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We study the phase behavior of mixtures of oppositely charged nanoparticles, both theoretically and experimentally.
As an experimental model system we consider mixtures of lysozyme and lysozyme that has been chemically modified
in such a way that its charge is nearly equal in magnitude but opposite in sign to that of unmodified lysozyme. We
observe reversible macroscopic phase separation that is sensitive not only to protein concentration and ionic strength,
but also to temperature. We introduce a heterogeneous Poisson-Boltzmann cell model that generally applies to
mixtures of oppositely charged nanoparticles. To account for the phase behavior of our experimental model system,
in addition to steric and electrostatic interactions, we need to include a temperature-dependent short-ranged interaction
between the lysozyme molecules, the exact origin of which is unknown. The strength and temperature dependence
of the short-ranged attraction is found to be of the same order of magnitude as that between unmodified lysozyme
molecules. The presence of a rather strong short-ranged attraction in our model system precludes the formation of
colloidal liquid phases (or complex coacervates) such as those typically found in mixtures of globular protein molecules
and oppositely charged polyelectrolytes.

Introduction

Solutions of colloidal spheres, with sizes from hundreds of
nanometers down to a few nanometers have been used extensively
as models for simple liquids. Conversely, theories of simple
liquids have been used to interpret experiments on suspensions
of colloidal spheres, including solutions of globular proteins.

Colloidal analogues have not yet been widely studied for A+B
mixtures in which A-A and B-B interactions are repulsive, but
A-B interactions are attractive, such as in electrolyte solutions.
Above a critical coupling strength, electrolyte solutions exhibit
phase transitions to dense phases, which have been the subject
of renewed theoretical interest.1 Mixtures of oppositely charged
nanoparticles are a colloidal analogue of electrolyte solutions2

that could provide novel ways to test theoretical predictions and
provide a stimulus for further theoretical work, as demonstrated
beautifully by recent results on crystal phases formed by
oppositely charged colloids of dissimilar size.3

Mixtures of oppositely charged nanoparticles are also a
convenient model system for electrostatic complexation in
mixtures of oppositely charged macromolecules in general.
Experimental studies have been performed for a wide variety of
combinations of oppositely charged macromolecules. The
multitude of parameters that come into play for the complicated
mixtures that have been studied so far are a serious handicap in
modeling efforts. These would be helped by experiments on
systems with a smaller parameter space, such as a system of
oppositely charged nanoparticles of a single radius and a charge
that is equal in magnitude but opposite in sign.

With this in mind, we here present an exploratory experimental
study of the phase behavior of mixtures of oppositely charged

nanoparticles. More specifically, we use the protein lysozyme
and its chemically modified analogue, succinylated lysozyme.
These two globular molecules are rather spherical and virtually
identical in size and shape, but differ in their net charge. By
changing the pH, one can find conditions where the two molecules
have a charge that is roughly equal in magnitude but opposite
in sign. We also introduce a simple statistical thermodynamical
model that generally applies to mixtures of oppositely charged
nanoparticles. Electrostatic free energies are calculated using a
heterogeneous Poisson-Boltzmann (PB) cell model, an extension
of a previous model for the formation of complex coacervate
phases in mixtures of oppositely charged flexible polyelectro-
lytes.4

Previous studies of mixtures of oppositely charged protein
molecules5-10have mainly been concerned with cross-interactions
under conditions where macroscopic phase separation does not
yet take place. However, macroscopic phase separation for
aqueous mixtures of two types ofγ-crystallin, a lens protein, has
been studied by Liu et al.11,12 Compared to systems used in
previousstudiesonoppositely chargedglobularproteinmolecules,
our system has the simplicity that one requires of a model
system: the two proteins species are identical, except for the
chemical modification of the lysine and tyrosine residues at the
surface of the succinylated protein. We can tune the pH to obtain
a system in which the charges are almost equal in magnitude,
but opposite in sign.
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Compared to much larger colloidal spheres, the present system
has the advantage of much lower absolute values of the charge,
such that we can get one-phase systems at reasonable ionic
strengths. Additionally, the protein size is in the range of quite
accessible Debye lengths in aqueous systems, such that both
long-range and short-range interactions can be investigated. Our
emphasis here is on a systematic study of the phase behavior to
set the stage for studies probing the nature of the phases in more
detail.

Materials and Methods

For details of the protein molecules used, namely hen egg-white
lysozyme and its chemical modification, succinylated lysozyme,
see ref 13. In analyzing the data, we assume a molar mass of 14.3
kDa for lysozyme and 15.2 kDa for succinylated lysozyme. Lysozyme
has an isoelectric point of pI) 10.7, whereas the pI for succinylated
lysozyme is 4.7.13,14 The protein chargeZ, as a function of pH, is
known from titration data,13 which corresponds well with a simple
titration model.14 At pH 7.5, lysozyme has about+7 charges, and
succinylated lysozyme has about-7.

Proteins were dissolved in demineralized water, after which the
pH was adjusted to 7.5. Before use, solutions were filtered through
a 0.1µm pore size filter, and the protein concentration was determined
spectrophotometrically (281.5 nm; extinction coefficientε ) 2.635
(liter‚cm)/g). The ionic strength was adjusted using a concentrated
stock solution of NaCl.

Three different experimental methods were used to determine the
phase behavior.

Method I. Turbidity at 400 nm is measured in a stirred cell,
during a titration of a 1 g/L lysozyme solution with a 1 g/L solution
of succinylated lysozyme, or vice-versa. The phase boundary is
identified with the point at which transmission has decreased from
100% to 95%.

Method II. Mixed protein solutions were equilibrated for 1 h,
centrifuged for 1 h at12,000 rpm, and left to equilibrate for another
hour, after which the protein concentration of the supernatant was
determined spectrophotometrically as described above.

Method III. Solutions are prepared in capped glass tubes and
placed in a stirred water bath. The temperature of the bath is increased
in one-degree increments. After stabilization of the temperature and
an additional hold time of 2 min, we visually determine whether the
sample has become transparent or not. In this way we determine the
clarification temperature,Tclarify, above which the sample becomes
transparent.

Experimental Results

In a first set of experiments, we vary the mixing ratio between
the positive lysozyme and the negative succinylated lysozyme
at a fixed total concentration of protein ofc ) 1 g/L. At each
ionic strength, we determine the two critical values (at low and
high lysozyme concentration) by Method I (see Figure 1). Not
unexpectedly for our nearly perfectly symmetric system, the
extent of phase separation is largest at a mass mixing ratio of
f+ ) c+/c≈ 0.5 (wherec+ is the mass concentration of lysozyme).
What is more surprising is that phase separation persists down
to extremely asymmetric mixing ratios. This is different, for
example, in mixtures of oppositely charged polyelectrolytes,
where phase separation occurs in a much narrower range of
mixing ratios, aroundf+ ≈ 0.5.15 Most likely, this is related to
the nearly perfect symmetry of our system, in terms of both the
magnitude of the charges, and the geometry of the charged objects.
This symmetry probably excludes the formation of small soluble

aggregates with a stabilizing net charge, as occurs when charge
densities and geometries of the positive and negative macro-
molecules are sufficiently different.

The criterion of 95% transmission used in Method I to
determine phase boundaries is somewhat arbitrary. An alternative
procedure is to measure the protein concentration in the
supernatant using spectrophotometry after centrifuging off the
dense complex phase (Method II). For one-phase samples, this
concentration should be equal to the total protein concentration,
whereas, for two-phase systems, it will be lower, since part of
the protein molecules are in the dense complex phase. Thus, we
should be able to determine the phase boundary by locating the
break in the curve of the supernatant protein concentration versus
the total protein concentration.

Figure 2 shows typical results of this procedure at ionic
strengths of 10 and 20 mM, and for lysozyme/succinylated
lysozyme mixing ratios of 1:9, 1:1, and 9:1. The break in the
curves is especially distinct for a mixing ratio of 1:1. This behavior
is reminiscent of that of a poorly soluble salt: above a certain
solubility limit, all of the additional ions go into the crystal phase.
For our case, even at a 1:1 mixing ratio, the positive slope of
the curves beyond the phase boundary indicates that not all of
the additional protein molecules go into the complex phase. Most
likely, this is due to deviations from perfect symmetry: because
of the slightly larger molecular weight of succinylated lysozyme,
at a mixing ratio of 1:1 (by weight), the numbers of succinylated
and nonsuccinylated lysozyme molecules are not exactly equal.
Also, the charges of the two kinds of molecules are not exactly
equal in magnitude. We will return to this issue in the section
titled Comparison of Model and Experiments.

At more asymmetric mixing ratios, the break in the curves is
much less pronounced since it is obscured by the high
concentration of the species that is in excess. Therefore, the
present method is especially useful for a symmetric mixing ratio.
Nevertheless, even at mixing ratios 1:9 and 9:1 we still clearly
find that above a certain critical concentration, the supernatant
concentration is less than the total protein concentration. There
is a small but significant difference between the data for 1:9 and
those for 9:1 mixing ratios, which is again most likely related
to the fact that the number concentrations as well as the charge
magnitude are not exactly equal.
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Figure 1. Critical ionic strength as a function of protein mixing
ratio, f+, for 1 g/L total protein concentration. 2φ denotes the two-
phase region. Experimental data obtained via Method I, and theory
based onø ) 14.8.
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To reduce the number of parameters, we restrict ourselves in
the following experiments to symmetric systems (mixing ratio
1:1), for which complexation is most distinct. First we consider
the influence of ionic strength. Figure 3 shows the supernatant
concentration versus the total protein concentration for a wide
range of values of the ionic strength. Again, the data show a
transition at a critical protein concentrationφ0, indicating the
onset of phase separation. With increasing ionic strength, this
phase boundary shifts to higher protein concentrations.

A detailed theoretical approach to describe the influence of
ionic strength will be discussed in the next section. Here, we first
use a more qualitative argument that highlights the origin of the
ionic strength dependence, which, to a first approximation, is
due to the influence of the small ions on the chemical potential
of the protein molecules in solution, whereas the chemical
potential of the complexed molecules in the dense phase is not
influenced much. Equality of chemical potentials for the two
phases in equilibrium implies

with “+” and “-” referring to the positively charged and

negatively charged protein molecules in solution, and “c” referring
to the complex phase that is assumed to contain equal numbers
of both molecules. Inspired by the analogy with poorly soluble
salts, we here make the approximation thatµc is independent of
ionic strength for the protein complexes. To calculate the ionic
strength dependence of the chemical potential of the protein
molecules in solution, we assume that the molecules are far apart
(relative to the Debye length). For low surface potentials, the
chemical potential is then given by

The second, electric, term is equal to1/2‚Z‚y, wherey is the
dimensionless surface potential (also see Theory section),ci is
the protein concentration,Z is the charge of the molecule,λB is
the Bjerrum length () 0.72 nm in water),κ-1 is the Debye length,
κ2 ) 8πλBn∞ (we assume throughout that all small ions are
monovalent), andn∞ is the ionic strength (in m-3; ) c∞‚Nav, with
c∞ in mM). Combining eqs 1 and 2, and assuming thatZ is equal
in magnitude for both molecules, we obtain an expression for
the equilibrium constant

The simplified model can be checked using experimentally
determined phase boundaries, at which the protein concentrations
in solution,c+ andc-, are known. We use the data of Figure 1
(at a fixed total protein concentration but varying mixing ratio),
while, for the data of Figure 3 (at a fixed mixing ratio of 1:1,
but for varying total protein concentration), we estimated the
phase boundary from extrapolating from data clearly in the 2φ

region back to the 1:1 line (which corresponds to absence of
phase separation). Results of the analysis are shown in Figure
4. The data indeed suggest the correct dependence onκ and thus
on ionic strength. Differences between the two data sets are not
entirely unexpected because the two experimental methods are
so different. From the slope of the curves, we can estimate a
corresponding protein chargeZ, which results inZ∼ 5-6, which
is somewhat lower than the expected value ofZ ∼ 7 (taken from
acid/base titration) but is not unreasonable, given the approximate
nature of this analysis, in which the influence of the ionic strength
on the chemical potentialµc of the protein molecules in the

Figure 2. Protein concentration in supernatant,φs, as a function of
total protein concentration,φ0, mixing ratio, and ionic strength. (a)
10 mM. (b) 20 mM. Symbols represent the experimental data (closed
diamonds: 1:1 mixing ratio of lysozyme to succinylated lysozyme;
open diamonds: 1:9; triangles: 9:1). Deviations from the dotted
curve (φs ) φ0) indicate complexation. Solid curves: predictions of
the thermodynamical model (discussed in the Theory section;ø )
14.0).

µ+ + µ- ) µc (1)

Figure 3. Protein concentration in supernatant as a function of total
protein concentration and ionic strength (theoretical curves based
on ø ) 14.0; experiments based on Method II; 1:1 mixing ratio).

µi ) lnci + Z2

2

λB

a(1 + κa)
(2)

K ) c+c- ) exp{µc + Z2
λB

a(1 + κa)} (3)
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complex phase is neglected. This additional element will be
incorporated in the Theory section.

Finally, we investigated the temperature dependence of the
phase boundaries (Method III). Results are presented in Figure
5, which shows the temperature at which the opaque solutions
became completely transparent,Tclarify. Because the electrostatic
interactions between the protein molecules are not expected to
be particularly sensitive to temperature, the observed sensitivity
to temperature suggests an additional nonelectrostatic attraction
that is quite sensitive to temperature.

Theory

Modeling the phase behavior of mixtures of oppositely charged
macromolecules has a long history (reviewed in ref 16), starting
with the work on the complex coacervation of oppositely charged
flexible polyelectrolytes by Overbeek and Voorn.17An important
theoretical problem is that the electrostatic contribution to the
free energy sensitively depends on the spatial correlations of the
positively and negatively charged macromolecules. Depending
on the strength of the electrostatic interactions, spatial correlations
may vary from very weak to extremely strong. Estimating the
nonelectrostatic contribution to the free energy (assuming that
these contributions can be separated) is less problematic and can
be done using a variety of well-known approximations.

Weak-coupling approximations, for systems with weak spatial
correlations, have been around for a long time: the Overbeek-
Voorn approximation falls into this category, as well as random-
phase approximations for weakly charged polyelectrolytes of
opposite charge.18,19For stronger correlations, a possibility is to
estimate the electrostatic contribution to the free energy on the
basis of a plausible assumption for the spatial organization of
the complex. Along these lines, we recently developed a
heterogeneous PB cell model (see Figure 6) to estimate the
electrostatic freeenergyof strongcomplexesofoppositely charged
flexible polyelectrolytes.4 In the present work, we will extend

thatapproach tomixturesofoppositely chargedspheres todescribe
the electrostatic interaction between mixtures of globular protein
molecules.

(16) de Kruif, C. G.; Weinbreck, F.; de Vries, R.Curr. Opin. Colloid Interface
Sci.2004, 9, 340.

(17) Overbeek, J. Th. G.; Voorn, M. J.J. Cell. Comp. Physiol.1957, 49, 7.
(18) Kudlay, A.; Olvera de la Cruz, M.J. Chem. Phys.2004, 120, 404.
(19) Kudlay, A.; Ermoshkin, A. V.; Olvera de la Cruz, M.Macromolecules

2004, 37, 9231.

Figure 4. Ionic strength dependence of the solubility productK )
c+c- of protein complexes. The triangles are based on the data of
Figure 1, and the circles are based on the data in Figure 3. The solid
lines are based on eq 3 withZ the fitted values of the protein charge.

Figure 5. Tclarify as a function of total protein concentration for
various ionic strengths. (a) circles: 6 mM; triangles: 8 mM;
diamonds: 10 mM. (b) closed diamonds: 10 mM; open diamonds:
20 mM; circles: 25 mM; squares: 30 mM; triangle: 35 mM; diamond
40 mM. Full curves are based on the thermodynamical theory
(discussed in the Theory section;ø from eq 29).

Figure 6. Schematic of heterogeneous cell model for a mixture of
positively and negatively charged spherical colloids. In the envelopes
between the charged surface of the colloid (solid line) and the (virtual)
edge of the cell (dashed line), the PB equation is solved in spherical
coordinates. At the edge of the cell, each colloid interacts with the
mean-field environment.
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Generally, in cell models, envelopes of solvent plus small
ions are envisioned around each charged colloid or molecule.
Each cell consists of one charged sphere plus the solvent envelope.
The PB equation is solved for the space between colloid and cell
edge. In one-component PB cell models, the boundary condition
at the edge of a cell is fixed by the requirement that each cell
in itself is electroneutral.20-23 Such homogeneous cell models
are well-established for one-component systems in which the
colloids or molecules are repulsive and can be expected (when
concentrated enough) to distribute in such a way as to maximize
the interparticle distance, that is, to form a packing with a well-
defined interparticle distance.

Heterogeneous cell models, to be used for mixed systems
(thus, with different kinds of particles), are much less well-
established but have found use in describing drag forces in
mixtures of (uncharged) particles of different size moving under
an external force.24,25 For oppositely charged particles, the
applicability of heterogeneous cell models may seem problematic,
since interparticle distances between particles of opposite charge
may be very different from those between particles of equal
charge. However, in a strong complex, the density may be so
high that the interparticle distances again become fairly uniform.
The heterogeneous cell model also applies to very dilute mixtures
of noninteracting charged spheres because it correctly gives the
electrostatic free energy of the electric double layer surrounding
isolated charged spheres. Deviations are expected to be largest
at intermediate sphere densities. However, phase separation often
occurs between dilute and very concentrated phases, and, for
both of these, the heterogeneous cell model is expected to be
reasonable.

Therefore, we consider a mixture of colloidal spheres of fixed
charge,Z+ and Z- (not necessarily of equal magnitude), and
equal volume,V, in an aqueous solution containing small ions.
For the small ions, we assume a fixed chemical potential (grand
canonical) as if the system is in equilibrium with a large aqueous
solution via a membrane permeable to the small ions (and solvent),
but not to the charged spheres.

Nonelectrostatic Contribution. As mentioned, we assume
that the total free-energy densityf separates into an electrostatic
and a nonelectrostatic contribution

The nonelectrostatic contribution is approximated using a
Carnahan-Starling-van der Waals equation-of-state (EOS). This
is a modification of the classical van der Waals EOS obtained
by replacing the van der Waals repulsive term by the Carnahan-
Starling expression.26In this part of the model, where electrostatic
interactions are not considered, the oppositely charged spheres
are assumed to be identical. Then the free-energy density takes
the form

while the contribution to the osmotic pressure is

and the contribution to the chemical potential is given by

Similar thermodynamic functions have been used previously for
(one-component) protein solutions (e.g., in refs 27 and 28). In
the above equations,φ is the overall volume fraction of protein
molecules, andφi is the volume fraction of each individual
component, while all thermodynamic functions are scaled to the
thermal energy,kT. Note that, in eqs 5 and 7, the individual
volume fractions only enter in the ideal entropy term, lnφi. As
mentioned, our experiments indicate the presence of an additional,
nonelectrostatic attraction that is temperature dependent. This is
included in the model (at the van der Waals level) via the parameter
ø.

Electrostatic Contribution. To estimate the electrostatic
contribution to the free-energy density, we set up a heterogeneous
PB cell model. For a binary mixture, two different kinds of
spherical cells are considered (see Figure 6). The electrostatic
potential is continuous; hence, all cells have a common value of
the electrostatic potential at the cell boundary. The fields strengths
at the boundaries of the two kinds of cells need not be the same.
Therefore the individual cells are not necessarily electroneutral.
Instead, the field strengths at the cell boundaries are self-
consistently obtained from the requirement of overall electro-
neutrality of all cells together. This amounts to averaging the
field strength over the surfaces of the cells. In other words, the
cells “see” a mean-field surrounding, with a excess charge that
exactly cancels their own net charge.

ForN1 spheres of type one andN2 spheres of type two, overall
electroneutrality results in

with bi being the outer cell radius,r being the radial coordinate
in each cell, andybeing the dimensionless electrostatic potential,
which is related to the electrostatic potentialψ according toy
) eψ/kT, wheree is the electronic charge.

In principle, we have complete freedom in dividing the available
volume over the two kinds of cells. However, especially for
symmetric systems, the most appropriate approximation seems
to be to assume that the outer cell radii of the two kinds of cells
are equal. Then the volume of each cell is simply the inverse of
the total particle number density,F. The radius of the spherical
molecule,a, and the outer radius of the cell,b ) bi, are thus
related to the volume density of all spheres combined,φ, according
to

Combining eqs 8 and 9 results in

whereφi is the volume fraction of componenti.
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Phase equilibrium computations are more complicated when
the thermodynamic functions must be determined numerically.
Therefore, instead of using the full nonlinear PB equation, here
we analytically compute the electrostatic free-energy density of
our cells using the Debye-Hückel approximation of linearizing
the PB equation. For typical solutions of globular proteins, at
moderate ionic strengths, this is not unreasonable. Also, it should
be noted that the heterogeneous cell model itself is already quite
a drastic approximation, such that it is not certain that using the
full PB equation would make the theory much more accurate.

The derivation of the thermodynamic functionsΠ andµ is
analogous to that in ref 23 (eqs 11-20) in which a one-component
system is considered (homogeneous cell model) on the basis of
the PB equation in the low-potential limit in spherical coordinates

to be solved in the annular spacea < r < b. The boundary
condition atb is given by eq 10, while at the surface of the
colloidal sphere (r ) a)

Equation 11 has the general solution29

Solving the heterogeneous cell model, we find for the electrostatic
potential,yi, at the colloid surface,r ) a, in cell i

where

and

In the Debye-Hückel low-potential limit, the electrostatic
contribution to the free-energy densityf is given by (all molecules/
colloids have volumeV)

which, with eq 14, results in

The colloid osmotic pressureΠ is related to the free-energy
density according to

which, for Π, results in

with

The electrostatic contribution to the chemical potential of species
i, is given by

where the subscriptφj refers to the differentiation being performed
for constant volume fractions of all other colloidal species.
Equation 22 results in

or

Equation 24 gives the electrostatic contribution to the chemical
potential of componenti in a certain phase as a function of the
electrostatic potentialyi from eq 14, the volume fractionsφ1 and
φ2, and the geometrical factorsQ1 andQ2 from eqs 15 and 21.
These factors depend only on the cell radiia andb (thus on the
total volume fraction,φ), and the Debye length,κ-1.

Phase Behavior.To determine the phase diagram, we solve
the usual set of equations: equality of the chemical potential of
each species in the two phases (with the contribution of eqs 7
and 24) and equality of the colloid osmotic pressure (with
contributions from eqs 6 and 20). We need to solve these equalities
together with expressions for the surface potentials, eq 14, and
the conservation of mass,

whereú is the relative volume of the complex (c) phase, s refers
to the solution phase, and 0 refers to the overall amount of
componenti (per unit volume).

To illustrate the theory, here we consider a limiting case for
which the expressions simplify considerably: a stoichiometric
mixture (i.e.,φi,0)1/2‚φ0) of spherical particles having exactly
opposite charges,(Z. In this case, and with a symmetric form
of the nonelectrostatic forces, stoichiometry is preserved in the
coexisting phases (i.e., in both phases, we always have equal
amounts of the two types of particles), such that we have a quasi(29) Zydney, A. L.J. Colloid Interface Sci.1995, 169, 476.
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one-component system. The electrostatic potential at the sphere
surface becomes

whereas, for the electrostatic contribution to the colloid osmotic
pressure, we now find

while the electrostatic contribution to the chemical potentialµ
(equal for both components) simplifies to

For this quasi one-component system we can now easily construct
a φ-ø phase diagram after combining eqs 27 and 28 with eqs
6 and 7 (φi ) φ/2), resulting in two equations and the two unknown
coexisting volume densities,φ. The strength of the attraction,
that is,-ø, essentially plays the role of “temperature” (on the
y-axis). Figure 7 shows the basic features of phase separation as
predicted by our theory: at high attraction (low-ø), phase
separation can be observed; the region of phase separation expands
with decreasing ionic strength, which is due to the increased
electrostatic attraction between oppositely charged spheres at
lower ionic strength.

The density of the complex phase (high-density branch) shows
values in the 30-40 vol % range, in line with the dense phase
volume fractions measured by Liu et al.11,12for aqueous mixtures
of two types ofγ-crystallin. Figure 7 resembles a phase diagram
for polymers under poor solvent conditions. Note that, except
for the region close to the critical point, the equilibrium is indeed
between a concentrated and a dilute phase, and we expect the
heterogeneous PB cell model to be reasonable for both.

Comparison of Model and Experiments

Next we apply the theory to our experimental data of the
phase separation of lysozyme and succinylated lysozyme. Both
protein molecules are approximated as spherical colloids of

volumeV ) 37 nm3 (see ref 30 for lysozyme), which corresponds
to a radius ofa ) 2.07 nm. The fixed charge on the protein
molecules is assumed to be a function of both pH and ionic
strength, but not of protein concentration. These charges are
computed from the classical Tanford titration model31 for
lysozyme and succinylated lysozyme that we described in detail
in ref 14. The molecule is assumed to be spherical, and the
solution is assumed to be sufficiently dilute that the diffuse layers
around different molecules do not overlap. The titration model
quite accurately fits experimental titration curves for the two
protein molecules.14 Predicted isoelectric points are pI) 10.7
for lysozyme and pI) 4.7 for succinylated lysozyme, in agreement
with experiment.

Neglecting the influence of protein concentration on the charges
of the proteins is presumably a good approximation, since, at the
experimental pH of 7.5, both proteins have a local plateau in
their titration curves13,14such that they very nearly behave as if
they had a fixed charge,Z. Clearly, close to the isoelectric points
of the proteins, the fixed charge approximation is no longer
accurate. At pH 7.5, the predicted charges are, at infinite ionic
strength,Z+ ) +8.07 andZ- ) -6.89 for lysozyme and
succinylated lysozyme, respectively. At the ionic strengths used
in the experiments, the charge is somewhat lower, ranging from
Z+ ) 7.85 andZ- ) -6.62 at 6 mM toZ+ ) 7.94 andZ- )
-6.75 at 40 mM. All parameters are fixed, except for the
nonelectrostatic attraction,ø, which we use as the only adjustable
parameter in our comparison with the experimental data.

In Figure 1, the theory is tested against the protein titration
data, and, using a value ofø ) 14.8, we find excellent agreement
with the data. Note that both the experiment and the theory show
that, in the present system, phase separation is possible, even at
extremely asymmetric mixing ratios. As discussed earlier, this
is most likely due to the fact that the experimental system is
nearly symmetric, both in charge and geometry.

Next, consider the experiments in which we spectrophoto-
metrically determine the protein concentration in the supernatant,
φs, after centrifugation (Method II; see Figures 2 and 3). In
comparing with the theory, we identifyφswith the volume fraction
of protein molecules in the solution phase in the case of a two-
phase coexistence. Here, we find that a value ofø ) 14.0 gives
a very good fit of the model to the data. First, consider the effect
of the mixing ratio, as shown in Figure 2 (for ionic strengths of
10 and 20 mM). The theory exactly reproduces the fact that the
9:1 situation results in a higherφs (lower amount complexed)
than does the 1:9 situation because of the slight asymmetry of
the charges on the lysozyme and succinylated lysozyme (lysozyme
has a higher charge) and the fact that molar mixing ratios are
different from mass ratios (resulting in a higher number for the
lighter lysozyme molecule). Because of these two effects, the
1:9 case is closer to a 1:1 symmetry than is the 9:1 case. The
theory also exactly reproduces the finding that the ionic strength
has a significant influence on the amount complexed at a 1:1
mixing ratio, but has no influence at 1:9 and 9:1 ratios. The
situation at a 1:1 mixing ratio is not unexpected: with increasing
ionic strength, the chemical potential of the molecules in solution
is lowered, and therefore complexation diminished. However,
for the asymmetric mixing ratios, we have no ready explanation
for the invariance of the complexed amount to ionic strength (as
observed both in the experiment and in theory).

Having identified that complexation is most pronounced at
symmetric mixing ratios (which in itself is not very surprising),

(30) Gonza´lez Flecha, F. L.; Levi, V.Biochem. Mol. Biol. Edu.2003, 31, 319.
(31) Tanford, C.; Swanson, S. A.; Shore, W. S.J. Am. Chem. Soc.1955, 77,

6414.

Figure 7. Phase diagram for a quasi one-component, symmetric
system (Z+ ) -Z- ) 7; φi ) 1/2‚φ, V ) 37 nm3) as function ofø
(describing the attraction between the colloids) and ionic strength.
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we continue with experiments at a 1:1 mixing ratio (this is a
mass mixing ratio; in number densities, this translates to 51.53%
of all molecules being lysozyme). The results are shown in Figure
3. The straight 1:1 line represents the situation in which all protein
is in solution, as expected in the absence of phase separation.
The minimum protein concentration required for phase separation
to occur increases with increasing ionic strength (phase separation
is “more difficult” at high ionic strength). Though the onset of
phase separation in the experiment is not as sharp as the theory
predicts, we again find a remarkable agreement, with the
dependencies onφ0and ionic strength being very well reproduced.
The theory also predicts that, upon increasingφ0 beyond the
phase separation threshold, the protein concentration in the
supernatantφs first remains constant (plateau region), but then
starts increasing at higherφ0, especially at low ionic strength.
The experimental data also show an increase inφsafter a plateau
region, especially at low ionic strength. However, the dependence
of this effect on ionic strength is not as pronounced as predicted
by the theory. The increase ofφs after the plateau region is due
to the slight imbalance in charges betweenZ+ andZ-, excluding
a small and constant fraction of all protein from the dense phase.
If the molecules would be of exactly opposite charge and present
in equal numbers, the plateau region would extend all the way
up to values ofφ0 in the 30-40 vol % range where we enter the
one-phase region again.

Finally, we consider the experiments in which we determine
Tclarify, the temperature beyond which the solution becomes clear
to the eye. As mentioned, the temperature dependence of the
phase behavior is presumably caused by a temperature-dependent,
nonelectrostatic attraction. In other words, we expectø to be a
function of temperature, and, from the measurements ofTclarify,
we ideally would like to determine this correlation. This has
been done in the following way: First note that the experimental
Tclarify corresponds to the situation in which the attractionø is
just strong enough for phase separation. In each experiment
(defined by ionic strength, protein mixing ratio, and concentra-
tion), we calculate the theoretical value ofø corresponding to
the onset of phase separation. Thus, we obtain a set ofTclarify-ø
coordinates (see Figure 8). If our thermodynamical model is
accurate, and if the temperature-dependent attraction parameter
is indeed independent of ionic strength, protein concentration,
and mixing ratio, allT-ø points should fall on a common master

curve. This indeed turns out to be quite nearly the case, as is
shown in Figure 8. Using theø(T) correlation

with T in °C (shown as a solid line in Figure 8), we can predict
Tclarify for arbitrary values of the total protein concentration and
ionic strength and, as expected, find excellent agreement between
theory and experiment, as is shown in Figure 5. For instance, the
increasing slope of the curves with decreasing ionic strength is
very well reproduced.

To construct a phase diagram as a function of total protein
concentration and ionic strength at a 1:1 mixing ratio, we use
the phase boundaries determined by estimating the positions of
the breaks in the curves of Figure 3 (by extrapolating from the
data at concentrations clearly in the phase-separation regime
back to the intersection with the 1:1 line that represents the
absence of phase separation). These points (circles) are plotted
in Figure 9. Also, in quasi-elastic light scattering experiments,
we find that, at a total protein concentration of 10 g/L, the critical
ionic strength for phase separation is around 800 mM.32 This
single data point is indicated as a cross in Figure 9. As is evident,
the calculated phase diagram is in excellent agreement with the
experimental results.

At high ionic strength, electrostatics no longer influences the
phase behavior, which results in the vertical slopes of the phase
boundary in Figure 9 (forø ) 14). In this nonelectrostatic regime,
we have only a competition between entropy, excluded volume,
and the nonelectrostatic attraction. For the fitted value of the
nonelectrostatic attraction,ø ) 14, theory predicts that the dense
phase always has a very high density, on the order of∼35 vol
% (in line with the experimental data for mixtures of two types
of γ-crystallin11,12). When we increase the temperature in the
model we find at sufficiently high temperatures (corresponding
to sufficiently low values of the attractionø) a closed phase
boundary. In this case, we can always go to the one-phase region
by adding salt (irrespective ofφ0) and obtain a one-phase system
with protein concentrations between, for instance, 5 and 25 vol
%, which is impossible atø ) 14 (room temperature).

For completeness, we also show phase diagrams as a function
of ionic strength and colloid charge (see Figure 10). In the phase

(32) Lindhoud, S., M.S. Thesis, Wageningen University, 2005.

Figure 8. Temperature dependence of interaction parameterø.
Figure 9. Ionic strength vs total protein concentration phase diagram
as a function of temperature.

ø ) 19 - 0.115T (29)
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diagram as a function of ionic strength, Figure 10a, we have also
included experimental phase boundaries estimated from the data
of Figure 2. Unfortunately, for the asymmetric mixing ratios
(9:1 and 1:9), the estimates are not very reliable (triangles represent
the 10 mM case; squares represent 20 mM). Figure 10b illustrates
the influence of pH on the phase separation. With decreasing
pH, the charge on the lysozyme slightly increases, but the charge
on the succinylated lysozyme becomes much less negative. As
a consequence, the two-phase (2φ) region shrinks in an
asymmetric fashion, and, for phase separation, higher protein
concentrations are required.

Discussion

We would like to discuss a number of issues relating to the
fitted values of the interaction parameterø. First, fitting the theory
to the data gave differentø values for the different kinds of
experiments:ø ) 14.8 from turbidity (Method I),ø ) 14.0 from
protein supernatant concentration (Method II), andø ∼ 16 from
Tclarify by Method III (when extrapolated to 25°C). The latter
value is the highest, possibly because a rather stringent criterion
was used to assess clarification, namely that the sample became

completely clear to the eye, whereas the criterion of 95%
transmission in Method I corresponds already to a slightly turbid
sample. Taking a less stringent criterion in Method III would
shift the data in Figure 8 to the left, thereby loweringø. The
criterion of 95% percent transmission (used in Method I) is also
somewhat arbitrary and may affect the reliability of the value
of ø ) 14.8 determined from the data in Figure 1. In short, we
think that the most accurate estimate of the attraction comes
from fitting the Method II data for the concentration of protein
in the supernatant after centrifugation,ø ) 14.0. Nevertheless,
all values are of the same order of magnitude, and the two most
reliable ones are within a 10% margin.

Prinsen and Odijk33 argue that interactions between globular
proteins, particularly between lysozyme molecules, are fairly
well represented by a sum of steric repulsion, electrostatic
interactions, plus a short-ranged, nonelectrostatic attraction,
presumably due to hydrophobic interactions and hydrogen
bonding. Since we assume that succinylation only affects the
protein charge, but not the short-ranged, nonelectrostatic attraction
between the protein molecules, we should be able to compare
our values for the interaction parameterø with data for lysozyme-
lysozyme interactions at high ionic strength (when electrostatic
interactions are completely screened). Prinsen and Odijk33

summarize experimental values of the second virial coefficient,
B2, of lysozyme (dimension nm3, obtained fromB2/B2,HSin Figure
2 of ref 33 by multiplying withB2,HS ) 4‚V, with V being the
assumed volume of the molecule). At high ionic strength, in
Figure 2 of ref 33, reported values forB2/B2,HSare between-2.7
and-3.7. This translates into values forB2 (a protein volume
of ∼21 nm3 is used in ref 33) of 227-311 nm3. Because the
Taylor expansion of eq 6 results in

we obtain, with the value forV used in the present work, namely,
V ) 37 nm3, values forø in the range of∼15 to∼19, which are
rather close to the values we find for lysozyme-succinylated
lysozyme mixtures.

We can also compare the measured temperature dependence
of ø, namely dø/dT ∼ -0.115/°C, with that reported in the
literature for lysozyme-lysozyme interactions. According to
Rosenbaum and Zukoski,34B2 increases with∼4.2 nm3/°C (their
Figure 5), and according to Petsev et al.,35 it increases with∼3.4
nm3/°C (their Figure 3), which, according to eq 30 and usingV
) 37 nm3, results in dø/dT in the range of-0.09 to-0.11/°C,
again close to the value we derived from our experiments and
model.

In future studies we hope to investigate, in more detail, the
nature of both the dilute and the dense phases. However, the
dense phases are opaque and seem to be very concentrated, as
is also suggested by our theoretical model. This makes them
different from the “complex coacervate” phases often found in
mixtures of globular proteins and oppositely charged polyelec-
trolytes: these are less dense, transparent, viscous fluids. The
difference is most likely caused by the rather strong nonelec-
trostatic attraction that is generally present between globular
proteins. As suggested by our theoretical model, only at much
lower values of the nonelectrostatic attraction does one find a
closed loop in the phase diagram of Figure 9 and the possibility
of less concentrated dense phases.

(33) Prinsen, P.; Odijk, T.J. Chem. Phys.2004, 121, 6525.
(34) Rosenbaum, D. F.; Zukoski, C. F.J. Cryst. Growth1996, 169, 752.
(35) Petsev, D. N.; Wu, X.; Galkin, O.; Vekilov, P. G.J. Phys. Chem. B2003,

107, 3921.

Figure 10. Phase diagram as a function of (a) ionic strength (pH
7.5) and (b) colloid charge (thus as a function of pH;c∞ ) 10 mM).
Phase separation occurs within the region enclosed by the coexistence
curves. Data points correspond to the onset of phase separation in
Figure 2.

B2 ) V(4 - ø) (30)
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