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Mixing in manipulated turbulence

A. K. KUCZAJ†∗ and B. J. GEURTS†‡

†Multiscale Modeling and Simulation, NACM, J.M. Burgers Center, Faculty EEMCS, University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

‡Anisotropic Turbulence, Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

A numerical investigation of turbulent flow, subject to deterministic broadband forcing, is presented.
Explicit forcing procedures are included that represent the simultaneous agitation of a wide spectrum
of length scales, including both large scales and a band of much smaller scales. Such forcing induces a
multiscale modulation of turbulent flow that is motivated by flow through complex objects and along
irregular boundaries. Two types of forcing procedures are investigated; with reference to the collection
of forced modes these procedures are classified as ‘constant energy’ or ‘constant-energy input rate’.
It is found that a considerable modulation of the traditional energy cascading can be introduced
with a specific forcing strategy. In spectral space, forcing yields strongly localized deviations from the
common Kolmogorov scaling law, directly associated with the explicitly forced scales. In addition, the
accumulated effect of forcing induces a significant non-local alteration of the kinetic energy including
the spectrum for the large scales. Consequently, a manipulation of turbulent flow can be achieved
over an extended range, well beyond the directly forced scales. Compared to flow forced in the large
scales only, the energy in broadband forced turbulence is found to be transferred more effectively to
smaller scales. The turbulent mixing of a passive scalar field is also investigated, in order to quantify
the physical-space modifications of transport processes in multiscale forced turbulence. The surface
area and wrinkling of level sets of the scalar field are monitored as measures of the influence of explicit
forcing on the local and global mixing efficiency. At small Schmidt numbers, the values of surface area
are mainly governed by the large-scale sweeping effect of the flow while the wrinkling is influenced
mainly by the agitation of the smaller scales.

1. Introduction

Various multiscale phenomena in turbulent flows arise from the passage of fluid through
and along geometrically complex objects placed inside the flow domain. The corresponding
perturbations of the flow arise simultaneously on a range of length scales and find their origin
in the complexity of the boundaries of these objects. A motivating example is the flow through
a porous region such as a metal foam depicted in figure 1. Many more examples can readily
be mentioned, arising in different technological applications or in numerous natural flows,
including flow over forest canopies [2, 8, 17].

The purpose of this paper is to investigate the computational modeling of flows through
complex regions via the introduction of explicit forcing terms in the Navier–Stokes equa-
tions. Consistent with the many shape details of the obstructing objects, such forcing will
need to represent the perturbation of the flow on various length scales simultaneously. This
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Figure 1. A porous nickel foam contains various geometrical complexities on different length scales [36].

distinguishes the proposed computational modeling from more conventional forced turbulence
procedures. In the latter the flow agitation is restricted to a few large scales only with the aim
to observe the development of a natural inertial range at smaller scales in the turbulent flow
[30, 56]. Instead, in this paper we allow the forcing of a collection of widely different modes.
The consequences for transport and dispersion in such turbulent flows will be studied both in
spectral and in physical space. We will primarily establish the degree by which the spectral
properties of a turbulent flow can be modified relative to the classical Kolmogorov scaling,
and quantify the efficiency with which embedded scalar fields can be mixed by the modulated
flow.

Complementary to the proposed explicit forcing approach, two alternative formulations have
been put forward in literature to capture the flow in and around complex objects. These include
the explicit boundary modeling [59] as well as an approximation in terms of effective boundary
conditions and (surface) roughness parameters [26, 28]. The roughness parametrization has
been introduced for situations in which the roughness length scales are much smaller than
the boundary layer thickness [54]. For geometries which display both large- and small-scale
contortions of the shape of the object, compared to the boundary layer thickness, the surface-
roughness parametrization may not be sufficiently accurate [15]. Alternatively, in the case
of explicit boundary modeling, no-slip conditions are imposed at all the intricate shape details
of the object. This computational approach can in principle achieve full accuracy but is limited
to cases of modest complexity in view of the elaborate geometric modeling and the high
computational expenses that are required [9, 10].

A central motivation for the present paper is derived from the problem of universality
in turbulence, i.e. the degree of (in-)dependence of the large and the small scales in turbu-
lence on the type of forcing that drives the flow. This problem was addressed earlier through
numerical simulation, e.g. in [4, 5, 25, 50]. Specifically, these simulations employed stochas-
tic power-law forcing methods and investigated the occurrence and properties of an inertial
range of scales which separates the large and the small scales. The scaling relations of ve-
locity structure functions were found to deviate from the well-known Kolmogorov predic-
tion [6]. This is commonly referred to as anomalous scaling which signals the occurrence
of multifractality in turbulence [4]. This also suggests a degree of dependence of the ve-
locity fluctuations on the particular stirring mechanism that is used, thereby affecting to
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some extent all scales present in the flow. As a physical example, flow through complex
gasket structures may give rise to self-similar turbulence spectra which do not follow the
well-known Kolmogorov −5/3 slope [33]. Such non-Kolmogorov turbulence was observed
in flows over tree canopies, and is reminiscent of a spectral shortcut feature that was also
observed experimentally [17]. In this paper we investigate the potential of multiscale forc-
ing to accurately characterize such dynamic flow consequences of complex domain bound-
aries without the need to explicitly account for their intricate geometrical shape. We con-
sider the incompressible Navier–Stokes equations with multiscale forcing working as a stirrer
whose dynamical effects are controlled by a distribution of simultaneously perturbed length
scales.

To arrive at a multiscale modeling that is quantitatively linked to actual complex objects
several steps need to be taken. In this paper we address a first step in which we examine in some
detail the influence different forcing procedures have on the energy dynamics in spectral space
and the mixing characteristics in physical space. Special attention is devoted to the mixing
efficiency of a passive tracer by monitoring the surface area and wrinkling of level sets of
these scalar fields [19]. Specifically we look at the instantaneous and accumulated effect on
surface area and wrinkling caused by broadband forcing.

Different divergence-free forcing procedures will be applied to directly perturb a large
number of flow scales. The alterations of the flow dynamics express themselves clearly in
the kinetic energy. The transfer of energy toward smaller scales is found to increase con-
siderably, compared to the case in which only large scales are forced. When a specific
narrow band of scales is agitated by the forcing, then the locally higher spectral energy
is not ‘compatible’ with the molecular dissipation rate and an accelerated transfer is ob-
served toward smaller scales. This effect is found for both families of forcing methods, i.e.
constant energy and constant-energy input rate. The kinetic energy spectrum is also mod-
ified non-locally, in a range of scales that are larger than the directly forced scales. Con-
sequently the agitation of a band of small length-scale features can accumulate and also
induce significant alterations of the largest flow features, e.g. by contributing to an increased
backscatter.

The changes in the flow dynamics due to the application of broadband forcing also have
consequences for the turbulent transport properties of the flow. This may be expressed in terms
of the mixing efficiency of embedded passive scalars. In particular, monitoring the surface
area of level sets of the passive scalar allows us to characterize changes in the large-scale
sweeping of the flow, due to the forcing. Likewise, the more localized motions directly af-
fect the ‘wrinkling’ of the passive scalar level sets. The dependence of these measures for
the mixing efficiency on forcing parameters can be used to quantify the mixing efficiency
arising from agitation of different bands of flow structures with different forcing strengths.
Specifically, we investigate the dispersion of strongly localized initial scalar concentrations.
The direct numerical simulation of the forced turbulence shows that the maximal surface area
and wrinkling as well as the time at which such a maximum is achieved can be controlled by
variation of forcing parameters. The time-integrated surface area and wrinkling are indicators
of the accumulated effect. The simulations show that at small Schmidt numbers, a higher
emphasis on small-scale flow agitation yields a significant increase in the time-integrated total
mixing of the flow.

The organization of this paper is as follows. In section 2 the explicit forcing strategies
are introduced. Section 3 is devoted to the modulation of the cascading process associated
with the different forcing methods. The consequences of forced turbulence for transport and
dispersion in physical space will be quantified in section 4. Concluding remarks are collected in
section 5. The simulation method, together with the code validation, is presented in a separate
Appendix.
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2. Simulation of forced turbulence

In this section we will first introduce the governing equations (subsection 2.1) and subsequently
describe the explicit forcing strategies that are used to drive the flow (subsection 2.2). Two types
of deterministic forcing strategies will be included: procedures which yield constant energy in
the collection of forced modes, and procedures which correspond to a constant-energy input
rate for these modes.

2.1 Governing equations

The dimensionless system of nonlinear partial differential equations which governs the flow
of a viscous incompressible fluid is given by{

∂v(x, t)

∂t
+ (v(x, t) · ∇)v(x, t) = −∇ p(x, t) + ν∇2v(x, t) + f(x, t)

∇ · v(x, t) = 0,
(1)

where v is the velocity field and p the pressure. The dimensionless viscosity is the inverse of
the computational Reynolds number Re, i.e., ν = 1/Re, and f is the external forcing which
we will specify in subsection 2.2. This system of equations may be rewritten in terms of the
vorticity ω(x, t) = ∇ × v(x, t). Making use of the identity

(v(x, t) · ∇)v(x, t) = ω(x, t) × v(x, t) + 1

2
∇(|v(x, t)|2), (2)

we may express (1) as(
∂

∂t
− ν∇2

)
v(x, t) = w(x, t) − ∇

(
p(x, t) + 1

2
|v(x, t)|2

)
+ f(x, t), (3)

where we introduced the nonlinear term w(x, t) = v(x, t) × ω(x, t).
The flow domain is assumed to be periodic with the same period in each of the three

coordinate directions. An efficient representation of the solution in terms of Fourier modes
can be adopted [11, 40, 62] in which the velocity v(x, t) is expanded as

v(x, t) =
∑

k

u(k, t)eık·x, (4)

and the wavevector k (k = |k|) has components kα = 2πnα/Lb, nα = 0, ±1, ±2, . . . for α =
1, 2, 3. The dimensionless length of the periodic domain is denoted by Lb and uα(k, t) is
the Fourier coefficient corresponding to the kth mode of vα(x, t). The equation governing
the evolution of the Fourier coefficients is given by(

∂

∂t
+ νk2

)
u(k, t) = W(k, t) − ıkF

(
p(x, t) + 1

2
|v(x, t)|2 , k

)
+ F(k, t), (5)

where F(a(x, t), k) denotes the Fourier coefficient of the function a(x, t) corresponding to
wavevector k:

F(a(x, t), k) = A(k, t) if a(x, t) =
∑

k

A(k, t)eık·x (6)

In addition, W(k, t) and F(k, t) denote the kth Fourier coefficient of the nonlinearity w(x, t)
and forcing f(x, t), respectively.

In spectral space the pressure term may be eliminated from (5) if use is made of the in-
compressibility condition. This is equivalent to the well-known practice of solving a Poisson
equation for the pressure in physical space formulations [58]. If we multiply (5) by k, use the
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continuity equation in spectral space, i.e., k · u(k, t) = 0, and assume that the forcing itself is
divergence free, so that k · F(k, t) = 0, the pressure term can be written as

F
(

p(x, t) + 1

2
|v(x, t)|2 , k

)
= k · W(k, t)

ık2
. (7)

The equation for the Fourier coefficients of the velocity field (5) may now be written as(
∂

∂t
+ νk2

)
u(k, t) = W(k, t) − k

(
k · W(k, t)

k2

)
+ F(k, t). (8)

This may be expressed in a more compact form in terms of the projection operator D defined
by

Dαβ = δαβ − kαkβ

k2
. (9)

This operator restricts the solution to the space of divergence-free fields, represented by Fourier
coefficients u(k, t), which lie in the plane normal to the wavevector k. We obtain the governing
equation for the desired Fourier coefficients as(

∂

∂t
+ νk2

)
u(k, t) = DW(k, t) + F(k, t). (10)

A more detailed discussion of this spectral approach to the Navier–Stokes equations is available
in [40]. It forms the basis for the numerical treatment that will be specified in the Appendix.

In various applications the dispersion of a passive scalar by a turbulent flow is of central
importance. Passive scalar transport may be used to characterize the physical space conse-
quences of multiscale forced turbulence. The governing equation for the evolution of the scalar
concentration C(x, t) contains advection by the velocity field v(x, t) as well as diffusion. In
physical space this may be expressed as

∂C(x, t)

∂t
+ (v(x, t) · ∇)C(x, t) = κ∇2C(x, t), (11)

where κ is the non-dimensional molecular diffusivity of the scalar. Compared to the dimen-
sionless viscosity in (1) we adopt κ = ν/Sc where the Schmidt number Sc characterizes the
scalar diffusion. Roughly speaking, if Sc > 1 then the scalar field displays a wider range of
dynamically important length scales, compared to the turbulent velocity field, while values
Sc < 1 indicate a comparably smoother scalar field. The equation which governs the devel-
opment of the Fourier coefficients c(k, t) of the scalar field C(x, t) can readily be found as(

∂

∂t
+ κk2

)
c(k, t) = Z (k, t), where Z (k, t) = F((v(x, t) · ∇)C(x, t), k). (12)

The changes in the turbulent transport properties of the flow due to the multiscale forcing can
be investigated by considering the evolution of the scalar concentration at different Schmidt
numbers. The structure of the left-hand side of (12) is identical to the Navier–Stokes equations
in (10). This allows us to adopt the same time-stepping method, as will be specified in the
Appendix.

To quantify the spectral-space effect of multiscale forcing, and also to be able to concisely
formulate the different forcing procedures in the next subsection, we consider the kinetic
energy. The equations which govern the Fourier coefficients (10) can be written in the index
notation as (

∂

∂t
+ νk2

)
uα(k, t) = 	α(k, t) + Fα(k, t), (13)
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where 	α(k, t) = Dαβ Wβ(k, t) is the nonlinear term. Multiplying this equation by the complex
conjugate u∗

α(k, t) and summing over the three coordinate directions, we obtain the kinetic
energy equation(

∂

∂t
+ 2νk2

)
E(k, t) = u∗

α(k, t)	α(k, t) + u∗
α(k, t)Fα(k, t), (14)

where E(k, t) = 1
2 |u(k, t)|2 is the kinetic energy in mode k. Introducing the notation for

the rate of energy transfer T (k, t) = u∗
α(k, t)	α(k, t), the rate of energy injection by the

forcing TF (k, t) = u∗
α(k, t)Fα(k, t) and the energy dissipation rate ε(k, t) = 2νk2 E(k, t), we

can write equation (14) as

∂ E(k, t)

∂t
= −ε(k, t) + T (k, t) + TF (k, t). (15)

This formulation clarifies that the rate of change of kinetic energy E(k, t) is connected with
dissipation, expressed by the viscous term ε(k, t), with transfer to/from different wavenumbers,
expressed by T (k, t), and with the forcing term TF (k, t).

The different contributions to the rate of change of the kinetic energy typically act in
distinct wavenumber regions. The forcing term TF (k, t) is non-zero in the forced modes only.
In this paper the collection of forced modes will always contain a low wavenumber band
corresponding to large-scale forcing of the flow. In addition, possible higher wavenumber
contributions can be included in TF (k, t). In contrast, energy dissipation ε(k, t) is defined in
the entire spectral space, but it is dynamically important primarily for the high wavenumber
range, i.e. acting on structures below the dissipation length scale. Finally, the transfer term
T (k, t) is basic to the development of an energy cascade and is a dominant contribution for
wavenumbers in an inertial range [40]. In the multiscale forcing cases, we will also introduce
forcing generally in the same region as where the transfer T (k, t) is dynamically important.
Hence, the effects of the multiscale forcing relate directly to the ‘competition’ between the
dynamics introduced by the forcing procedure and the ‘natural’ transfer of energy to other
modes in the spectrum.

In the formulation of forcing procedures and in the evaluation of the kinetic energy dynamics,
one frequently adopts shell-averaging. The basic operation consists of averaging over spherical
shells of thickness 2π/Lb centered around the origin. The nth spherical shell is given by
2π
Lb

(n − 1/2) < |k| ≤ 2π
Lb

(n + 1/2) and will be denoted by Kn . Applying shell-averaging to a
function h(k, t) defined in spectral space we obtain

h(n, t) = 1

Pn

∑
Kn

h(k, t); Pn =
∑
Kn

1, (16)

where Pn is the number of modes in the nth shell. Applying the shell-averaging (16) to the
energy equation (15) we end up with

∂ E(n, t)

∂t
= −ε(n, t) + T (n, t) + T F (n, t), (17)

which indicates that the interpretation of the various contributions to the rate of change of
the kinetic energy at mode k also applies to the shell-averaged formulation. In literature it is
common to introduce a numerical correction factor when averaging over shells. This is used
to compensate for the nonuniform distribution of modes within the discrete spherical shells
[16, 32]. We will follow the convention used in [16, 61, 62] when presenting the energy spectra.
This implies that we multiply h(n, t) by a factor 4πn2 which is associated with the ‘expected
number modes’ within the discrete shell. The definition of the energy spectrum that we will
adopt is given by En = (4πn2/Pn)

∑
Kn

E(k, t). Finally, summing (15) over all wavevectors
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k or, equivalently, (17) over all shells yields the evolution equation for the total energy in the
system:

dÊ(t)

dt
= −̂ε(t) + T̂F (t); ĥ(t) =

∑
n

Pnh(n, t) =
∑

k

h(k, t), (18)

where use was made of the fact that the contribution of the transfer term T (k, t) is such
that it only re-distributes energy over the various modes, which implies that its sum over all
wavenumbers T̂ (t) = 0.

Next to spherical shells, it is convenient to introduce spherical wavenumber bands which
consist of several adjacent shells. We denote the wavenumber band which consists of
2π
Lb

(m − 1/2) < |k| ≤ 2π
Lb

(p + 1/2) by Km,p, where m ≤ p. The corresponding average over
Km,p of a function h(k, t) is given by

h̃(m,p)(t) = 1

Pm,p

p∑
n=m

Pnh(n, t) = 1

Pm,p

∑
Km,p

h(k, t); Pm,p =
p∑

n=m

Pn. (19)

To complete the computational model, we will next introduce the explicit forcing strategies
that will be investigated in this paper.

2.2 Explicit forcing procedures

Forced turbulence in a periodic box is one of the most basic numerically simulated turbulent
flows. It is achieved by applying large-scale forcing to the Navier–Stokes equations. As a result,
at a sufficiently high Reynolds number the well-known turbulent cascade develops in an inertial
range of scales which are much smaller than the length scale of the forced modes [33, 34,
40]. The statistical equilibrium that is reached is characterized by a balance between the
input of energy through the large-scale forcing and the viscous dissipation at scales beyond
the Kolmogorov dissipation scale.

Various forcing procedures have been proposed in literature. Generally, if the forcing is
restricted to large scales only, the specific details of the procedure do not have such a large effect
on the properties of the developing inertial range at sufficiently finer scales. However, since
we wish to extend the forcing to act on a wide range of scales simultaneously, including parts
of an inertial sub-range, the differences between alternative forcing procedures become more
pronounced. Investigating these differences is an essential step toward quantitative modeling
of flow through complex gasket structures and forms the main focus of this paper. In this
subsection, we will recover the definition and some of the motivation for several characteristic
forcing procedures.

In multiscale forcing, the flow is agitated over a wide range of modes. To investigate
the effects of such forcing we will focus on cases in which one additional spherical band
of scales is forced, next to the common forcing of the large scales. We consider the general
situation as depicted in figure 2(a). The large scales are in the range k ≤ k0 and an additional
band of small scales is defined by k1 < k ≤ k2. The forcing method can also incorporate cases
in which only part of the domain is occupied by a complex obstruction, as sketched for the
case of a slab in figure 2(b). In fact, by introducing an ‘indicator’ function �(x, t) to locate
the complex object within the flow domain (� = 0 outside the region occupied by the object
and 1 elsewhere), the forcing can accommodate such spatial localization in a flexible manner.
In spectral space, the introduction of �(x, t) implies that the forcing term in spectral space is
represented by the convolution product of the actual forcing F(k, t) and the Fourier transform
of the indicator function. However, in the present paper such complications will not be included
and we will only consider forcing procedures applied in the entire physical domain.



8 A. K. Kuczaj and B. J. Geurts

kk0

E

k1 k20
LA

R
G

E
-S

C
A

LE
 F

O
R

C
IN

G

F
O

R
C

IN
G

FLOW

F
O

R
C

IN
G

x
y

z

(a) (b)

Figure 2. Definition of two-band forcing in spectral space (a) and localization of forcing within a slab in physical
space (b).

Forcing procedures may be classified in different ways. We first distinguish forcing schemes
which keep the total energy in the collection of forced modes identical to its value in the initial
condition. This will be referred to as class ‘A’ forcing procedures. Next, we identify forcing
schemes which are characterized by a constant energy input rate, introduced via the collection
of forced modes. This group will be referred to as class ‘B’. In either class of schemes, the flows
develop around a well-defined statistically stationary state, but time-dependent variations in
the total energy and in the energy input rate may occur.

Apart from a distinction concerning the way energy is introduced into the flow, one may
classify forcing schemes as ‘deterministic’ or ‘stochastic’. Stochastic forcing schemes may
introduce an element of uncorrelated randomness, e.g. by restricting the forcing to a random
subset of the collection of forced modes every time the forcing is invoked. Several stochastic
forcing methods were explored numerically in [1, 4, 5, 44]. These stochastic procedures
were applied to a wide set of inertial-range scales and give rise to a power-law spectrum.
The emphasis in these studies was put on the issue of universality in turbulent flows, i.e. the
dependence of large- and small-scale turbulent fluctuations on the adopted forcing mechanism.
This issue is also at the heart of this paper. The primary question of locality of the modulation
of the energy spectrum can be addressed more directly using deterministic schemes and in
this paper we will restrict to these procedures. We next introduce some characteristic forcing
schemes in either class ‘A’ or class ‘B’.

Class ‘A’: constant-energy forcing. Various methods can be formulated which are such
that the kinetic energy in the forced modes remains constant. The simplest possibility arises
by requiring that uα(k, t) itself remains constant for all k in the collection of forced modes.
This was first proposed in [53] and implies for the forcing in spectral space:

A1 : Fα(k, t) = νk2uα(k, t) − 	α(k, t). (20)

One readily verifies, using (13), that ∂t uα(k, t) = 0, and in particular this implies that
∂t E(k, t) = 0 for each of the forced modes. Hence, also the total kinetic energy contained in
all the forced modes stays constant in time. The energy input rate corresponding to (20) is
given by TF (k, t) = ε(k, t) − T (k, t) for each of the forced modes. This input rate may vary
considerably in time, as the unsteady flow will lead to a strong time dependence of the energy
transfer T for the forced modes.

The basic method (20) has motivated the formulation of a number of extensions which
relax the requirement that the Fourier coefficient is strictly constant. In [13] the method was
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modified to require that |u(k, t)| = const, i.e. equal to its initial value, for the forced modes.
This allows for the possibility that the phases of the Fourier coefficients may evolve in time.
The corresponding forcing is given by

Fα(k, t) =
(

νk2 − T (k, t)

2E(k, t)

)
uα(k, t) = (ε(k, t) − T (k, t))

uα(k, t)

2E(k, t)
. (21)

One may readily verify that this implies ∂t E(k, t) = 0 for the forced modes. Forcing expressed
in (20) or (21) was found to yield quite large fluctuations in the energy input rate [55].

Typically, the forced modes are ordered according to the wavenumber shell to which they
belong. A shell-oriented simplification of (21) was proposed [31, 32]:

Fα(k, t) = (ε̄(k, t) − T (k, t))
uα(k, t)

2E(k, t)
. (22)

This forcing also preserves the total kinetic energy in the forced modes. The three forcing
procedures (20), (21) and (22) are quite comparable, both in terms of their fluid-physics
motivation and in terms of their turbulent flow predictions. Therefore, we will only present
actual simulation results obtained with (20), which are quantitatively representative for the
other two forcing procedures in this group.

The forcing methods described so far preserve the kinetic energy that is contained in the col-
lection of forced modes. However, considerable variations in the total energy in the system
can still arise. The reverse can also be realized, i.e. forced turbulence in which the total kinetic
energy in the system is constant, but the energy in different modes may vary in time. For
this purpose, the forcing should not be formulated in terms of quantities related to individual
modes or shell-averaged values, but rather contain averages over all modes [23, 37]. The case
of forcing in a single shell with P modes can readily be specified. Specifically, if we replace
the shell-average (·) in the amplitude factor in (22) by the average over all modes (̂·) and use
the fact that T̂ = 0, we obtain the forcing

A2 : Fα(k, t) = ε̂(t)

P

uα(k, t)

2E(k, t)
. (23)

The A2-forcing implies an energy input rate T̂F = ε̂(t) and thus by (18) dÊ/dt = 0. This
method corresponds exactly to the negative viscosity procedure used to maintain quasi-steady
turbulence direct numerical simulations results reported in [29, 60, 27, 30]. Extension of
A2-forcing to multiple shells can be realized in a number of ways. This will be described
in more detail momentarily. A2-forcing will be compared to A1-forcing in the following
section.

Class ‘B’: constant-energy input rate forcing. Next to forcing methods that can be associ-
ated with constant-energy, one may define forcing procedures in which the total energy input
rate T̂F is constant. We first present such forcing methods with reference to a single band of
forced modes. The way in which the energy input is distributed over several bands will be
specified afterward.

A central example in the class of constant-energy input rate forcing methods was presented
in [21]. Changing ε̂(t) in (23) into the constant-energy input rate εw, the corresponding forcing
term may be written as

B1: Fα(k, t) = εw

P

uα(k, t)

2E(k, t)
. (24)
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The energy input rate is found to be T̂F (t) = εw, as desired by construction. The total energy
in the system is no longer constant but governed by dÊ(t)/dt = −̂ε(t) + εw which implies
that the statistically stationary state that develops will show a dissipation rate that fluctuates
about εw. This type of forcing was also studied in [12, 43, 62]. Further extensions of the
basic forcing procedure (24) can be proposed in which an extra factor k−q ; q > 0 arises
in the definition of Fα . Such an extra factor implies that the forcing of higher wavenumber
shells can be made to correspond to a specific shape (usually k−5/3 to more directly ‘impose’
Kolmogorov turbulence). These forcing procedures will not be considered in this paper; for
further details see [14, 45].

Similar to A-forcing methods, one may formulate related procedures which are defined in
terms of shell-averaged quantities. For example, analogous to (22), we may replace E(k, t) in
(24) by E(n, t) to define the forcing of modes in the nth shell. This type of forcing was found
to yield basically the same results as those based on (24) and will not be presented explicitly
in the rest of this paper.

The final forcing procedure that we will include in this paper was proposed recently in [39].
It was motivated as a model of flow through a fractal gasket which functions as a multiscale
stirrer. This particular forcing may be associated with a constant-energy input rate for the
entire system. We modify the original forcing procedure slightly and consider in particular

B2 : Fα(k, t) = εwkβ∑
k∈K

√
2E(k, t)kβ

eα(k, t), (25)

where K denotes the set of forced modes. In this formulation, the complexity of the object is
parameterized by the exponent β which is related to the fractal dimension D f of the object
through β = D f − 2. The vector e(k, t) has the form

e(k, t) = u(k, t)

|u(k, t)| + ı
k × u(k, t)

|k||u(k, t)| , (26)

which contains a part in the direction of u and a part that is perpendicular to u. Since u∗
αeα =

|u| = √
2E(k, t), we find for the energy input rate

TF (k, t) = εw

kβ
√

2E(k, t)∑
k∈K

kβ
√

2E(k, t)
. (27)

In contrast to B1-forcing in which the energy input rate is constant in time for each of the
forced modes separately, this ‘fractal forcing’ procedure only implies a constant-energy input
rate for the entire system. In fact, after summation over all forced modes the total energy input
rate is found to be equal to T̂F (t) = εw. Correspondingly, we find for the evolution of the total
kinetic energy dÊ/dt = −̂ε(t) + εw, i.e. identical as obtained before for B1-forcing. In the
original formulation in [39] the energy input rate εw was replaced by the total dissipation rate
ε̂(t), which implies that Ê is constant in time.

So far, the B1- and B2-forcing methods were defined with reference to a single band of
modes. This band was assumed to contain P modes and was identified by K. The total energy
input rate εw was available to this band. In the case more bands are forced simultaneously, the
way the energy input rate is divided over the individual bands, and among the modes within
each band, needs to be specified. For two forced bands Km1,p1 and Km2,p2 with Pm1,p1 and
Pm2,p2 modes, respectively, such a partitioning involves two steps. First, a fraction εw,1 = aεw

of the total energy input rate is ‘allocated’ to the first band and the remainder εw,2 = (1−a)εw

is used in the forcing of the second band (0 ≤ a ≤ 1). Second, we divide the energy input
rate that is available for each band equally over all modes in the corresponding band. As an
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example, two-band B1-forcing may be defined as

B1: Fα(k, t) = aεw

Pm1,p1

uα(k, t)

2E(k, t)
; k ≤ k0

= (1 − a)εw

Pm2,p2

uα(k, t)

2E(k, t)
; k1 < k ≤ k2 (28)

= 0; otherwise.

The two-band formulation of B2-forcing can be specified analogously, replacing εw by either
aεw or (1−a)εw and K by Km1,p1 or Km2,p2 , respectively. Extending A2-forcing to more bands
can be done in a similar way in which a fraction âε(t) is associated with the large-scale band
and the remainder with the second band. The specific choice of Pm1,p1 and Pm2,p2 above implies
that the energy is equally distributed between all modes within a forced band. We can go one
step further and require the equal distribution of εw over the forced shells contained in the
bands. This implies changing Pm1,p1 and Pm2,p2 into the number of modes Pn for each forced
shell. Extension to more forced bands can be formulated analogously. For completeness, the
numerical method that is used in the reported simulations, and its validation, are specified in
the Appendix.

In the following section we turn to the effects that different multiscale forcing procedures
have on the developing turbulent flow. We will focus, in particular, on the modifications that
arise in the kinetic energy spectrum.

3. Modulated cascading by broadband forcing

The explicit forcing in different wavenumber bands can have a strong effect on the developing
turbulent flow. We discuss the modifications of the energy spectrum arising from ‘constant
energy’ (class ‘A’) or ‘constant-energy input rate’ (class ‘B’) procedures. The various forcing
strategies will be shown to qualitatively correspond to each other, provided the total dissipation
rate εw and the spectral energy distribution are commensurate for the different class ‘A’ and ‘B’
forcing strategies. We will specify this inter-relation in more detail momentarily. As point of
reference, we will first turn our attention to forcing of the large scales only. Subsequently, we
consider two-band forcing and investigate in particular the effects of variation of the strength
and location of the small-scale bands on the developing flow.

In the following, we consider time-averaged properties of the developing turbulent flow
defined by

〈h〉t = lim
t→∞

1

t − t0

∫ t

t0

h(τ )dτ ≈ 1

T − t0

∫ T

t0

h(τ )dτ , (29)

where T is sufficiently large. In all cases t0 = 5 in order to allow the averaging-process
to start from a properly developed quasi-stationary state. The averaging is continued up
to T = 25, which corresponds to approximately 40 eddy-turnover times. This was found
to provide an accurate representation of the long-time averages, leading to relative errors
below 5%, measured in terms of the ratio of the standard deviation and the mean sig-
nal. This procedure was applied to obtain the time-averaged kinetic energy spectra as well,
which are very effective for monitoring changes in the kinetic energy dynamics due to the
forcing.
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Large-scale forcing. To create a point of reference, we first consider forced turbulence in
which energy is introduced to the system only in the first shell K1,1. We adopt k0 = 3π

referring to figure 2(a) and force all 18 modes inside this band. The computational Reynolds
number Re = 1060.7 and the size of the computational domain Lb = 1. The spatial resolution
was taken to be 1283, which provides ample resolution of these cases, similar to what was
established in the Appendix.

In order to be able to quantitatively compare results obtained with the different forcing
strategies, care should be taken of properly ‘assigning’ a level for the energy dissipation rate
and the spectral energy distribution. For this purpose, we may consider simulations with the
A2-method to be central in the sense that the other three forcing strategies may be specified
with reference to it. In fact, if we generate an initial condition with a certain total kinetic
energy, then A2-forcing yields an evolving flow which becomes statistically stationary after
some time, while maintaining the same level of total energy. The A2-forced simulation can be
used to specify the ‘corresponding’ class-B forcing strategies. In fact, the constant dissipation
rate εw in class ‘B’ forcing is taken equal to the time-average value of the dissipation rate that
is found from the A2-forced simulation, i.e. we adopt εw = 〈̂ε〉t . This procedure was adhered
to in all cases presented in this section. Finally, in the developed stages of either these A2-
or B-forced flows, any instantaneous solution may be used to arrive at a full specification of
the ‘corresponding’ A1-forcing. The actual choice of this instantaneous solution is arbitrary.
However, when comparing simulations based on A1-forcing that adopt different realizations
of the turbulent flow field, we observed that the statistical properties of all these A1-forced
cases were the same.

The evolution of the total kinetic energy Ê(t) and energy dissipation rate ε̂(t) is shown in
figure 3. As initial condition for the A2- and B-forced simulations, we adopted the velocity
field obtained at t = 0.5 from the decaying homogeneous turbulence simulation discussed
in the Appendix. To be able to qualitatively compare with the A1-forced flow at a similar
energetic level we took as initial condition the solution from B1-forcing at t = 5. The total
kinetic energy is seen to fluctuate around its long-time mean value (of course, apart from
A2-forcing). As can be seen, the system rapidly develops into a statistically stationary state
characterized by the input of energy, its transfer to smaller scales and dissipation in the
viscous range. In A1-forcing the Fourier coefficients in the forced band are all kept constant,
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Figure 3. The evolution of the total kinetic energy Ê (a) and energy dissipation rate ε̂ (b) for the large-scale forcing:
A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid).
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i.e. equal to their initial values. The energy in the system fluctuates very significantly, which
was considered a disadvantage of this forcing in [16]. The energy and dissipation levels in A1-
forcing differ considerably from those obtained with the other forcing strategies. To compare
A2-forcing with B-forcing, the energy dissipation rate was taken as εw = 〈ε〉t

∼= 0.2. The total
kinetic energy for B1-forcing is seen to fluctuate around the constant value associated with
A2-forcing. A similar impression is observed when use is made of the fractal B2-forcing in
which the fractal dimension of the stirrer was taken equal to D f = 2.6 [39] which corresponds
to an exponent β = 3/5 in (25).

In general, when applied to the largest scales only, all forcing procedures mentioned in
subsection 2.2 yield similar results. As a further example, the tails of the time-averaged spec-
tra were found to be virtually identical to each other, which indicates that the properties of
the smaller turbulent length scales are not very strongly dependent on the details of the specific
forcing. This was also established by various other quantities that were investigated. Specif-
ically, the Taylor Reynolds number Rλ for the simulated cases was seen to fluctuate in the
range between ≈ 50 up to ≈ 60 for all methods. The time-averaged value of the skewness
was also investigated and found to be very close to 0.5. This indicates that a well-developed
isotropic flow was attained [3].

Two-band forcing. In the simulations that adopt two-band forcing, we consider situations
in which we introduce energy into the system in a band consisting of four shells, next to
the already described large-scale forcing in the first shell. We first compare the different
class ‘A’ and ‘B’ forcing strategies, within this two-band setting. As second, forced band we
consider K17,20. This band corresponds to k1 = 33π and k2 = 41π in figure 2(a) and contains
in total 17284 different modes that are all explicitly forced. The comparison of the different
forcing strategies shows that the flow predictions are qualitatively comparable. Subsequently,
we therefore focus on the B2-forcing strategy and investigate the effects arising from changes
in the strength or the location of the second forced band.

Forcing of a second band implies that we need to additionally specify how the energy input is
distributed over the bands, the shells within the bands and, finally, the modes within the shells.
The specification of the A2-forcing requires the fraction of the energy input that is allocated
to the different bands. We consider the case in which a = 1/5 in (28) which corresponds to
equi-partitioning of the energy input over the five shells that are forced. The forcing within
the second band is further specified by assigning an equal energy input rate to each of the four
shells contained in it. Finally, each of the modes in a particular shell n receives an equal
share of the energy input to that shell, taking the number Pn of modes in the particular shell
into account. To compare the ‘A’ with ‘B’ forcing strategies we adopt the same method as
above for specifying the parameter εw. Specifically, the total energy injection for the ‘B’
methods was given as εw = 〈̂ε〉t

∼= 1, in terms of the time average of the total dissipation rate
in the A2-forcing. Moreover, the same equi-partitioning of the energy-input as in A2-forcing
was adopted. Finally, the A1-forcing is derived from the field that was obtained at t = 5 with
the B1-forcing. We verified that the statistical properties of the A1-forced flow are insensitive
to the particular choice of initial field used to define this forcing method.

As may be noted by comparing figure 3 with figure 4, the two-band forcing leads to a strong
increase in the total energy dissipation rate, while the total kinetic energy present in the flow is
quite unaffected by the second forced band. The increase in the dissipation rate is particularly
strong for A1-forcing. Hence, the high-k forcing changes mainly the distribution of energy over
the scales and not so much the actual energy content. By changing the strength and location of
the forcing, we have the possibility of controlling, and to some extent manipulating the way
the energy is distributed and hence indirectly influence the large- and small-scale transport
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Figure 4. The evolution of the total kinetic energy Ê (a) and energy dissipation rate ε̂ (b) for two-band forcing:
A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid).

properties of the flow. We turn to this aspect next, by focusing explicitly on the kinetic energy
spectrum.

The compensated kinetic energy spectra E(k) = 〈̂ε〉−2/3
t k5/3 〈Ek〉t that are obtained with the

different two-band forcing methods are collected in figure 5(a). The modifications in the spec-
trum, relative to the case of large-scale forcing only, are localized primarily in the region close
to the forced band. All forcing methods are seen to yield qualitatively quite similar results.
Next to the expected modifications near the explicitly forced band, we observe that the two-
band forcing also affects a much wider set of larger scale modes. In fact, a significant depletion
of the kinetic energy in a range of scales ‘ahead of’ the forced region is readily appreciated.

10
−2

10
−1

10
0

(a) (b)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
(k

)

10
−1

10
0

kη

E
1
1
(k

),
E

2
2
(k

),
E

3
3
(k

)

10
−1

10
0

kη

Figure 5. (a) Compensated energy spectrum for two-band forced turbulence (k ≤ 3π and 33π < k ≤ 41π ) with
different methods: A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid). (b) Compensated energy co-spectra E11,
E22, E33 for the A1 and B2 forcing methods. All three curves obtained with B2 are found to collide (solid), while
the three curves found with A1 differ at the large scales (dashed).
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This indicates that the agitation of a small band of modes can induce large changes in a rather
wide part of the spectrum which further characterizes the type of turbulence control that one
may achieve with explicit forcing.

Some of the forcing methods induce a low level of anisotropy in the large-scale turbulence
fluctuations. In figure 5(b) we show the energy co-spectra E11, E22, E33 for the A1 and
B2 forcing methods. In the case of perfect isotropy, these co-spectra should coincide. The
strong energy oscillations observed earlier in conjunction with the A1 forcing method are
seen to be also related to some anisotropy at the largest scales of motion. Such anisotropic
energy distributions at large scales may affect the small-scale statistics as was noted in various
numerical experiments, e.g., [6, 35, 52]. Other forcing methods (e.g., B2 forcing) were not
found to induce significant anisotropy at the largest scales.

We next turn to the second part of this section and consider the effects of varying the spectral
support and the strength of the second forced band. The qualitative similarity of the different
two-band forcing methods as seen in figure 5 allows us to concentrate on only one of the
forcing methods. We adopt B2-forcing in the following. In figure 6 we illustrate the effect of
variation of the spectral support of the second band. Relative to the case of large-scale forcing
only, we observe that the tails of the spectra are quite unaffected. However, the injection of
energy in the second band is seen not only to increase the energy in the forced scales but also to
deplete the energy in all the larger scales. Moreover, the ‘up-scale’ effect of energy depletion
is more pronounced in case the second band is moved toward smaller scales.

The control over the flow that is available with two-band forcing is examined further by
investigating the effects of varying the strength of the forcing in the second band. We kept
the energy input rate for the first k ≤ 3π band equal to εw = 0.15 and varied the strength of
forcing in the second 33π < k ≤ 41π band adopting εw = 0.075 . . . 0.90. The corresponding
compensated energy spectra from these simulations are shown in figure 7(a). We observe that
a higher energy input rate in the second band leads to a more pronounced peak in the spectrum
which shifts to lower values of kη with increasing εw of the second band. Simultaneously, the
value of E(k) decreases for the low-k modes with increasing εw. This forcing of the second
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Figure 6. Compensated energy spectrum for two-band forced turbulence with the B2-method and the same energy
inputs εw,1 = εw,2 = 0.15 to the k ≤ 3π band and various locations of the second band: 9π < k ≤ 17π , 17π < k ≤
23π , 33π < k ≤ 41π , 49π < k ≤ 57π (dashed, dash-dotted, 
, �). The spectrum obtained with large-scale forcing
at εw = 0.15 in k ≤ 3π band (solid).



16 A. K. Kuczaj and B. J. Geurts

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

kη

E
(k

)

0 0.2 0.4 0.6 0.8 1
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

〈Ê
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Figure 7. (a) Compensated energy spectrum for two-band forced turbulence with the B2-forcing method and energy
input rate εw,1 = 0.15 in k ≤ 3π band for different strengths of forcing in the 33π < k ≤ 41π band: εw,2 = 0.075,
0.15, 0.30, 0.45, 0.60, 0.75, 0.90 (�, dotted, dashed, dash-dotted, 
, �, ◦). Large-scale forcing with εw = 0.15 in
the k ≤ 3π band is denoted by the solid line. (b) Corresponding time-averaged total kinetic energy with standard
deviations.

band allows us to quite independently control the spectrum, at roughly the same total energy
content in the flow. In fact, variation of εw of the second band by a factor of about 10 is seen to
lead to a comparably strong increase in the peak value of the spectrum while the total energy
level 〈Ê〉t is increased by only ≈ 15% as seen in figure 7(b).

We also investigated properties of the simulated turbulence in case forcing is applied to the
high-k range only. In this way, we can separately appreciate some of the backscatter of energy
in a 3D turbulent flow. Such backscatter is known to be particularly important in two dimen-
sions, where the inverse energy cascade mechanism is responsible for a significant transfer
of energy to the larger scales [7]. We found that forcing in the high-k band only corresponds
to a strongly reduced turbulence intensity, e.g., expressed in a significantly reduced Taylor
Reynolds number. The fraction of the energy that is backscattered appears quite independent
of whether or not the large scales are also explicitly forced. Studying the energy transfer
(see, e.g., [40]), the range of scales that is primarily affected by the high-k forcing was found
insensitive to adding large-scale forcing or not. More detailed investigations are needed to
reveal the properties of energy backscatter in 3D. This requires a separate study and we will
not consider this issue further in this paper.

In the following section we will examine how the changes in the flow properties due to the
two-band forcing in spectral space influence the physical space mixing efficiency of a passive
scalar.

4. Small- and large-scale mixing efficiency

The consequences of explicit broadband forcing not only express themselves in modulated
energy cascades. The mixing properties of the evolving turbulent flow in physical space also
depend significantly on the forcing that is applied. In this section we quantify the mixing
efficiency by monitoring geometric properties of evolving level sets of an embedded passive
scalar. The numerical integration method that is used to determine these level-set properties



Mixing in manipulated turbulence 17

is described in subsection 4.1. The ensemble-averaged simulation results are discussed in
subsection 4.2; we establish to what extent the two-band forcing can be used to control the
maximal rate of mixing and the total accumulated degree of mixing.

4.1 Level-set evaluation to quantify mixing

To illustrate and quantify the influence of two-band forcing on the turbulent dispersion of
a passive scalar field we analyze the evolution of basic geometric properties of its level sets.
As a result of the turbulent flow these level sets become highly distorted and dispersed across
the flow domain. Specifically, we concentrate on the surface area and the wrinkling of these
level sets. We adopt a specialized integration method to determine these geometric properties,
as developed in [19]. This method is based on the Laplace transform and avoids the explicit
construction and integration over the complex and possibly fragmented scalar level sets. With
this method an accurate and efficient evaluation of the evolving mixing efficiency can be
achieved which allows us to quantify the increased complexity of the flow in relation to
the two-band forcing that is used.

Basic geometric properties of a level set S(a, t) = {x ∈ R | C(x, t) = a} of the scalar C(x, t)
may be evaluated by integrating a corresponding ‘density function’ g over this set. In fact, we
have

Ig(a, t) =
∫

S(a,t)
d A g(x, t) =

∫
V

dx δ(C(x, t) − a)|∇C(x, t)|g(x, t), (30)

where the volume V encloses the level set S(a, t) [38]. Setting g(x, t) = 1, g(x, t) = ∇ · n(x, t)
or g(x, t) = |∇ · n(x, t)|, we can determine the global surface area, curvature or wrinkling
of S(a, t), respectively. Here n(x, t) = ∇C(x, t)/|∇C(x, t)| is a unit normal vector, locally
perpendicular to the level set. The divergence of this vector field is directly related to the local
curvature of the level set.

We will focus on the evolution of the surface area A and the wrinkling W . The scalar C is
scaled to be between 0 and 1; we will primarily consider the level set a = 1/4. In particular
we monitor

ϑA(a, t) = IA(a, t)

IA(a, 0)
; ϑW (a, t) = IW (a, t)

IW (a, 0)
. (31)

By determining ϑA and ϑW , we may quantify the rate at which surface area and wrinkling
develop, the maximal values that are obtained and the time scale at which these are achieved.
The corresponding cumulative effects are given by

ζA(a, t) =
∫ t

0
ϑA(a, τ )dτ ; ζW (a, t) =

∫ t

0
ϑW (a, τ )dτ . (32)

These cumulative measures express the total surface area and wrinkling that has developed in
the course of time. In particular applications, e.g., involving combustion in diffusion flames,
the cumulative surface area and wrinkling express the total ‘chemical processing capacity’.
Here, we will determine these cumulative effects in order to characterize the different two-band
forcing procedures.

To establish the influence of forcing on turbulent mixing properties we simulated the spread-
ing of a passive tracer at Schmidt number Sc = 0.7. The simulations were started from a spher-
ical tracer distribution of radius r = 3/16. The scalar concentration was set equal to 1 inside
this sphere and 0 outside. A localized Gaussian smoothing of this C-distribution was ap-
plied near the edge of the initial sphere to avoid resolution problems. The fractal forcing
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B2-procedure as defined in (25) was adopted. We performed numerical simulations in which
the energy input rate εw and the spectral support of this two-band forcing were varied.

As a point of reference we adopted large-scale forcing in the K1,1 shell with an energy
injection rate εw = 0.6. The resolution requirements were satisfactorily fulfilled: kmaxη ranges

(a)

(b)

(c)

Figure 8. Snapshot of vertical velocity field iso-surfaces (left) and passive scalar concentration (right) at t = 0.5
for large-scale forcing K1,1 with εw = 0.6 (a), or with εw,1 = 0.15 in the first shell and complementary forcing
εw,2 = 0.45 in K5,8 (b) or K13,16 (c). In the velocity field snapshots the red iso-surface corresponds to u2 = 0.2 and
the blue iso-surfaces to u2 = −0.2. The iso-surface at C = 0.25 is shown for the passive scalar.
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from 2.3 to 3.5 using a resolution in the range 1283–1923 grid cells. For the passive scalar
these resolutions correspond to kmaxηOC in the range from 3 to 4.5, where ηOC is the Obukhov–
Corrsin scale [57]. To study the influence of two-band B2-forcing we applied supplementary
forcing either in a region situated near the largest scales of the flow, i.e., K5,8 or further
separated, i.e., K13,16. In case two bands are forced, the energy input rate for the K1,1 shell is
εw,1 = 0.15, while the second band is forced using εw,2 = 0.45. In this way the total energy
level is kept at comparable levels in the different cases. A qualitative impression of the effect of
these forcing procedures may be observed from the snapshots shown in figure 8. The velocity
and passive scalar display considerably more small-scale features in the case of two-band
forcing, particularly in the case of high-k forcing. To quantify this qualitative impression
we apply the level set analysis discussed above. The results will be presented in the following
subsection.

4.2 Surface area and wrinkling

In this subsection, we compare instantaneous and accumulated mixing properties for large-
scale forcing and different two-band forcing. The total energy input rate to the flow is kept
constant at 0.6; a fraction εw,1 is allocated to the first shell and εw,2 to the second band such
that εw,1 + εw,2 = 0.6 and εw,1 is varied from 0.05 up to 0.6. The characterization of the
mixing efficiency was based on averaging 20 simulations, each starting from an independent
realization of the initial velocity field. The different initial conditions were each separated by
two eddy-turnover times.

The instantaneous and cumulative effects arising from both the large-scale and the two-
band forcing are shown in figure 9. The development of the instantaneous surface area and
wrinkling is qualitatively similar in each case. The concentrated initial tracer distribution
is in the first stages primarily dispersed by convective sweeping in the turbulent flow. As
a result, the level set corresponding to a = 1/4 becomes distorted and both ϑA and ϑW show a
rapid increase. However, since no source of scalar was included in the computational model,
molecular diffusion dominates the long-time behavior and leads to ϑA and ϑW to decrease to
zero as t → ∞. In between, ϑA and ϑW reach their maximum. The rapid initial growth is
also clearly expressed in figures 9(c) and (d). In addition, the cumulative measures ζA and ζW

show a clear saturation as t >∼ 1.

We observe from figures 9(a) and (b) that forcing of the large scales only creates the highest
growth rate of surface area and wrinkling. The surface area reaches its maximum value both
sooner and at a higher value in this case. In the initial stage convective spreading of the tracer
dominates over the decay caused by molecular diffusion; hence in these stages the agitation
of the larger scales plays a crucial role in the evolution of the surface area. The higher band
forcing needs to compete more directly with the viscous effects and does not induce very
strong sweeping motions over large distances. Correspondingly, high-k forcing is found to be
less effective in producing surface area. The more localized distortions of the scalar level sets,
as expressed by the development of the wrinkling, are less affected by the competition with
viscosity, as seen in figure 9(b).

The interpretation of the effectiveness of the mixing in relation to the specific forcing alters
if we compare the accumulated values for surface area and wrinkling. As may be appreciated
from figures 9(c) and (d), a significant enhancement of the accumulated long-time surface
area and wrinkling arises as a result of the explicit agitation of the smaller scales in the flow.
Evidently, forcing of the smaller scales does not yield a more intense mixing, judging from
the instantaneous values, but does yield an increase in the total surface area and wrinkling,
accumulated over time.
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Figure 9. Evolution of decaying passive scalar growth parameters: (a) surface area ϑA , (b) wrinkling ϑW , (c) ac-
cumulated surface area ζA , (d) accumulated wrinkling ζW . Large-scale forcing K1,1 with εw = 0.60 (solid) and
complementary two-band forcing (εw,1 = 0.15 and εw,2 = 0.45) in K5,8 (dashed), K13,16 (dash-dotted).

To measure the influence of variations in the strength of the forcing in the high-k band,
we focus on the K1,1 and K13,16 two-band forcing. In particular, we keep εw,1 + εw,2 = 0.6
and vary the values of εw,2. The effects on the cumulative mixing efficiency are shown in
figure 10(a). We observe that an increase in εw,2 implies a slight decrease in the initial growth
rate of instantaneous surface area, but an increase in the long-time cumulative effect. The
dependence of the long-time cumulative effect on εw,2 is clarified in figure 10(b). These
simulation results establish the degree of control that may be achieved with two-band forcing
and the feasibility of such computational modeling. This approach may help to identify optimal
stirring procedures to which future research will be devoted.

5. Summary and concluding remarks

Various deterministic forcing methods that perturb a turbulent flow in a chosen range of length
scales were examined. The presented modeling framework incorporates the explicit forcing
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Figure 10. (a) Evolution of the decaying passive scalar accumulated surface-area parameter ζA for two-band forcing
(K1,1–K13,16) with different equi-partitions of energy between bands: (0.60–0.00) (◦), (0.45–0.15) (solid), (0.30–
0.30) (dashed), (0.15–0.45) (dot-dashed), (0.05–0.55) (dotted). (b) Total surface area ζ �

A and wrinkling ζ �
W at t = 2

for different εw,2 in K13,16 (results normalized by the total surface area and wrinkling for the large-scale forcing).

as an integral part. We have shown that with a relatively simple forcing model basic properties
of complex flows can be captured. For example, an enhancement of the energy dissipation
by small-scale forcing was seen to produce so-called spectral shortcut features, quite similar
to what was observed experimentally in flow over canopies [17] where the kinetic energy is
immediately transferred to the smallest scales of the flow.

Forcing methods agitating the flow in a wide range of scales induce significant differences in
the developing flow, compared to the case obtained classically in which only the large scales are
forced. Various forcing methods were introduced and shown to produce qualitatively similar
results, provided the forcing parameters correspond to turbulence at comparable total kinetic
energies. We classified the methods according to constant energy or constant-energy input
rate and examined these procedures by simulating forced turbulence with energy injected
in two different bands. The modulation of the turbulent flow was investigated for various
locations of the second high-k band in spectral space. It was shown that the forcing in the
second band induces nonlocal modulation of the energy spectrum. This was further examined
by simulations done with different strength of forcing in the high-k band controlled by the
energy injection rate.

We devoted special attention to a recently proposed multiscale forcing that models a flow
under the influence of an additional perturbation by a multiscale object [39]. We performed
numerical simulations of the dispersion of a passive scalar field in a turbulent flow that is driven
by such forcing. A level-set integration method was adopted to quantify general characteris-
tics of mixing quality and efficiency. It was found that broadband forcing causes additional
production of smaller scales in the flow which is directly responsible for the localized en-
hancement of the wrinkling of the level set. In contrast, the surface area of a level set of the
tracer is found to be mainly governed by convective sweeping by the larger scales in the flow
and hence it is governed to a greater extent by the energy input rate allocated to the small-k
range. Future study will include the spatial localization of the forcing. This can help to model
flows that are more closely related to realistic physical situations observed in experiments and
applications.
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Appendix A. Computational method and parallelization

In this appendix, we describe the computational method in some detail. First, we specify the
time-stepping method, then we sketch some aspects of the implementation of the pseudo-
spectral method and subsequently the validation of the method is described along with its
parallel performance.

Time evolution

To simulate the spectral solution governed by equations (10) and (12) we first rewrite these
equations in a more general form having in mind that the evolution due to the diffusive terms
can be computed exactly by introducing integrating factors eνk2t and eκk2t , respectively [11].
In fact, (10) and (12) may be expressed as

∂U(k, t)

∂t
= G(U(k, t)), (A1)

where

U =
[

u(k, t)eνk2t

c(k, t)eκk2t

]
; G =

[
(DW(k, t) + F(k, t)) eνk2t

Z (k, t)eκk2t

]
We use a constant time step �t to obtain the solution at times tn = t0 + n�t . A four-stage,
second-order, compact-storage Runge–Kutta method was implemented. The advancement of
the solution over a full time step requires four steps of the form

U(k, tn+γ ) = U(k, tn) + γ�t G(U(k, tn+ξ )). (A2)

The intermediate solutions in the different stages can be found as follows. In stage 1 we adopt
(γ, ξ ) = (1/4, 0), stage 2 requires (γ, ξ ) = (1/3, 1/4), stage 3 uses (γ, ξ ) = (1/2, 1/3) and
stage 4 completes the step with (γ, ξ ) = (1, 1/2) [20].

We consider turbulence in a cubic box of side Lb with periodic boundary conditions and
assume that the flow is statistically isotropic which implies that we require the same resolution
in each coordinate direction. The direct numerical simulations will employ a resolution of N 3,
where N is the number of spectral space grid points that is used in each direction. This
restricts the set of wavenumbers to nα = 0, ±1, ±2, . . . ,± (N/2 − 1) , −N/2. The cut-off
wavenumber is given by kmax = π N/Lb. In physical space this corresponds to a uniform grid
xα = j Lb/N , where j = 0, 1, 2, . . . , N − 1 in each coordinate direction.
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We use the pseudo-spectral discretization method, i.e., the spatial derivative terms in
the Navier–Stokes and passive scalar equations are computed via simple multiplications in
the spectral space. The nonlinear terms in the equations are evaluated in physical space to
avoid the evaluation of several computationally intensive convolution sums [11]. This proce-
dure requires three steps. First, the Fourier coefficients u(k, t) and c(k, t) are used to obtain
the velocity and scalar fields in the physical space. Subsequently, the velocity–velocity prod-
ucts and the velocity–scalar products are determined in physical space and finally the associated
Fourier coefficients of these products are obtained.

Aliasing error

The finite resolution may give rise to well-known aliasing errors. In fact, the product of two
Fourier series based on a resolution with N points gives rise to more small-scale modes
than can be supported by the grid. As a result, these contributions can appear on the N -
point resolution as seemingly lower wave-number modes. A detailed discussion of techniques
allowing the partial or full removal of the aliasing error can be found in [11].

To eradicate the aliasing error we study in more detail (1) the random phase shifts method
and (2) the method employing two shifted grids with spherical truncation, closely follow-
ing [48, 49]. In the first case, the aliasing error is only partially removed. With additional
truncation of the Fourier velocity field coefficients the remaining error can be reduced to
O(�t2). In the method employing two shifted grids and spherical truncation, the aliasing
error can be fully removed from the simulations. This specific approach doubles the compu-
tational costs and memory requirements, compared to the random shifts method. The well-
known 3/2 method can be used as well, by going to higher resolution and truncating the
field. This can be done with the lowest number of operations, but has higher memory
requirements.

The aliasing error for higher resolution runs affects mainly the small-scale statistics. This is
visualized in figure A1 where we have shown the Taylor Reynolds number and the longitudinal
skewness for decaying turbulence simulations with initial Rλ = 100 and two resolutions 1283

and 1923. The partial dealiasing removes the main aliasing error and with the additional
truncation reduces it to the accuracy associated with the adopted Runge–Kutta scheme. There
is a small difference between the full and partial removal of the aliasing error for the lower
resolution of 1283, but this largely vanishes for the well-resolved 1923 case.

The method of two shifted grids and spherical truncation was used in actual simulations.
This removes the aliasing error completely which was found to be essential, especially to
maintain the characteristics of the small turbulent scales.

Data decomposition and fast Fourier transforms

The simulation software was implemented in Fortran 90 and parallelized based on the frame-
work given in [62] using the Message Passing Interface (MPI) [46]. Data are stored us-
ing the Hierarchical Data Format (HDF5) [24] which is a file format and library designed
for scientific data storage and handling. The choice of HDF5 was motivated by the flexible
data exchange between different platforms and its support of parallel I/O. High performance
computations were done at SARA Computing and Networking Services (Amsterdam) on
Silicon Graphics (SGI) Altix 3700 and Origin 3800 CC-NUMA systems (for more details
see [51]).

The critical performance factors in the parallel implementation of the pseudo-spectral dis-
cretization method are the domain decomposition and the algorithm for the three-dimensional
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Figure A1. Influence of aliasing error for resolution 1283 (a)–(b) and 1923 (c)–(d) on Taylor Reynolds number
Rλ(t) and longitudinal skewness S1(t) at an initial Rλ = 100 case. Simulations with aliasing error (dotted), partial
dealiasing without truncation (dashed), partial dealiasing with the truncation (dash-dotted), full dealiasing by two grid
shifts (solid). Results for the partial dealiasing with truncation (dash-dotted) are almost identical to fully dealiased
results (solid).

fast Fourier transform (FFT). These two implementation decisions are essential since they de-
termine almost all aspects of the data exchange between domains and most of the floating point
operations. It is important to obtain a data decomposition which allows for fast transfer of data
between processors. To obtain parallel Fourier transforms we adopted procedures from two
libraries: SCSL [22] and FFTW [18]. Moreover, since access to memory and the number and
speed of available CPU-s may differ considerably among different computational platforms,
significant improvements in the processing time can be achieved by platform-dependent
optimization.

The speedup of the parallel implementation was checked by simulating decaying turbulence
at a resolution of 2563. A time interval 0 ≤ t ≤ 0.05 was considered. This case corresponds
to 28 time-steps with 5 data evaluation and reporting stages. In a non-dedicated SGI Altix
3700 environment we obtained on 4, 8, 16, 32, 64 processors the following speedup numbers:
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3.9, 7.5, 14, 26, 47, respectively. The best performance results were obtained by a cache-
unfriendly parallelization along the second array dimension. This gives the opportunity of
minimal data exchange and reshuffling between processors and illustrates that the speed of
the processors overwhelms the abilities of direct access to the memory. This was found to be
the critical issue for the hardware that was available.

Code validation

To validate the implementation of the pseudo-spectral method, decaying homogeneous
isotropic turbulence was simulated at two different Reynolds numbers. The initial condi-
tion was taken from [42], which was generated on the basis of the Pao spectrum [47]. For
further details we refer to [41]. This flow was studied extensively using high-order finite-
volume discretization and explicit Runge–Kutta time stepping. Special attention was given
to the degree of convergence that could be achieved using the finite volume approach. These
data provide a clear point of reference with which the present pseudo-spectral flow solver can
be compared.

A first, global assessment of the resolution that is achieved may be inferred by evaluating
the product of the cut-off wavenumber and the observed Kolmogorov dissipation length scale
η = L(3R2

λ/20)−3/4 in terms of the Taylor Reynolds number Rλ computed for the initial
condition (see (A5) for the definition) and integral length L = 1/2. In order to resolve all
dynamically relevant length scales, including the dissipation length scale, it is required that
kmaxη is sufficiently large. A commonly accepted criterion of adequate spatial resolution is
that kmaxη > 1. When the focus is on higher order statistics, it is preferred to use larger values
(kmaxη > 3/2) [16, 56]. In table A1 the values of kmaxη are presented for the two computational
Reynolds numbers considered Re = 1060.7 and Re = 4242.6 which correspond to Rλ = 50
and Rλ = 100. We observe that in the first case a resolution of at least 643 is required to
achieve full resolution, while in the second case the minimal required resolution moves up to
1923.

For validation of the code, the flow was simulated for more than two eddy-turnover times
and a number of quantities were monitored:

Total energy: Ê(t) =
∑

k

E(k, t), (A3)

Taylor microscale: λ(t) =
(

5Ê(t)/
∑

k

k2 E(k, t)

)1/2

, (A4)

Taylor Reynolds: Rλ(t) = λ(t)u(t)/ν; u(t) =
√

2

3
Ê(t), (A5)

Longitudinal skewness: S1(t) = − 〈(∂v1(x, t)/∂x1)3〉
〈(∂v1(x, t)/∂x1)2〉3/2

. (A6)

The operator 〈·〉 in (A6) refers to volume averaging.

Table A1. The value of kmaxη associated with different resolutions. The Kolmogorov scales are η = 5.87 × 10−3

and η = 2.07 × 10−3 for Rλ = 50 and Rλ = 100, respectively.

Rλ/N 3 323 483 643 963 1283 1923 2563 3843 5123

50 0.56 0.83 1.11 1.67 2.22 3.34 4.45 6.67 8.90
100 0.20 0.29 0.39 0.59 0.79 1.18 1.57 2.36 3.15
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Figure A2. Prediction of total energy Ê , Taylor microscale λ, Taylor Reynolds number Rλ and longitudinal skewness
S1 at an initial Rλ = 50 (a) and Rλ = 100 (b) with a finite-volume [42] (solid) and the present pseudo-spectral (dotted)
code.

In figure A2, a comparison is made between simulation results obtained with the pseudo-
spectral method at N = 512, and with the high-order finite-volume discretization method
[42]. For each of the quantities an almost perfect agreement may be observed. In figure A3
we assessed the convergence of the predictions as function of the spatial resolution. In this
figure we replaced the longitudinal skewness S1 by the skewness:

S(t) = 2

35

(
λ(t)

u(t)

)3 ∑
k

k2T (k, t). (A7)

For homogeneous isotropic turbulence the value of S should be equal to 0.5 [3],which is
quite well approximated in the simulations. This quantity is quite sensitive to the spatial
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resolution and is therefore a good indicator of appropriate spatial resolution. We observe
that the different predictions display a clearly distinguishable convergence toward the grid-
independent solution. Specifically, results obtained for resolutions higher than 643 at Rλ = 50
and 1923 at Rλ = 100 are quite indistinguishable, consistent with the criterion that kmaxη > 1.
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