr System has the simplicity that one requires of a model
combinations of oppositely charged macromolecules. The SYStem: the two proteins species are identical, except for the
multitude of parameters that come into play for the complicated chemical modlflcat_lon of the Iysme and tyrosine residues at th_e
mixtures that have been studied so far are a serious handicap irsurface of the succinylated protein. We can tune the pH to obtain
modeling efforts. These would be helped by experiments on & SyStém in which the charges are almost equal in magnitude,
systems with a smaller parameter space, such as a system opUt OPposite in sign.
oppositely charged nanoparticles of a single radius and a charge

that is equal in magnitude but opposite in sign. (4) Biesheuvel, P. M.; Cohen Stuart, M. Bangmuir2004 20, 4764.
. . . . (5) Steiner, R. FArch. Biochem. Biophyd.953 46, 291;1953 47, 56.
With this in mind, we herf_e preseqt an exploratory _experlmental (6) McCarty, B. W.; Adams, E. T., JBiophys. Chem1987, 28, 149. .
study of the phase behavior of mixtures of oppositely charged _ (7) Moon, Y. U.; Curtis, R. A.; Anderson, C. O.; Blanch, H. W.; Prausnitz,
J. M. J. Solution Chem200Q 29, 699.
(8) Nichol, L. W.; Winzor, D. JJ. Phys. Chem1964 68, 2455.
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Compared to much larger colloidal spheres, the presentsystem 35 |
has the advantage of much lower absolute values of the charge,
such that we can get one-phase systems at reasonable ionic 4 |
strengths. Additionally, the protein size is in the range of quite
accessible Debye lengths in aqueous systems, such that both
long-range and short-range interactions can be investigated. Our
emphasis here is on a systematic study of the phase behavior t
set the stage for studies probing the nature of the phases in morég
detail. =

25 1

Csalt
>

Materials and Methods

For details of the protein molecules used, namely hen egg-white 10 1
lysozyme and its chemical modification, succinylated lysozyme,
see ref 13. In analyzing the data, we assume a molar mass of 14.3 5
kDa for lysozyme and 15.2 kDa for succinylated lysozyme. Lysozyme
has an isoelectric point of gt 10.7, whereas the pl for succinylated
lysozyme is 4.2314The protein charg&, as a function of pH, is

known from titration datd? which corresponds well with a simple 0 02 0'4_ . ?’6 . 08 !
titration model4 At pH 7.5, lysozyme has about7 charges, and mixing ratio f
succinylated lysozyme has abou?. Figure 1. Critical ionic strength as a function of protein mixing

Proteins were dissolved in demineralized water, after which the ratio, f*, for 1 g/L total protein concentrationgaenotes the two-
pH was adjusted to 7.5. Before use, solutions were filtered through phase region. Experimental data obtained via Method |, and theory
a0.1um pore size filter, and the protein concentration was determined based ory = 14.8.
spectrophotometrically (281.5 nm; extinction coefficiert 2.635
(liter-cm)/g). The ionic strength was adjusted using a concentrated aggregates with a stabilizing net charge, as occurs when charge

Stofﬁr:glgﬁf%?e?lft ’:)?C(:el.rimental methods were used to determine’[hedenSities and geometries of the positive and negative macro-
P molecules are sufficiently different.

phase behavior. o . .
Method I. Turbidity at 400 nm is measured in a stirred cell, ~ The criterion of 95% transmission used in Method | to

during a titration 6a 1 g/L lysozyme solution wit a 1 g/L solution determine phase boundaries is somewhat arbitrary. An alternative
of succinylated lysozyme, or vice-versa. The phase boundary is procedure is to measure the protein concentration in the
identified with the point at which transmission has decreased from supernatant using spectrophotometry after centrifuging off the
100% to 95%. _ _ N dense complex phase (Method Il). For one-phase samples, this
Method II. Mixed protein solutions were equilibrated for 1 h,  concentration should be equal to the total protein concentration,
centrifuged fcn_l h at12,000_rpm, and left to equilibrate for another whereas, for two-phase systems, it will be lower, since part of
hour, after which the protein concentration of the supernatant was y, prote’in molecules are in the dense complex p,hase. Thus, we
determined spectrophotometrically as described above. g should be able to determine the phase boundary by locating the

Method Ill. Solutions are prepared in capped glass tubes an . . .
placed in a stirred water bath. The temperature of the bath is increasedr@@Kk in the curve of the supernatant protein concentration versus

in one-degree increments. After stabilization of the temperature and the total protein concentration.
an additional hold time of 2 min, we visually determine whetherthe ~ Figure 2 shows typical results of this procedure at ionic
sample has become transparent or not. In this way we determine thestrengths of 10 and 20 mM, and for lysozyme/succinylated
clarification temperaturelasiry, above which the sample becomes lysozyme mixing ratios of 1:9, 1:1, and 9:1. The break in the
transparent. curves is especially distinct for a mixing ratio of 1:1. This behavior
Experimental Results is renr_li_nis_ce_nt of that of a _p_oorly_soluble_ salt: above a certain
solubility limit, all of the additional ions go into the crystal phase.
In afirst set of experiments, we vary the mixing ratio between For our case, even at a 1:1 mixing ratio, the positive slope of
the positive lysozyme and the negative succinylated lysozyme the curves beyond the phase boundary indicates that not all of
at a fixed total concentration of protein of= 1 g/L. At each the additional protein molecules go into the complex phase. Most
ionic strength, we determine the two critical values (at low and |ikely, this is due to deviations from perfect symmetry: because
high lysozyme concentration) by Method | (see Figure 1). Not ofthe slightly larger molecular weight of succinylated lysozyme,
unexpectedly for our nearly perfectly symmetric system, the at a mixing ratio of 1:1 (by weight), the numbers of succinylated
extent of phase separation is largest at a mass mixing ratio ofand nonsuccinylated lysozyme molecules are not exactly equal.
f*=c*/c~ 0.5 (wherec* is the mass concentration of lysozyme).  aso, the charges of the two kinds of molecules are not exactly
What is more surprising is that phase separation persists downequal in magnitude. We will return to this issue in the section
to eXtremer asymmetric miXing ratios. This is different, for titled Comparison of Model and Experimentsl
example, in mixtures of oppositely charged polyelectrolytes, — st more asymmetric mixing ratios, the break in the curves is
whgre ph?‘se separation occurs in a much harrower range Ofmuch less pronounced since it i’s obscured by the high
mixing ratios, around” ~ 0.5 Most likely, t.h's Is related to concentration of the species that is in excess. Therefore, the
the nqarly perfect symmetry of our system, in terms of both 'the present method is especially useful for a symmetric mixing ratio.
ma_gnltude ofthe charges, and the geometryo_fthe charged ObjeCtsl\levertheless, even at mixing ratios 1:9 and 9:1 we still clearly
This symmetry probably excludes the formation of small soluble find that above a certain critical concentration, the supernatant

concentration is less than the total protein concentration. There
is a small but significant difference between the data for 1:9 and

(13) vander Veen, M.; Norde, W.; Cohen Stuart, MGalloids Surf., 2004
35, 33

10 (121)17B;esheuvel, P. M van der Veen, M.; Norde, WPhys. Chem. B005 those for 9:1 mixing ratios, which is again most likely related
%15) Cohen Stuart, M. A.: Besseling, N. A. M.: Fokkink, R IGngmuir1998 to the fact that the number concentrations as well as the charge

14, 6846. magnitude are not exactly equal.



Phase Behaior of Oppositely Charged Nanoparticles Langmuir, Vol. 22, No. 3, 200893

(a) Cea=10 MM R Con
0.8 - ) % 30 mM
’ 25 mM
o 8 20 mM
'y '3 x
— — 01 ° t 5 m
(= o
% % 0.08 s st >
2 04 2 i . .
- » 0.06 ]
< o i x g / o
0.2 1 0.04 ° g 5 o
E
0 , - ‘ . H
0 0.2 04 0.6 0.8 0.02 T
0.1 1
o (vol%) ¢, (vol%)
(b) — Figure 3. Protein concentration in supernatant as a function of total
Csar=20 MM protein concentration and ionic strength (theoretical curves based
08 1 on y = 14.0; experiments based on Method II; 1:1 mixing ratio).
negatively charged protein molecules in solution, and “c” referring
06 1 to the complex phase that is assumed to contain equal numbers
= of both molecules. Inspired by the analogy with poorly soluble
% salts, we here make the approximation iafais independent of
S 041 ionic strength for the protein complexes. To calculate the ionic
L strength dependence of the chemical potential of the protein
molecules in solution, we assume that the molecules are far apart
02 (relative to the Debye length). For low surface potentials, the
' chemical potential is then given by
i Z> g
I
0 . : ‘ : u=Inc+———-—= (2)
0 0.2 0.4 056 08 ' 2 a(l+«a)
o (vol%) The second, electric, term is equal fe-Z-y, wherey is the

Figure 2. Protein concentration in supernatapy,as a function of ~ dimensionless surface potential (also see Theory sectigis),
total protein concentratiojo, mixing ratio, and ionic strength. (a)  the protein concentratiod, is the charge of the moleculés is

10 mM. (b) 20 mM. Symbols represent the experimental data (closed the Bjerrum length+ 0.72 nmin water);~tis the Debye length,
diamonds: 1:1 mixing ratio of lysozyme to succinylated lysozyme; 2 —'gz3.n. (we assume throughout that all small ions are
open diamonds: 1:9; triangles: 9:1). Deviations from the dotted monovalent), and. is the ionic strength (in m; = c..-N ith
curve (s = ¢o) indicate complexation. Solid curves: predictions of . P g » = Coo” Nav, WI

the thermodynamical model (discussed in the Theory sectien; =i MM). Combining egs 1 and 2, and assuming thitequal
14.0). in magnitude for both molecules, we obtain an expression for

the equilibrium constant
To reduce the number of parameters, we restrict ourselves in
the following experiments to symmetric systems (mixing ratio o+ ¢ 2 B
1:1), for which complexation is most distinct. First we consider K=cc = ex%ﬂ +tZ a(l+ Ka)} )
the influence of ionic strength. Figure 3 shows the supernatant
concentration versus the total protein concentration for a wide The simplified model can be checked using experimentally
range of values of the ionic strength. Again, the data show a determined phase boundaries, at which the protein concentrations

transition at a critical protein concentratigp, indicating the in solution,c™ andc™, are known. We use the data of Figure 1
onset of phase separation. With increasing ionic strength, this (at a fixed total protein concentration but varying mixing ratio),
phase boundary shifts to higher protein concentrations. while, for the data of Figure 3 (at a fixed mixing ratio of 1:1,

A detailed theoretical approach to describe the influence of but for varying total protein concentration), we estimated the
ionic strength will be discussed in the next section. Here, we first phase boundary from extrapolating from data clearly in the 2
use a more qualitative argument that highlights the origin of the region back to the 1:1 line (which corresponds to absence of
ionic strength dependence, which, to a first approximation, is phase separation). Results of the analysis are shown in Figure
due to the influence of the small ions on the chemical potential 4. The data indeed suggest the correct dependencamththus
of the protein molecules in solution, whereas the chemical on ionic strength. Differences between the two data sets are not
potential of the complexed molecules in the dense phase is notentirely unexpected because the two experimental methods are
influenced much. Equality of chemical potentials for the two so different. From the slope of the curves, we can estimate a

phases in equilibrium implies corresponding protein charg@ewhich results irZ ~ 5—6, which
is somewhat lower than the expected valug of 7 (taken from
/ﬁ +u =u° (1) acid/base titration) butis not unreasonable, given the approximate

nature of this analysis, in which the influence of the ionic strength
with “+” and “—” referring to the positively charged and on the chemical potential® of the protein molecules in the
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Figure 4. lonic strength dependence of the solubility prodgict 30 mM
ctc™ of protein complexes. The triangles are based on the data of 45 |
Figure 1, and the circles are based on the data in Figure 3. The solid 35 mM
lines are based on eq 3 wiftthe fitted values of the protein charge.
O 4 40 mM
complex phase is neglected. This additional element will be <
incorporated in the Theory section. %
Finally, we investigated the temperature dependence of the'\B 35 |
phase boundaries (Method Ill). Results are presented in Figure
5, which shows the temperature at which the opaque solutions
became completely transparefasiy. Because the electrostatic 30
interactions between the protein molecules are not expected to
be particularly sensitive to temperature, the observed sensitivity
to temperature suggests an additional nonelectrostatic attraction 25 ‘ ‘ , ‘
that is quite sensitive to temperature. 0 0.05 0.1 0.15 02
o (vol%)
Theory Figure 5. Taity @s a function of total protein concentration for

Modeling the phase behavior of mixtures of oppositely charged various ionic strengths. (a) circles: 6 mM; triangles: 8 mM;
macromolecules has a long history (reviewed in ref 16), starting diamonds: 10 mM. (b) closed diamonds: 10 mM; open diamonds:
with the work on the complex coacervation of oppositely charged 20 MM: circles: 25mM; squares: 30mM; triangle: 35mM; diamond
flexible polyelectrolytes by Overbeek and Vodfn important 40 mM. Full curves are based on the thermodynamical theory

| : : MR (discussed in the Theory sectignfrom eq 29).
theoretical problem is that the electrostatic contribution to the
free energy sensitively depends on the spatial correlations of the PN
positively and negatively charged macromolecules. Depending R .
onthe strength of the electrostatic interactions, spatial correlations !+ \
may vary from very weak to extremely strong. Estimating the SRR ¥ [ ‘5'
nonelectrostatic contribution to the free energy (assuming that / /o
these contributions can be separated) is less problematic and can ;e -
be done using a variety of well-known approximations. ' {

Weak-coupling approximations, for systems with weak spatial \
correlations, have been around for a long time: the Overbeek N =
Voorn approximation falls into this category, as well as random- N .
phase approximations for weakly charged polyelectrolytes of
opposite chargé®1%or stronger correlations, a possibility is to \
estimate the electrostatic contribution to the free energy on the N
basis of a plausible assumption for the spatial organization of ~o _-

the complex. Along these lines, we recently developed a Figure 6. Schematic of heterogeneous cell model for a mixture of
heterogeneous PB cell model (see Figure 6) to estimate thepositively and negatively charged spherical colloids. In the envelopes
electrostatic free energy of strong complexes of oppositely chargedbetween the charged surface of the colloid (solid line) and the (virtual)

flexible polyelectrolyteg.In the present work, we will extend  edge of the cell (dashed line), the PB equation is solved in spherical
coordinates. At the edge of the cell, each colloid interacts with the

(16) de Kruif, C. G.; Weinbreck, F.; de Vries, Burr. Opin. Colloid Interface mean-field environment.
Sci. 2004 9, 340. _
(17) Overbeek, J. Th. G.; Voorn, M. J. Cell. Comp. Physioll957 49, 7. that approach to mixtures of oppositely charged spheres to describe

18) Kudlay, A’; Ol | . Chem. Ph 120, 404. = ; : _
5133 Kﬂglg‘ Ay Dlvera de la Cruz, M. Chem, Phys2004 120 404. . the electrostatic interaction between mixtures of globular protein

2004 37, 9231. molecules.
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Generally, in cell models, envelopes of solvent plus small 1+ ¢+ ¢2 — ¢3
ions are envisioned around each charged colloid or molecule. Moo = 3
Each cell consists of one charged sphere plus the solvent envelope. 1-9)

The PB equation is solved for the space between colloid and celland the contribution to the chemical potential is given by
edge. In one-component PB cell models, the boundary condition

— 19’ (6)

at the edge of a cell is fixed by the requirement that each cell (8 — 9¢ + 3¢?)
in itself is electroneutrad®-23 Such homogeneous cell models Hinon-el = IN @ + T e 29 (1)
are well-established for one-component systems in which the ( ¢)

colloids or molecules are repulsive and can be expected (whensimilar thermodynamic functions have been used previously for
concentrated enough) to distribute in such a way as to maximize (one-component) protein solutions (e.g., in refs 27 and 28). In
the interparticle distance, that is, to form a packing with a well-  the above equations,is the overall volume fraction of protein
defined interparticle distance. molecules, andp; is the volume fraction of each individual

Heterogeneous cell models, to be used for mixed systemscomponent, while all thermodynamic functions are scaled to the
(thus, with different kinds of particles), are much less well- thermal energykT. Note that, in eqs 5 and 7, the individual
established but have found use in describing drag forces involume fractions only enter in the ideal entropy termginAs
mixtures of (uncharged) particles of different size moving under mentioned, our experiments indicate the presence of an additional,
an external forcé2> For oppositely charged particles, the nonelectrostatic attraction that is temperature dependent. This is
applicability of heterogeneous cell models may seem problematic, included in the model (at the van der Waals level) viathe parameter
since interparticle distances between particles of opposite chargey.
may be very different from those between particles of equal  Electrostatic Contribution. To estimate the electrostatic
charge. However, in a strong complex, the density may be so contribution to the free-energy density, we set up a heterogeneous
high that the interparticle distances again become fairly uniform. PB cell model. For a binary mixture, two different kinds of
The heterogeneous cell model also applies to very dilute mixturesspherical cells are considered (see Figure 6). The electrostatic
of noninteracting charged spheres because it correctly gives thepotential is continuous; hence, all cells have a common value of
electrostatic free energy of the electric double layer surrounding the electrostatic potential at the cell boundary. The fields strengths
isolated charged spheres. Deviations are expected to be largesit the boundaries of the two kinds of cells need not be the same.
atintermediate sphere densities. However, phase separation ofteherefore the individual cells are not necessarily electroneutral.
occurs between dilute and very concentrated phases, and, folnstead, the field strengths at the cell boundaries are self-
both of these, the heterogeneous cell model is expected to beconsistently obtained from the requirement of overall electro-
reasonable. neutrality of all cells together. This amounts to averaging the

Therefore, we consider a mixture of colloidal spheres of fixed field strength over the surfaces of the cells. In other words, the
charge,Zt andZ~ (not necessarily of equal magnitude), and cells “see” a mean-field surrounding, with a excess charge that
equal volumeyp, in an aqueous solution containing small ions. exactly cancels their own net charge.
For the small ions, we assume a fixed chemical potential (grand  ForN; spheres of type one am spheres of type two, overall
canonical) as if the system is in equilibrium with a large aqueous electroneutrality results in
solution viaa membrane permeable to the smallions (and solvent),
but not to the charged spheres. N,b 2d_y| + N,b. 2d_y| =0 (8)

K K . i 1 gr by celll 252 dr b,,cell2

Nonelectrostatic Contribution. As mentioned, we assume

that the total free-energy densftgeparates into an electrostatic \yith b, being the outer cell radius,being the radial coordinate

and a nonelectrostatic contribution in each cell, angt being the dimensionless electrostatic potential,
which is related to the electrostatic potentjalaccording toy
=1+ fronel (4) = ey/KT, wheree is the electronic charge.

In principle, we have complete freedom in dividing the available
The nonelectrostatic contribution is approximated using a volume over the two kinds of cells. However, especially for
Carnahan-Starling—van der Waals equation-of-state (EOS). This symmetric systems, the most appropriate approximation seems
is a modification of the classical van der Waals EOS obtained to be to assume that the outer cell radii of the two kinds of cells
by replacing the van der Waals repulsive term by the Carnahan are equal. Then the volume of each cell is simply the inverse of
Starling expressioff In this part of the model, where electrostatic  the total particle number density, The radius of the spherical
interactions are not considered, the oppositely charged spheregnolecule,a, and the outer radius of the celi,= bj, are thus
are assumed to be identical. Then the free-energy density takeselated to the volume density of all spheres combiteaccording
the form to

2 3 a
(a ;)(i o © ¢ > :

while the contribution to the osmotic pressure is

fnon—el” = z¢| In ¢i +

Combining eqgs 8 and 9 results in

d d
¢ld_>r/|b,celll + ¢2d_3r/| bellz = 0 (10)

(20) Alexander, S.; Chaikin, P. M.; Grant, P.; Morales, G. J.; Pincus, P.; Hone,
D. J. Chem. Phys1984 80, 5776.

(21) Hansson, PLangmuir2001, 17, 4167.

(22) Allen, R. J.; Warren, P. BL.angmuir2004 20, 1997.

whereg; is the volume fraction of component

(23) Biesheuvel, P. M.; Wittemann, A. Phys. Chem. R005 109, 4209. (27) Berland, C. R.; Thurston, G. M.; Kondo, M.; Broide, M. L.; Pande, J.;
(24) Patwardhan, V. S.; Tien, @hem. Eng. Scil985 40, 1051. Ogun, O.; Benedek, G. BRroc. Natl. Acad. Sci1992 89, 1214.
(25) Biesheuvel, P. M.; Verweij, H.; Breedveld, XIChE J.2001, 47, 1969. (28) Taratuta, V. G.; Holschbach, A.; Thurston, G. M.; Blankschtein, D.;

(26) Carnahan, N. F.; Starling, K. AIChE J.1972 18, 1184. Benedek, G. BJ. Phys. Chem199Q 94, 2140.
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Phase equilibrium computations are more complicated when which, for IT, results in
the thermodynamic functions must be determined numerically.
Therefore, instead of using the full nonlinear PB equation, here bi,ls 1—th?
we analytically compute the electrostatic free-energy density of 1y = .
our cells using the DebyeHickel approximation of linearizing 6 (th+ ,(a)
the PB equation. For typical solutions of globular proteins, at
moderate ionic strengths, this is not unreasonable. Also, it shouldwith
be noted that the heterogeneous cell model itself is already quite
a drastic approximation, such that it is not certain that using the Q, =
full PB equation would make the theory much more accurate.

The derivation of the thermodynamic functiofksand u is
analogousto thatin ref23 (eqs120) in which a one-component
system is considered (homogeneous cell model) on the basis o
the PB equation in the low-potential limit in spherical coordinates

QQ,

(20)

(Zd)lzl) Zd’izi2

th® +
A (1 a2
Foth (Kb Ka)(l th )) 1)

2th(th+ «a) + 1 —
Q,(th+ Ka)(

tI'he electrostatic contribution to the chemical potential of species

1d.dy_

r2 drr dr n sz (11)
to be solved in the annular spaae< r < b. The boundary
condition atb is given by eq 10, while at the surface of the
colloidal spherern(= a)

dy_ _Zs

a2 (12)

Equation 11 has the general solufidn

a
y= %‘cosh(cr —ka) +
by, — ay,coshgb — «a)

r sinhb — «a)

sinhr — xa) (13)

Solving the heterogeneous cell model, we find for the electrostatic

potential,y;, at the colloid surface, = a, in cell i

Y, = e —hz +@1- thz)—ZZd)) (14)
th + xal\ka
where
Q= (1 -2 (K—lb - Ka)th)_ (15)
and
th = tanh{b — «a) (16)

In the Debye-Hiickel low-potential limit, the electrostatic
contribution to the free-energy denditg given by (all molecules/
colloids have volume)

1
fo = > Z¢iziyi (17)
which, with eq 14, results in
Klg Q
fpo=——"7—[|— Z2 4+ —(1—th? $)?| (18
el 2(th+ Ka) Kalz¢| i ¢ ( )(IZZ|¢|) ( )

The colloid osmotic pressurH is related to the free-energy
density according to

zdfel
=45

(29) Zydney, A. L.J. Colloid Interface Scil1995 169, 476.

(19)

i, is given by

df

- 22
@, (22)

Hig =V

where the subscrigi refers to the differentiation being performed
for constant volume fractions of all other colloidal species.
Equation 22 results in

122/13 th
/"| el —
2 a th+«a
Quta, @ Z)¢j L $Z + T2 (23)
20 \ ) i¢th+xa.zii ¢
or
_1 Qg 1—th?
Ui = Ezi Yi — T&(Zj — Z)¢, mlz¢izi +
billB 1—th? [QiQ

(24)

1
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Equation 24 gives the electrostatic contribution to the chemical
potential of componeritin a certain phase as a function of the
electrostatic potentiat from eq 14, the volume fractiors and
¢2, and the geometrical facto€®; andQ, from eqs 15 and 21.
These factors depend only on the cell radéndb (thus on the
total volume fractiong), and the Debye length; .

Phase Behavior.To determine the phase diagram, we solve
the usual set of equations: equality of the chemical potential of
each species in the two phases (with the contribution of eqs 7
and 24) and equality of the colloid osmotic pressure (with
contributions from egs 6 and 20). We need to solve these equalities
together with expressions for the surface potentials, eq 14, and
the conservation of mass,

0~ d)i,cé + ¢i,s(1 - C) (25)
where{ is the relative volume of the complex (c) phase, s refers
to the solution phase, and 0 refers to the overall amount of
componeni (per unit volume).

To illustrate the theory, here we consider a limiting case for
which the expressions simplify considerably: a stoichiometric
mixture (i.e.,¢i0=2"¢o) of spherical particles having exactly
opposite chargestZ. In this case, and with a symmetric form
of the nonelectrostatic forces, stoichiometry is preserved in the
coexisting phases (i.e., in both phases, we always have equal
amounts of the two types of particles), such that we have a quasi



Phase Behaor of Oppositely Charged Nanopatrticles

-14 T
0 0.1

0.2 0.3 0.4

0

Langmuir, Vol. 22, No. 3, 200897

volumer = 37 nn# (see ref 30 for lysozyme), which corresponds
to a radius ofa = 2.07 nm. The fixed charge on the protein
molecules is assumed to be a function of both pH and ionic
strength, but not of protein concentration. These charges are
computed from the classical Tanford titration mddefor
lysozyme and succinylated lysozyme that we described in detail
in ref 14. The molecule is assumed to be spherical, and the
solution is assumed to be sufficiently dilute that the diffuse layers
around different molecules do not overlap. The titration model
quite accurately fits experimental titration curves for the two
protein molecule$? Predicted isoelectric points are pi 10.7
forlysozyme and pk= 4.7 for succinylated lysozyme, in agreement
with experiment.

Neglecting the influence of protein concentration on the charges
of the proteins is presumably a good approximation, since, at the
experimental pH of 7.5, both proteins have a local plateau in
their titration curve¥»14such that they very nearly behave as if
they had a fixed chargé, Clearly, close to the isoelectric points
of the proteins, the fixed charge approximation is no longer

Figure 7. Phase diagram for a quasi one-component, symmetric accurate. At pH 7.5, the predicted charges are, at infinite ionic

system Z+ = —Z~ = 7; ¢ = Y»*¢, v = 37 nn) as function ofy

(describing the attraction between the colloids) and ionic strength.

one-component system. The electrostatic potential at the spher

surface becomes

Agrth-Z

Y= 2 + «a)

(26)

whereas, for the electrostatic contribution to the colloid osmotic
pressure, we now find

¢Z 1 —th’

e =7 e

(27)

while the electrostatic contribution to the chemical potential
(equal for both components) simplifies to

_ heZ” (m 1ot K_b)
Hel th+«ka\2ka th+«a 6

(28)

For this quasi one-component system we can now easily construc
a ¢—y phase diagram after combining eqs 27 and 28 with eqs

6 and 7 ¢ = ¢/2), resulting in two equations and the two unknown
coexisting volume densitieg, The strength of the attraction,
that is,—y, essentially plays the role of “temperature” (on the

strength,Zt = +8.07 andZ~ —6.89 for lysozyme and
succinylated lysozyme, respectively. At the ionic strengths used

ézn the experiments, the charge is somewhat lower, ranging from

+=7.85andZ” = —6.62 at 6 mM toZt = 7.94 andZ~
—6.75 at 40 mM. All parameters are fixed, except for the
nonelectrostatic attractiop, which we use as the only adjustable
parameter in our comparison with the experimental data.

In Figure 1, the theory is tested against the protein titration
data, and, using a value pt= 14.8, we find excellent agreement
with the data. Note that both the experiment and the theory show
that, in the present system, phase separation is possible, even at
extremely asymmetric mixing ratios. As discussed earlier, this
is most likely due to the fact that the experimental system is
nearly symmetric, both in charge and geometry.

Next, consider the experiments in which we spectrophoto-
metrically determine the protein concentration in the supernatant,
¢s, after centrifugation (Method Il; see Figures 2 and 3). In
comparing with the theory, we identifjs with the volume fraction
of protein molecules in the solution phase in the case of a two-
phase coexistence. Here, we find that a valug ©f14.0 gives
@ very good fit of the model to the data. First, consider the effect
of the mixing ratio, as shown in Figure 2 (for ionic strengths of
10 and 20 mM). The theory exactly reproduces the fact that the
9:1 situation results in a higher (lower amount complexed)
than does the 1:9 situation because of the slight asymmetry of

y-axis). Figure 7 shows the basic features of phase separation a%"e charges on the lysozyme and succinylated lysozyme (lysozyme

predicted by our theory: at high attraction (lowy), phase

separation can be observed; the region of phase separation expan
with decreasing ionic strength, which is due to the increased

as a higher charge) and the fact that molar mixing ratios are
ifferent from mass ratios (resulting in a higher number for the
ighter lysozyme molecule). Because of these two effects, the

electrostatic attraction between oppositely charged spheres aft9 €@se is closer to a 1:1 symmetry than is the 9:1 case. The

lower ionic strength.

The density of the complex phase (high-density branch) shows

values in the 3640 vol % range, in line with the dense phase
volume fractions measured by Liu et'af*for aqueous mixtures

of two types ofy-crystallin. Figure 7 resembles a phase diagram
for polymers under poor solvent conditions. Note that, except
for the region close to the critical point, the equilibrium is indeed

between a concentrated and a dilute phase, and we expect thiP

heterogeneous PB cell model to be reasonable for both.

Comparison of Model and Experiments
Next we apply the theory to our experimental data of the

phase separation of lysozyme and succinylated lysozyme. Both

theory also exactly reproduces the finding that the ionic strength
has a significant influence on the amount complexed at a 1:1
mixing ratio, but has no influence at 1:9 and 9:1 ratios. The
situation ata 1:1 mixing ratio is not unexpected: with increasing
ionic strength, the chemical potential of the molecules in solution
is lowered, and therefore complexation diminished. However,
for the asymmetric mixing ratios, we have no ready explanation
r the invariance of the complexed amount to ionic strength (as
observed both in the experiment and in theory).
Having identified that complexation is most pronounced at

symmetric mixing ratios (which in itself is not very surprising),

(30) GonZéez Flecha, F. L.; Levi, VBiochem. Mol. Biol. EdL2003 31, 319.
(31) Tanford, C.; Swanson, S. A.; Shore, WJSAm. Chem. Sod955 77,

protein molecules are approximated as spherical colloids of 6414.
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Figure 9. lonic strength vs total protein concentration phase diagram

. . . . ) . as a function of temperature.
we continue with experiments at a 1:1 mixing ratio (this is a

mass mixing ratio; in number densities, this translates to 51.53% curve. This indeed turns out to be quite near|y the case, as is

of all molecules being lysozyme). The results are shown in Figure shown in Figure 8Using they(T) correlation

3. The straight 1:1 line represents the situation in which all protein

is in solution, as expected in the absence of phase separation. ¥ =19—0.115T (29)

The minimum protein concentration required for phase separation

to occur increases with increasing ionic strength (phase separatiofVith T in °C (shown as a solid line in Figure 8), we can predict

is “more difficult” at high ionic strength). Though the onset of .Tda.rify for arbitrary values of the t.otal protein concentration and

phase separation in the experiment is not as sharp as the theor{PNic strength and, as expected, find excellent agreement between

predicts, we again find a remarkable agreement, with the tN€ory and experiment, as is shown in Figure 5. For instance, the

dependencies afyand ionic strength being very well reproduced. increasing slope of the curves with decreasing ionic strength is

The theory also predicts that, upon increasifagbeyond the very well reproduced. . . .

phase separation threshold, the protein concentration in the To construct a p_ha;e diagram as a funct!o_n of tqtal protein

. ) : concentration and ionic strength at a 1:1 mixing ratio, we use

supernatangs first remains constant (plateau region), but then . ; S s

starts increasing at highex, especially at low ionic strength. the phase poundanes determlned by estimating thg positions of
. . . the breaks in the curves of Figure 3 (by extrapolating from the

The_ experlme_ntal data e}lso_ show an increagi &fter a plateau data at concentrations clearly in the phase-separation regime

region, especially atlow ionic strength. However, the dependence

f this eff e hi q di 0|back to the intersection with the 1:1 line that represents the
ofthis effect on lonic strength is not as pronounced as predicted yhsence of phase separation). These points (circles) are plotted

by the theory. The increase ¢f after the plateau regionis due i, Figure 9. Also, in quasi-elastic light scattering experiments,

to the slightimbalance in charges betw@trandZ™, excluding \ye find that, at a total protein concentration of 10 g/L, the critical

asmall and constant fraction of all protein from the dense phase.jgnic strength for phase separation is around 800 ¥ANhis

Ifthe molecules would be of exactly opposite charge and presentsingle data pointis indicated as a cross in Figure 9. As is evident,

in equal numbers, the plateau region would extend all the way the calculated phase diagram is in excellent agreement with the

up to values ofpo in the 30-40 vol % range where we enter the  experimental results.

one-phase region again. At high ionic strength, electrostatics no longer influences the
Finally, we consider the experiments in which we determine phase behavior, which results in the vertical slopes of the phase

Teiarify, the temperature beyond which the solution becomes clearboundary in Figure 9 (fgr = 14). In this nonelectrostatic regime,

to the eye. As mentioned, the temperature dependence of theVe have only a competition between entropy, excluded volume,

phase behavior is presumably caused by a temperature-depender@nd the nonelectrostatic attraction. For the fitted value of the

nonelectrostatic attraction. In other words, we expeitt be a nonelectrostatic attractiop,= 14, theqry predicts that the dense

function of temperature, and, from the measurementsgfy, (;)Jha_se_always has a very high density, on the orde¢35 vol

we ideally would like to determine this correlation. This has 0 (in line with the experimental data for mixtures of two types

_ intl,1 i i
been done in the following way: First note that the experimental of y crysta!lml )- V\{hgn WE Increase the temperature in the
Teirty COMTESponds to the situation in which the attractjois model we find at sufficiently high temperatures (corresponding

just strong enough for phase separation. In each experimentto sufficiently low values of the attractiop) a closed phase

(defined by ionic strength, protein mixing ratio, and concentra- boundary. In this case, we can always go to the one-phase region
N y lculate th gth’ P tical val 9 & ' ding t by adding salt (irrespective @f) and obtain a one-phase system
ion), we calculate the eoretical valuejptorrésponding to with protein concentrations between, for instance, 5 and 25 vol
the onset of phase separation. Thus, we obtain a Sel.ef—y,

X X X . %, which is impossible at = 14 (room temperature).
coordinates (see Figure 8). If our thermodynamical model IS rqr completeness, we also show phase diagrams as a function
accurate, and if the temperature-dependent attraction parametess ionic strength and colloid charge (see Figure 10). In the phase
is indeed independent of ionic strength, protein concentration,

and mixing ratio, allf’—y points should fall on a common master (32) Lindhoud, S., M.S. Thesis, Wageningen University, 2005.




Phase Behaior of Oppositely Charged Nanoparticles Langmuir, Vol. 22, No. 3, 200899

1 completely clear to the eye, whereas the criterion of 95%
transmission in Method | corresponds already to a slightly turbid
01 - sample. Taking a less stringent criterion in Method III would
' shift the data in Figure 8 to the left, thereby loweripgThe
criterion of 95% percent transmission (used in Method 1) is also
0.01 somewhat arbitrary and may affect the reliability of the value
of y = 14.8 determined from the data in Figure 1. In short, we
. think that the most accurate estimate of the attraction comes
< 00014 from fitting the Method I data for the concentration of protein
in the supernatant after centrifugatign= 14.0. Nevertheless,
0.0001 all values are of the same order of magnitude, and the two most
reliable ones are within a 10% margin.
Prinsen and Odif argue that interactions between globular
0.00001 1 10 mM proteins, particularly between lysozyme molecules, are fairly
well represented by a sum of steric repulsion, electrostatic
0.000001 . . ' . . interactions, plus a short-ranged, nonelectrostatic attraction,
0.000001 0.00001 0.0001  0.001 0.01 0.1 1 presumably due to hydrophobic interactions and hydrogen
¢+ bonding. Since we assume that succinylation only affects the
protein charge, but not the short-ranged, nonelectrostatic attraction
1 between the protein molecules, we should be able to compare
our values for the interaction paramegevith data for lysozyme
lysozyme interactions at high ionic strength (when electrostatic
011 interactions are completely screened). Prinsen and &dijk
summarize experimental values of the second virial coefficient,
0.01 - By, of lysozyme (dimension nfnobtained fronB,/B, ysin Figure
2 of ref 33 by multiplying withB, us = 4-v, with v being the
assumed volume of the molecule). At high ionic strength, in
© 00011 Figure 2 of ref 33, reported values Bj/B; ysare between-2.7
and—3.7. This translates into values fBg (a protein volume
0.0001 of ~21 nn?# is used in ref 33) of 227311 nnf. Because the
Taylor expansion of eq 6 results in
VARY A
0000011 B7iae PHT.5 B, = v(4—7) (30)
7.9:-6.6
0.000001 T T T T T we obtain, with the value farused in the present work, namely,
0.000001 0.00001 0.0001  0.001  0.01 01 1 v = 37 nn¥, values fory in the range of-15 to~19, which are

¢+ rather close to the values we find for lysozyrmiccinylated

Ei 10, Ph g functi f (@) ionic st th (oH lysozyme mixtures.
igure . ase diagram as a runction ot (a) lonic streng o]
7.5) and (b) colloid charge (thus as a function of jgil= 10 mM). We can also compare the measured temperature dependence

Phase separation occurs within the region enclosed by the coexistenc@f > namely ¢/dT ~ —0.115FC, with that reported in the
curves. Data points correspond to the onset of phase separation iditerature for lysozymelysozyme interactions. According to
Figure 2. Rosenbaum and ZukosKiB, increases with-4.2 nn#/°C (their
Figure 5), and according to Petsev efflt increases with~3.4
diagram as a function of ionic strength, Figure 10a, we have alsonm?/°C (their Figure 3), which, according to eq 30 and using
included experimental phase boundaries estimated from the data= 37 nn#®, results in ¢/dT in the range of-0.09 to—0.11/C,
of Figure 2. Unfortunately, for the asymmetric mixing ratios again close to the value we derived from our experiments and
(9:1and 1:9), the estimates are not very reliable (triangles representnodel.
the 10 mM case; squares represent 20 mM). Figure 10biillustrates In future studies we hope to investigate, in more detail, the
the influence of pH on the phase separation. With decreasingnature of both the dilute and the dense phases. However, the
pH, the charge on the lysozyme slightly increases, but the chargedense phases are opaque and seem to be very concentrated, as
on the succinylated lysozyme becomes much less negative. Asis also suggested by our theoretical model. This makes them
a consequence, the two-phasep)(2region shrinks in an different from the “complex coacervate” phases often found in
asymmetric fashion, and, for phase separation, higher proteinmixtures of globular proteins and oppositely charged polyelec-

concentrations are required. trolytes: these are less dense, transparent, viscous fluids. The
. ] difference is most likely caused by the rather strong nonelec-
Discussion trostatic attraction that is generally present between globular

We would like to discuss a number of issues relating to the Proteins. As suggested by our theoretical model, only at much
fitted values of the interaction paramegeFirst, fitting the theory ~ lower values of the nonelectrostatic attraction does one find a
to the data gave different values for the different kinds of ~ closed loop in the phase diagram of Figure 9 and the possibility

experiments; = 14.8 from turbidity (Method I)y = 14.0 from of less concentrated dense phases.
protein supernatant concentration (Method II), gnd 16 from
Tearity by Method 1l (when extrapolated to 2%C). The latter (33) Prinsen, P.; Odijk, TJ. Chem. Phys2004 121, 6525.

. : : , - AR D. F.; Zukoski, C. &. Cryst. h1996 169 752.
value is the highest, possibly because a rather stringent criterion g% Rosenbaurn, O. P Zukosk, & . Cryst. Sfavf’;h}?:%hgﬁ]. 55003

was used to assess clarification, namely that the sample becameo7z, 3921.
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