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Abstract

We consider a queue with multiple K job classes, Poisson arrivals, and exponentially distributed required service times in which
a single processor serves according to the discriminatory processor-sharing (DPS) discipline. For this queue, we obtain the first
and second moments of the slowdown, which is a measure for queueing fairness. We then provide numerical examples and discuss
aspects of the slowdown in the DPS queue.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The discriminatory processor-sharing (DPS) discipline is of considerable interest and importance in computer
and communication systems, as a convenient paradigm for modeling heterogeneous bandwidth sharing. The DPS
discipline was introduced by Kleinrock [11] under the name priority processor-sharing. In the DPS service discipline
for a single processor system with K job classes, all jobs present in the system are simultaneously served according
to the set of weights {αi > 0, i = 1, . . . , K }. If there are ni class i jobs present in the system, then each class i
job receives a fraction αi∑K

j=1 α j n j
of the service capacity. When all αi are equal, the DPS discipline reduces to the

egalitarian processor-sharing (EPS) discipline. Under DPS it is possible to give preferential treatment to one or more
job classes at the expense of others, by choosing a certain set of DPS weights. By appropriate choice of the weights,
we may enable Quality-of-Service differentiation among different job classes.

I For the first author this work has been funded by the cooperation agreement between the Korea Science and Engineering Foundation (KOSEF),
and the Netherlands Organization for Scientific Research (NWO). For the second author this research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA
(Institute of Information Technology Assessment). For the second and the third authors this work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD) (KRF-2006-312-C00470).

∗ Corresponding author.
E-mail address: bara@korea.ac.kr (B. Kim).

0166-5316/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2007.11.001

http://www.elsevier.com/locate/peva
mailto:bara@korea.ac.kr
http://dx.doi.org/10.1016/j.peva.2007.11.001


S.-K. Cheung et al. / Performance Evaluation 65 (2008) 586–605 587

Exact analysis of DPS has proven to be more difficult as compared with the EPS discipline (e.g., see [4]). The
available results for DPS are remarkably sparse compared to EPS. Kleinrock [11] and O’Donovan [13] obtained the
conditional mean sojourn times for the M/M/1 DPS queue and the M/G/1 DPS queue, respectively. Fayolle et al. [6]
proved that the expression for the conditional mean sojourn times obtained by Kleinrock [11] and O’Donovan [13]
contains an error, and showed that the conditional mean sojourn times satisfy a system of integro-differential equations
for the M/G/1 DPS queue. In the case of exponentially distributed required service times (job sizes), Fayolle et al. [6]
derived closed-form expressions for the conditional mean sojourn times and obtained the unconditional mean sojourn
times from a system of linear equations. Rege and Sengupta [14] obtained the higher moments of the queue length
distribution from linear equations for the case of exponential service requirements; this result was extended to phase-
type required service times by Van Kessel et al. [8]. Kim and Kim [9] found the higher moments of the sojourn times
in the M/M/1 DPS queue as a solution of linear equations. For a recent survey on DPS queues, we refer to Altman
et al. [1].

In this paper we investigate the so-called slowdown measures in the M/M/1 DPS queue. The slowdown is a way
to measure how fairly jobs are treated by a service discipline (e.g. see [2,7,16]), and the mean slowdown is often used
as a measure of system performance as opposed to the more traditional mean sojourn time. In general, it is desirable
that a job’s sojourn time should be correlated with its size; that is, we would like small jobs to have small sojourn
times. The slowdown of a job is defined as sojourn time divided by job size, which eliminates the dominating effect
of large jobs in the sojourn time measure.

It is well known that the mean slowdown in the M/G/1 EPS queue is 1/(1−ρ), which only depends on the offered
load ρ. It is independent of the job size and it is also insensitive to the service requirement distributions. Therefore,
EPS is often considered as a “fair” service discipline. Further support for the observation that EPS is fair has recently
been provided in Cheung et al. [5]. They obtained insensitive upper bounds for all moments of the conditional sojourn
time in the M/G/1 EPS queue, which immediately give upper bounds for moments of slowdown. The bounds are
tight in some appropriate senses and they only depend on ρ and the job size.

The mean slowdown in the M/G/1 DPS queue depends on the job size, the job (class) type, and furthermore,
the service requirement distributions. In the case of exponential service requirements, we obtain the first and second
moments of the slowdown. The results can be used for numerical computation of the moments of conditional and
unconditional slowdown. However, the expressions are too complicated to give any insight directly. We provide
numerical examples and give some insights into the behavior of the slowdown measures.

It is a priori not clear how the unfairness depends on the job size and the weights. The jobs with the smallest DPS
weight (we call this the lowest priority class) are obviously treated unfairly under DPS compared to EPS. In particular,
short jobs of the lowest priority class are treated the most unfairly. It is also intuitively clear that the jobs with the
largest DPS weight are treated better under DPS than under EPS, in terms of the slowdown measure.

More interestingly, when the DPS model has three or more job classes, then it is not immediately clear how the
jobs of the “middle classes” (classes with weights in between the largest and lowest weights) are treated. Depending
on the parameters, it is possible that the middle class jobs are always treated better or worse under DPS than under
EPS. However, in some specific scenario settings, sometimes the middle class jobs are treated better under DPS than
under EPS, and sometimes worse under DPS than under EPS.

The paper is organized as follows. In Section 2, we give a short review of the M/M/1 DPS results which are used
in the current paper. In Section 3, we obtain the first and second moments of the slowdown. In Section 4, we provide
numerical examples and give some insights into the behavior of the slowdown measures. Finally, in Section 5, we
provide a conclusion.

2. Preliminaries

We consider a DPS queue with K job classes. Class i jobs arrive in a Poisson stream with rate λi , and have
exponentially distributed required service times with mean µ−1

i , for i = 1, . . . , K . We denote the load of class i jobs
by ρi =

λi
µi

, and we assume that the total offered load ρ ≡
∑K

i=1 ρi is less than 1. In the DPS service discipline, all
jobs present in the system are simultaneously served according to the set of weights {αi > 0, i = 1, . . . , K }. If there
are ni class i jobs present in the system, then each class i job receives a fraction αi∑K

j=1 α j n j
of the service capacity.

In the following subsection we give a short review of the M/M/1 DPS results which are used in the current paper.
For the proofs we refer the reader to Rege and Sengupta [14] and Kim and Kim [9].



588 S.-K. Cheung et al. / Performance Evaluation 65 (2008) 586–605

2.1. Moments of the number of jobs

Let Ni , i = 1, . . . , K , be the number of class i jobs in the system at steady state. We let Q(z1, . . . , zK ) denote the
joint probability generating function of the number of each class job in the system at steady state:

Q(z1, . . . , zK ) ≡ E
(

zN1
1 · · · zNK

K

)
,

and define the following moments:

L1
j ≡

∂

∂z j
Q(z1, . . . , zK )

∣∣∣∣
z1=···=zK =1

,

L2
jk ≡

∂2

∂z j∂zk
Q(z1, . . . , zK )

∣∣∣∣
z1=···=zK =1

,

for j, k = 1, . . . , K . Note that L1
j is the mean number of class j jobs at steady state.

By Eq. (16) of Rege and Sengupta [14], we have the system of linear equations for L1
l , l = 1, . . . , K :

L1
l −

K∑
j=1

α j
λ j L1

l + λl L1
j

α jµ j + αlµl
=

λl

µl
. (2.1)

Solving the system of K linear equations (2.1) yields L1
l , l = 1, . . . , K . Further, we have a system of K (K+1)

2
equations for L2

jk, 1 ≤ j ≤ k ≤ K , by Eq. (17) of Rege and Sengupta [14] and the fact that L2
jk = L2

k j . The linear

simultaneous equations for L2
jk are

L2
jk −

K∑
i=1

αi
λ j L2

ki + λk L2
i j + λi L2

jk

α jµ j + αkµk + αiµi
= (α j + αk)

λ j L1
k + λk L1

j

α jµ j + αkµk
, 1 ≤ j ≤ k ≤ K ,

where L1
i in the right-hand side is obtained by (2.1).

2.2. Moments of the sojourn time

We denote Ti (x) as the steady state sojourn time of a class i job with required service time (job size) x . We note
that Ti (x) can also be interpreted as the time necessary for a class i job whose required service time is greater than
x to attain service x . Let us tag a class i job with required service time greater than x . When the tagged job attains
service x , let Ni j (x) denote the number of class j jobs in the system, j = 1, . . . , K (excluding the tagged job). We
introduce the following joint transform:

Ri x (s; z1, . . . , zK ) ≡ E
(

e−sTi (x) zNi1(x)
1 · · · zNi K (x)

K

)
,

which is defined for |zi | ≤ 1, i = 1, . . . , K , and Re(s) ≥ 0.
To find the first and second moments of the sojourn time of class i jobs with required service time x , we define the

following moments:

M0
i x ≡

∂

∂s
Ri x (s; z1, . . . , zK )

∣∣∣∣
s=0, z1=···=zK =1

,

M j
i x ≡

∂

∂z j
Ri x (s; z1, . . . , zK )

∣∣∣∣
s=0, z1=···=zK =1

,

and

M00
i x ≡

∂2

∂s2 Ri x (s; z1, . . . , zK )

∣∣∣∣
s=0, z1=···=zK =1

,
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M0 j
i x ≡

∂2

∂s∂z j
Ri x (s; z1, . . . , zK )

∣∣∣∣
s=0, z1=···=zK =1

,

M jk
i x ≡

∂2

∂z j∂zk
Ri x (s; z1, . . . , zK )

∣∣∣∣
s=0, z1=···=zK =1

,

where i, j, k = 1, . . . , K . We note that −M0
i x and M00

i x are the first and second moments of the sojourn time of class
i jobs with required service time x , respectively, i.e., E(Ti (x)) = −M0

i x and E
(
T 2

i (x)
)

= M00
i x .

Kim and Kim [9] derived the following system of first-order linear differential equations (see Eq. (20) in Kim and
Kim [9]):

d
dx

E[Ti (x)] =
1
αi

αt mi (x) + 1, (2.2)

where

α = [α1 α2 · · · αK ]
t , mi (x) = [M1

i x M2
i x · · · M K

ix ]
t .

Here, and subsequently, the superscript t denotes the transpose of a vector. The vector function mi (x) satisfies (see
Eq. (21) in Kim and Kim [9])

d
dx

mi (x) =
1
αi

Bmi (x) + λ, (2.3)

where

B = λαt
− diag(α1µ1, . . . , αK µK ), λ = [λ1 λ2 · · · λK ]

t .

Further,

E[Ti (0)] = 0, i = 1, . . . , K , (2.4)

and

mi (0) = [L1
1 · · · L1

K ]
t
≡ L1, (2.5)

by the PASTA property.

Kim and Kim [9] also derived the following system of (K+1)(K+2)
2 first-order linear differential equations (see

Eqs. (24)–(29) in Kim and Kim [9]):

d
dx

E[T 2
i (x)] =

2
αi

αt yi (x) + 2E[Ti (x)], (2.6)

where yi (x) = −[M01
i x · · · M0K

ix ]
t , with

yi (0) = [0 · · · 0]
t . (2.7)

Further,

d
dx

yi (x) =
1
αi

Zi (x)α +
1
αi

Byi (x) + E[Ti (x)]λ +

(
I +

1
αi

diag(α1, . . . , αK )

)
mi (x), (2.8)

and
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d
dx

Zi (x) =
1
αi

B Zi (x) +
1
αi

Zi (x)Bt
+

(
I +

1
αi

diag(α1, . . . , αK )

)
mi (x)λt

+ λmi (x)t
(

I +
1
αi

diag(α1, . . . , αK )

)
, (2.9)

where

Zi (x) =

M11
i x · · · M1K

ix
... · · ·

...

M K 1
i x · · · M K K

ix

 ,

with

Zi (0) =

 L2
11 · · · L2

1K
... · · ·

...

L2
K 1 · · · L2

K K

 ≡ L2. (2.10)

3. Slowdown

The unconditional slowdown of a class i job, Si , is defined as the sojourn time divided by the job size. The
conditional slowdown of a class i job whose size is x , Si (x), is given by Ti (x)

x . In this section we obtain the mean
of the conditional and unconditional slowdown, i.e., E[Si (x)] and E[Si ]. Further, we express the second moment of
the conditional slowdown in terms of a Laplace transform, and then obtain the second moment of the unconditional
slowdown. In what follows, when we speak of moments of the unconditional slowdown we will omit the adjective
“unconditional”, if no confusion arises.

We begin with the following lemma.

Lemma 1. (a) The matrix B = λαt
− diag(α1µ1, . . . , αK µK ) is diagonalizable and the eigenvalues of B, say κ j ,

j = 1, . . . , K , are all negative. Further, B can be written as

B = [v1 · · · vK ] diag(κ1, . . . , κK )

u1
...

uK

 , (3.1)

with real right eigenvectors v j and real left eigenvectors u j satisfying u j vk = δ jk .

(b) αt (−B)−1
=

1
1−ρ

[µ−1
1 · · · µ−1

K ]

(c) B−1λ =
−1

1−ρ
[
ρ1
α1

· · ·
ρK
αK

]
t

(d) αt B−1λ =
−ρ
1−ρ

.

Proof. Letting D = diag(d1, . . . , dK ) with di =

√
αi

√
λi

, i = 1, . . . , K , yields

DB D−1
= (Dλ)(αt D−1) − diag(α1µ1, . . . , αK µK ).

Since Dλ =
[ √

α1λ1 · · ·
√

αK λK
]t and αt D−1

=
[ √

α1λ1 · · ·
√

αK λK
]
, we have

DB D−1
= (Dλ)(Dλ)t

− diag(α1µ1, . . . , αK µK ),

which is symmetric. This implies that the matrix B is diagonalizable, and B can be written as (3.1). Further, since
DB D−1 is a real symmetric matrix, the eigenvalues κ j , j = 1, . . . , K , of B, are all real, and the eigenvectors v j and
u j can always be taken to be real. Note that

[µ−1
1 · · · µ−1

K ]B = −(1 − ρ)αt < 0, (3.2)
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where 0 denotes a K -dimensional row vector with its components equal to zero, and the inequality between two
vectors is interpreted componentwise. Therefore eigenvalues κ j , j = 1, . . . , K , are all negative (see Theorem 2.6 on
page 46 in [15]), and the proof of (a) is complete. (b) follows from (3.2). (c) follows from the identity

B

[
ρ1

α1
· · ·

ρK

αK

]t

= (ρ − 1)λ.

Finally, (d) is immediate from (b) or (c). �

3.1. First moment

The mean of the conditional slowdown for class i job whose size is x , E[Si (x)], is given by E[Si (x)] =
E[Ti (x)]

x .

Theorem 1. The means of the conditional sojourn time and the conditional slowdown for a class i job whose size is
x are given by

E[Ti (x)] =
1

1 − ρ
x + a − αi b +

K∑
j=1

(αiξ j − η j )e
κ j
αi

x
, (3.3)

E[Si (x)] =
1

1 − ρ
+

a − αi b

x
+

K∑
j=1

(αiξ j − η j )
e

κ j
αi

x

x
, (3.4)

where κ j , j = 1, . . . , K , are eigenvalues of B,

a =
1

1 − ρ
[µ−1

1 · · · µ−1
K ]L1,

b =
1

(1 − ρ)2 [µ−1
1 · · · µ−1

K ]

[
ρ1

α1
· · ·

ρK

αK

]t

,

and

η j =
1

1 − ρ

(
[µ−1

1 · · · µ−1
K ]v j

)
(u j L1),

ξ j =
1

(1 − ρ)2

(
[µ−1

1 · · · µ−1
K ]v j

)(
u j

[
ρ1

α1
· · ·

ρK

αK

]t)
,

with v j and u j given in Lemma 1.

Proof. Integrating (2.3) and using (2.5), we have

mi (x) = e
1
αi

Bx L1
+ e

1
αi

Bx
∫ x

0
e
−

1
αi

Bw
dw λ

= e
1
αi

Bx L1
+ αi B−1

(
e

1
αi

Bx
− I

)
λ. (3.5)

Similarly, by (2.2) and (2.4) together with (3.5), we have

E[Ti (x)] =
1
αi

αt
∫ x

0
e

1
αi

Bw
dw L1

+ αt B−1
∫ x

0

(
e

1
αi

Bw
− I

)
dw λ + x

=

(
1 − αt B−1λ

)
x + αt B−1

(
e

1
αi

Bx
− I

)
L1

+ αiα
t B−1

(
e

1
αi

Bx
− I

)
B−1λ.

By Lemma 1,
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E[Ti (x)] =
1

1 − ρ
x −

1
1 − ρ

[µ−1
1 · · · µ−1

K ]

(
e

1
αi

Bx
− I

)
L1

+
αi

(1 − ρ)2 [µ−1
1 · · · µ−1

K ]

(
e

1
αi

Bx
− I

)[
ρ1

α1
· · ·

ρK

αK

]t

=
1

1 − ρ
x +

1
1 − ρ

[µ−1
1 · · · µ−1

K ]L1
−

αi

(1 − ρ)2 [µ−1
1 · · · µ−1

K ]

[
ρ1

α1
· · ·

ρK

αK

]t

+

K∑
j=1

(−η j + αiξ j )e
κ j
αi

x
,

where

η j =
1

1 − ρ

(
[µ−1

1 · · · µ−1
K ]v j

)
(u j L1),

ξ j =
1

(1 − ρ)2

(
[µ−1

1 · · · µ−1
K ]v j

)(
u j

[
ρ1

α1
· · ·

ρK

αK

]t)
.

Hence (3.3) is obtained, and (3.4) is immediate from E[Si (x)] =
E[Ti (x)]

x . �

Remark. 1. An explicit expression for the conditional mean sojourn time was also obtained by Fayolle et al. [6] in a
similar form to (3.3):

E[Ti (x)] =
1

1 − ρ
x +

K̃∑
j=1

e j − αi d j s j

s2
j

(
1 − e

s j
αi

x
)

, i = 1, . . . , K ,

where K̃ is the number of distinct elements in the vector (α1µ1, . . . , αK µK ), and s j , j = 1, . . . , K̃ , are the K̃
distinct roots of

K∑
j=1

λ jα j

µ jα j + s
= 1.

(They showed that
∑K

j=1
λ j α j

µ j α j +s = 1 has exactly K̃ distinct roots.) Further, d j and e j , j = 1, . . . , K̃ , are given by

d j =

K̃∏
k=1

(αkµk + s j )

s j

K̃∏
k 6= j

(s j − sk)

, j = 1, . . . , K̃ ,

e j =

[
K∑

k=1
λkα

2
k /(µ2

kα
2
k − s2

j )

][
K̃∏

k=1
(µ2

kα
2
k − s2

j )

]
K̃∏

k 6= j
(s2

k − s2
j )

, j = 1, . . . , K̃ ,

with the assumption that α jµ j , j = 1, . . . , K̃ , are distinct.

2. We can rewrite (3.4) as

E[Si (x)] =
1

1 − ρ
+

K∑
j=1

(η j − αiξ j )
1 − e

κ j
αi

x

x
. (3.6)

Recall that κ j < 0 for all j . (3.4) is suited for investigation when x → ∞, and (3.6) is suited when x → 0.
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The mean slowdown for class i jobs in the M/M/1 DPS queue is given by

ESi =

∫
∞

0
E[Si (x)]µi e−µi x dx .

In the following theorem we give an expression for ESi .

Theorem 2. The mean slowdown ESi for class i jobs is given by

ESi =
1

1 − ρ
+ µi

K∑
j=1

(η j − αiξ j ) log
(

1 −
κ j

αiµi

)
,

where η j and ξ j are given in Theorem 1.

Proof. Let S̃i (s), s > 0, be the Laplace transform (LT) of E[Si (x)], i.e.,

S̃i (s) ≡

∫
∞

0
e−sxE[Si (x)]dx .

Taking Laplace transforms (LTs) in (3.6) yields

S̃i (s) =
1

1 − ρ

1
s

+

K∑
j=1

(η j − αiξ j )

∫
∞

0
e−sx 1 − e

κ j
αi

x

x
dx .

Since

d
ds

∫
∞

0
e−sx 1 − e

κ j
αi

x

x
dx =

∫
∞

0
e−sx

(
e

κ j
αi

x
− 1

)
dx =

1

s −
κ j
αi

−
1
s
,

we have∫
∞

0
e−sx 1 − e

κ j
αi

x

x
dx = log

(
s −

κ j
αi

s

)
= log

(
1 −

κ j

αi s

)
.

Therefore

S̃i (s) =
1

1 − ρ

1
s

+

K∑
j=1

(η j − αiξ j ) log
(

1 −
κ j

αi s

)
.

Since ESi = µi S̃i (µi ), the proof is complete. �

3.2. Second moment

Define the LT of E[S2
i (x)] by

G̃i (s) ≡

∫
∞

0
e−sxE[S2

i (x)]dx;

hence it follows that

d2

ds2 G̃i (s) =

∫
∞

0
e−sxE[T 2

i (x)]dx .

The above equation is expressed as follows.

Theorem 3. We have

d2

ds2 G̃i (s) =
2

α2
i

1
s

K∑
j=1

c j

αt
K∑

k=1

vkuk L2ut
j

(s −
κk
αi

)(s −
κ j +κk

αi
)
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+ αt
K∑

k=1

K∑
m=1

vkuk(I +
1
αi

diag(α1, . . . , αK ))vmum(λ + sL1)(λt ut
j )

s(s −
κk
αi

)(s −
κ j +κk

αi
)(s −

κm
αi

)

+ αt
K∑

k=1

K∑
m=1

vkukλ(λ + sL1)t ut
mvt

m(I +
1
αi

diag(α1, . . . , αK ))ut
j

s(s −
κk
αi

)(s −
κ j +κk

αi
)(s −

κm
αi

)


+

2

s3

(
1 +

1
αi

K∑
j=1

αt v j u j (λ + sL1)

s −
κ j
αi

)(
1
αi

K∑
k=1

αt vkukλ

s −
κk
αi

+ 1

)

+
2
αi

K∑
j=1

K∑
k=1

αt v j u j (I +
1
αi

diag(α1, . . . , αK ))vkuk(λ + sL1)

s2(s −
κ j
αi

)(s −
κk
αi

)
, (3.7)

where [c1 · · · cK ] = αt
[v1 · · · vK ].

Proof. Let T̃i (s), s > 0, be the LT of E[Ti (x)], i.e.,

T̃i (s) ≡

∫
∞

0
e−sxE[Ti (x)]dx .

Taking LTs in (2.2), we readily obtain

T̃i (s) =
1
s

(
1
αi

αt m̃i (s) +
1
s

)
, (3.8)

where m̃i (s) is the LT of mi (x). Similarly, from (2.3), we have

sm̃i (s) − mi (0) =
1
αi

Bm̃i (s) +
1
s
λ.

Since mi (0) = L1, the equation becomes

m̃i (s) = αi (αi s I − B)−1
(

1
s
λ + L1

)
, (3.9)

and substitution into (3.8) yields

T̃i (s) =
1

s2 +
1

s2 αt (αi s I − B)−1
(
λ + sL1

)
. (3.10)

Taking LTs in (2.6) and using (3.10) leads to

d2

ds2 G̃i (s) =
1
s

2
αi

αt ỹi (s) + 2
(

1

s3 +
1

s3 αt (αi s I − B)−1(λ + sL1)

)
, (3.11)

where ỹi (s) is the LT of yi (x). Taking LTs in (2.8) and using (3.9), (3.10), and (2.7), we obtain

1
αi

(αi s I − B )̃yi (s) =
1
αi

Z̃i (s)α +

(
1

s2 +
1

s2 αt (αi s I − B)−1(λ + sL1)

)
λ

+

(
I +

1
αi

diag(α1, . . . , αK )

)
αi (αi s I − B)−1

(
1
s
λ + L1

)
,

or, equivalently,

ỹi (s) = (αi s I − B)−1 Z̃i (s)α + αi

(
1

s2 +
1

s2 αt (αi s I − B)−1(λ + sL1)

)
(αi s I − B)−1λ

+ αi (αi s I − B)−1
(

I +
1
αi

diag(α1, . . . , αK )

)
αi (αi s I − B)−1

(
1
s
λ + L1

)
, (3.12)
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where Z̃i (s) is the LT of Zi (x). Substitution of (3.12) into (3.11) yields

d2

ds2 G̃i (s) =
2
αi

1
s
αt (αi s I − B)−1 Z̃i (s)α

+ 2
(

1

s3 +
1

s3 αt (αi s I − B)−1(λ + sL1)

)(
αt (αi s I − B)−1λ + 1

)
+

2

s2 αt (αi s I − B)−1
(

I +
1
αi

diag(α1, . . . , αK )

)
αi (αi s I − B)−1(λ + sL1). (3.13)

We now need to investigate αt (αi s I − B)−1 Z̃i (s)α. Taking LTs in (2.9) and using (3.9) leads to

s Z̃i (s) − Zi (0) =
1
αi

B Z̃i (s) +
1
αi

Z̃i (s)Bt
+

(
I +

1
αi

diag(α1, . . . , αK )

)
αi (αi s I − B)−1

(
1
s
λ + L1

)
λt

+ λ

(
1
s
λ + L1

)t

αi (αi s I − Bt )−1
(

I +
1
αi

diag(α1, . . . , αK )

)
,

where Zi (0) = L2, see (2.10). Postmultiplying the above by ut
j yields

1
αi

((αi s − κ j )I − B)Z̃i (s)ut
j = L2ut

j +

(
I +

1
αi

diag(α1, . . . , αK )

)
αi (αi s I − B)−1

(
1
s
λ + L1

)
(λt ut

j )

+ λ

(
1
s
λ + L1

)t

αi (αi s I − Bt )−1
(

I +
1
αi

diag(α1, . . . , αK )

)
ut

j ,

so

αt (αi s I − B)−1 Z̃i (s)ut
j = αiα

t (αi s I − B)−1 ((αi s − κ j )I − B
)−1 L2ut

j

+ α2
i αt (αi s I − B)−1((αi s − κ j )I − B)−1

(
I +

1
αi

diag(α1, . . . , αK )

)
× (αi s I − B)−1

(
1
s
λ + L1

)
(λt ut

j ) + α2
i αt (αi s I − B)−1((αi s − κ j )I − B)−1

× λ

(
1
s
λ + L1

)t

(αi s I − Bt )−1
(

I +
1
αi

diag(α1, . . . , αK )

)
ut

j . (3.14)

Let [c1 · · · cK ] = αt
[v1 · · · vK ]. Then αt

= [c1 · · · cK ]

[u1
.
.
.

uK

]
, and (3.14) leads to

αt (αi s I − B)−1 Z̃i (s)α =

K∑
j=1

c jα
t (αi s I − B)−1 Z̃i (s)ut

j

=

K∑
j=1

c j

{
αiα

t (αi s I − B)−1((αi s − κ j )I − B)−1L2ut
j

+ α2
i αt (αi s I − B)−1((αi s − κ j )I − B)−1

(
I +

1
αi

diag(α1, . . . , αK )

)
× (αi s I − B)−1

(
1
s
λ + L1

)
(λt ut

j ) + α2
i αt (αi s I − B)−1((αi s − κ j )I − B)−1

× λ

(
1
s
λ + L1

)t

(αi s I − Bt )−1
(

I +
1
αi

diag(α1, . . . , αK )

)
ut

j

}
. (3.15)

Finally, substitution of (3.15) into (3.13) yields (3.7). �

Remark. Note that if α1 = α2 = · · · = αK and µ1 = µ2 = · · · = µK , then the M/M/1 DPS queue is the
M/M/1 EPS queue. By setting α1 = α2 = · · · = αK and µ1 = µ2 = · · · = µK , we can reproduce formula (4.3) in
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Yashkov [17] for the second moment of the conditional slowdown as follows. Let µ = µ1 = µ2 = · · · = µK . We
may assume that α1 = · · · = αK =

1
µ

. Then

B = λαt
− I,

and the eigenvalues of B are

κ1 = −(1 − ρ), κ j = −1, j = 2, . . . , K . (3.16)

We may choose

v1 = ρ−1
[ρ1 · · · ρK ]

t , u1 = 1t , (3.17)

where 1 denotes a K -dimensional column vector with all its components equal to one. Further, we note that

L1
=

1
1 − ρ

[ρ1 · · · ρK ]
t , L2

=
2

(1 − ρ)2 [ρ1 · · · ρK ]
t
[ρ1 · · · ρK ]. (3.18)

Since

αt vk = µ−1u1vk = µ−1δk1,

u1L2ut
j =

2ρ2

(1 − ρ)2 δ j1,

λt ut
j = µρvt

1ut
j = µρδ j1,(

λ + sL1
)t

ut
m =

(
µρ +

sρ

1 − ρ

)
vt

1ut
m =

(
µρ +

sρ

1 − ρ

)
δm1,

c1 =
1
µ

,

substituting (3.16)–(3.18) into (3.7) leads to

d2

ds2 G̃i (s) =
4ρ2

(1 − ρ)2

1
s(s + µ(1 − ρ))(s + 2µ(1 − ρ))

+
4µρ2

1 − ρ

1

s2(s + µ(1 − ρ))(s + 2µ(1 − ρ))

+
4µρ2

1 − ρ

1

s2(s + µ(1 − ρ))(s + 2µ(1 − ρ))
+

2
1 − ρ

1

s3

(
1 +

µρ

s + µ(1 − ρ)

)
+

4ρ

1 − ρ

1

s2(s + µ(1 − ρ))
,

which is simplified to

d2

ds2 G̃i (s) =
2

(1 − ρ)2

1

s3 +
2ρ

(1 − ρ)2

1

s2(s + µ(1 − ρ))
.

Decomposing the above into partial fractions yields

d2

ds2 G̃i (s) = −
2ρ

µ2(1 − ρ)4

1
s

+
2ρ

µ(1 − ρ)3

1

s2 +
2

(1 − ρ)2

1

s3 +
2ρ

µ2(1 − ρ)4

1
s + µ(1 − ρ)

. (3.19)

By the inversion formula, we have

E[T 2
i (x)] =

x2

(1 − ρ)2 +
2ρx

µ(1 − ρ)3 −
2ρ

µ2(1 − ρ)4 (1 − e−µ(1−ρ)x ),

and

E[S2
i (x)] =

1

(1 − ρ)2 +
2ρ

µ2(1 − ρ)4

µ(1 − ρ)x − 1 + e−µ(1−ρ)x

x2 ,

which is the same as formula (4.3) in Yashkov [17].
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Now we express the second moment of the unconditional slowdown for class i jobs in the M/M/1 DPS queue.
The second moment of the unconditional slowdown for a class i job, E[S2

i ], is given as

E[S2
i ] =

∫
∞

0
E[S2

i (x)]µi e−µi x dx = µi G̃i (µi ).

Let us decompose (3.7) into partial fractions

d2

ds2 G̃i (s) =
ε1

i1

s
+

ε1
i2

s2 +
ε1

i3

s3 +

K∑
j=1

(
ε2

i j

s −
κ j
αi

+
ε3

i j

(s −
κ j
αi

)2

)
+

∑
1≤ j≤k≤K

ε4
i jk

s −
κ j +κk

αi

, (3.20)

for some constants ε1
i1, ε

1
i2, ε

1
i3, ε

2
i j , ε

3
i j , j = 1, . . . , K , and ε4

i jk, 1 ≤ j ≤ k ≤ K .

Theorem 4. The second moment of the slowdown for class i jobs is

E[S2
i ] =

1

(1 − ρ)2 + µi

K∑
j=1

ε2
i j

{(
µi −

κ j

αi

)
log

(
1 −

κ j

αiµi

)
+

κ j

αi

}
− µi

K∑
j=1

ε3
i j log

(
1 −

κ j

αiµi

)

+ µi

∑
1≤ j≤k≤K

ε4
i jk

{(
µi −

κ j + κk

αi

)
log

(
1 −

κ j + κk

αiµi

)
+

κ j + κk

αi

}
.

Proof. Integrating (3.20) twice, we get

G̃i (s) = ε1
i1(s log s − s) − ε1

i2 log s +
ε1

i3

2
1
s

+

K∑
j=1

ε2
i j

{(
s −

κ j

αi

)
log

(
s −

κ j

αi

)
−

(
s −

κ j

αi

)}

−

K∑
j=1

ε3
i j log

(
s −

κ j

αi

)
+

∑
1≤ j≤k≤K

ε4
i jk

{(
s −

κ j + κk

αi

)
log

(
s −

κ j + κk

αi

)
−

(
s −

κ j + κk

αi

)}
+ C1s + C2, (3.21)

for some constants C1 and C2. We note that

log(s + a) = log s +
a

s
+ o

(
1
s

)
, as s → ∞, (3.22)

for all real a, where ‘ f (s) = o(g(s)) as s → ∞’ means that lims→∞
f (s)
g(s) = 0. Substituting (3.22) into (3.21), after

some arithmetic, we can rewrite (3.21) as

G̃i (s) =

{
ε1

i1 +

K∑
j=1

ε2
i j +

∑
1≤ j≤k≤K

ε4
i jk

}
s log s +

{
C1 − ε1

i1 −

K∑
j=1

ε2
i j −

∑
1≤ j≤k≤K

ε4
i jk

}
s

−

{
ε1

i2 +

K∑
j=1

ε2
i j

κ j

αi
+

K∑
j=1

ε3
i j +

∑
1≤ j≤k≤K

ε4
i jk

κ j + κk

αi

}
log s + C2

+

{
ε1

i3

2
+

K∑
j=1

ε2
i j

(
κ j

αi

)2

+

K∑
j=1

ε3
i j

κ j

αi
+

∑
1≤ j≤k≤K

ε4
i jk

(
κ j + κk

αi

)2
}

1
s

+ o

(
1
s

)
,

as s → ∞. Since lims→∞ G̃i (s) = 0, the following conditions should hold:

ε1
i1 = −

K∑
j=1

ε2
i j −

∑
1≤ j≤k≤K

ε4
i jk,

C1 = 0,
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ε1
i2 = −

K∑
j=1

ε2
i j

κ j

αi
−

K∑
j=1

ε3
i j −

∑
1≤ j≤k≤K

ε4
i jk

κ j + κk

αi
,

C2 = 0.

Substituting the conditions above into (3.21), after some arithmetic, we obtain

G̃i (s) =
ε1

i3

2
1
s

+

K∑
j=1

ε2
i j

{(
s −

κ j

αi

)
log

(
1 −

κ j

αi s

)
+

κ j

αi

}
−

K∑
j=1

ε3
i j log

(
1 −

κ j

αi s

)

+

∑
1≤ j≤k≤K

ε4
i jk

{(
s −

κ j + κk

αi

)
log

(
1 −

κ j + κk

αi s

)
+

κ j + κk

αi

}
. (3.23)

By (3.20), ε1
i3 = s3

(
d2

ds2 G̃i (s)
)∣∣∣

s=0
. From this and (3.7) together with Lemma 1(d), it follows that

ε1
i3 = 2

(
1 +

K∑
j=1

αt v j u jλ

−κ j

)2

= 2
(

1 − αt B−1λ
)2

=
2

(1 − ρ)2 . (3.24)

Finally, substituting (3.24) into (3.23) and noticing that E[S2
i ] = µi G̃i (µi ), we finish the proof. �

Consider the case when α1 = α2 = · · · = αK and µ1 = µ2 = · · · = µK (i.e., EPS discipline). Then using
(3.19) and Theorem 4 gives the following corollary. We can see that in the case of the M/M/1 EPS queue, the second
moment of the slowdown is determined by only the offered load ρ.

Corollary 1. For the M/M/1 EPS queue, the second moment of the slowdown S is given by

E[S2
] =

1

(1 − ρ)2 −
2ρ

(1 − ρ)3 +
2ρ(2 − ρ) log(2 − ρ)

(1 − ρ)4 . (3.25)

Although the results obtained in this section can be used for numerical computation of the moments of conditional
and unconditional slowdown, the expressions are too complicated to give any insight directly. We provide numerical
examples and give some insights into the behavior of the slowdown measures in the following section.

4. Numerical examples

In this section, we provide numerical examples to discuss aspects of the slowdown in the DPS queue. For
convenience, we refer to the “highest priority class” as the class with the largest weight, and the “lowest priority
class” as the class with the smallest weight. The classes with weights in between the largest and smallest weights are
labelled as the “middle classes”.

With the figures in this section, we can observe that

• The conditional mean slowdown of the highest priority class increases as the job size increases.

• The conditional mean slowdown of the lowest priority class decreases as the job size increases.

• It could happen that the conditional mean slowdown of the middle classes is neither increasing nor decreasing. See
Figs. 4 and 5. This phenomenon was also observed in [10].

It is known that (see Remark 2 in [6]), for the M/G/1 DPS queue, as the job size increases to infinity, the
conditional mean slowdown of each class tends to 1/(1 − ρ), which is the same as the conditional mean slowdown of
the EPS model. If the conditional mean slowdown of a job with size x is larger (resp. smaller) than 1/(1 − ρ), then
we say that this job is treated worse (resp. better) under DPS than under EPS.
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Fig. 1. Mean of the conditional slowdown for Example 1a.

Fig. 2. Mean of the conditional slowdown for Example 1b.

4.1. Mean slowdown for a two-class DPS model

We consider the case of K = 2 job classes with weights α1 and α2. We assume equal loads of ρ1 = ρ2 = 0.3, and
hence 1/(1 − ρ) = 2.5. We consider the following two DPS models.

Example 1a. We assume µ1 = 2 and µ2 = 1; hence λ1 = 0.6 and λ2 = 0.3. Take α1 = 3 and α2 = 1.

Example 1b. We assume µ1 = 2 and µ2 = 1; hence λ1 = 0.6 and λ2 = 0.3. Take α1 = 1 and α2 = 3.

Note that, in both examples, class 1 has smaller mean job size compared to class 2. It is shown in [3,10] that if
α1 ≥ α2, then DPS outperforms EPS from the viewpoint of mean number of jobs and the mean sojourn time at the
steady state.

In Figs. 1 and 2, we depict the conditional mean slowdown of each class for Examples 1a and 1b, respectively,
varying the required service time x . We observe that the overall conditional mean slowdown is better in Example 1a
compared to Example 1b. Also it is intuitively clear that the highest priority class is always treated better under DPS
than under EPS and the lowest priority class is always treated worse under DPS than under EPS, which is consistent
with the figures. In addition, the conditional mean slowdown curve of each class does not cross those of other class,



600 S.-K. Cheung et al. / Performance Evaluation 65 (2008) 586–605

Fig. 3. Mean slowdown when µ1 = 2 and µ2 = 1.

Fig. 4. Mean of the conditional slowdown for Example 2a with α2 = 2.0.

which also follows from the stochastic ordering result for conditional sojourn times; see Theorem 2 in Avrachenkov
et al. [3]. As illustrated in Figs. 1 and 2, it is also observed that the conditional mean slowdown for the lowest priority
class is much larger for small job sizes x . Short jobs of the lowest priority class are treated relatively the most unfairly,
which can be explained by the so-called “ON–OFF” effect: If the ratio of weights α1/α2 is large, then from a class
2 point-of-view, the queue behaves almost as an ON–OFF processor-sharing queue (see Section 4.4 of [4,12]). When
the number of class 1 jobs gets large, then the service process for class 2 may seem frozen (OFF period). When there
are no high priority class jobs in the system, the low priority class jobs get full service capacity (ON period).

In Fig. 3, we plot the unconditional mean slowdown of each class, varying the weight ratio α1/α2. It is observed
that in the case of α1/α2 = 1 (i.e., EPS discipline), the mean slowdown of a class 1 job equals that of a class 2 job.
Further, the mean slowdown of a class 2 job (resp. a class 1 job) increases (resp. decreases) as the weight ratio α1/α2
increases, as we expect.

4.2. Mean slowdown for three-class DPS model

Now we consider the more interesting case of a DPS model with K = 3 job classes, with the presence of a middle
class. We assume equal loads of ρ1 = ρ2 = ρ3 = 0.2, and hence 1/(1 − ρ) = 2.5.
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Fig. 5. Mean of the conditional slowdown for Example 2a with α2 = 6.0.

Fig. 6. Mean of the conditional slowdown for the middle class in Example 2a.

Example 2a (See Figs. 4–6). We assume µ1 = 10, µ2 = 5, µ3 = 1. Take α1 = 8, α3 = 1 and choose α2 such that
α3 ≤ α2 ≤ α1. In this case, class 1 is the highest priority class, class 2 is the middle class and class 3 is the lowest
priority class.

Figs. 4 and 5 show the conditional mean slowdown of each class for different values of α2, varying the required
service time x . Fig. 6 shows the conditional mean slowdown of only the middle class for different values of α2. We
observe that if α2 is small, then the conditional mean slowdown curve of the middle class is above the curve 1/(1−ρ),
i.e., middle class jobs are always treated worse under DPS compared to EPS. If the weight α2 of the middle class is
moderate (α2 = 1.5, α2 = 2.0), then the slowdown curve of the middle class crosses the curve 1/(1 − ρ). Sometimes
the middle class job is treated worse and sometimes better under DPS compared to EPS, depending on the job size x
of the middle class job. If α2 gets larger, then the conditional mean slowdown curve of the middle class will be always
below the curve 1/(1−ρ), i.e., middle class jobs are always treated better under DPS compared to EPS. It is observed
that the ON–OFF effect experienced by class 2 jobs becomes larger when α2 becomes smaller.

Example 2b (See Figs. 7 and 8). We assume µ1 = 10, µ2 = 5, µ3 = 1. Take α1 = 1, α3 = 8 and choose α2 such
that α1 ≤ α2 ≤ α3. In this case, class 3 is the highest priority class, class 2 is the middle class and class 1 is the lowest
priority class.
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Fig. 7. Mean of the conditional slowdown for Example 2b with α2 = 2.0.

Fig. 8. Mean of the conditional slowdown for the middle class in Example 2b.

Fig. 7 shows the conditional mean slowdown of each class in the case of α2 = 2.0. Fig. 8 shows the conditional
mean slowdown of only the middle class for different values of α2.

As illustrated in Fig. 7, it is observed that if α2 is small, then the conditional mean slowdown curve of the middle
class is always above the curve 1/(1 − ρ); however, the shape of the curve changes. From Fig. 8, we see that if
α2 is moderate, then the short middle class jobs have a smaller conditional mean slowdown under DPS than under
EPS; however, long middle class jobs are still treated unfairly under DPS in this situation. Fig. 8 illustrates that the
conditional mean slowdown curve of the middle class jobs will be always below the curve 1/(1−ρ), indicating that if
α2 is large, then the middle class gets served better under DPS for all job sizes. Fig. 8 also indicates that the ON–OFF
effect experienced by class 2 jobs becomes larger when α2 becomes smaller.

4.3. Variance of the slowdown for three-class DPS model

In this subsection, we investigate the conditional and unconditional variance of the slowdown for a DPS model
with K = 3 job classes. We assume equal loads of ρ1 = ρ2 = ρ3 = 0.2, and hence 1/(1 − ρ) = 2.5.

Example 3 (See Figs. 9 and 10). We assume µ1 = 10, µ2 = 5, µ3 = 1; hence λ1 = 2, λ2 = 1 and λ3 = 0.2.
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Fig. 9. Variance of the conditional slowdown in Example 3.

Fig. 10. Variance of slowdown in Example 3.

In Fig. 9, we plot the variance of the conditional slowdown of each class with required service time x , varying the
required service time x , for the case when α1 = 8, α2 = 2 and α3 = 1. The variance of the conditional slowdown of
each class decreases as the required service time x increases. Further, we observe that the smaller the weight becomes,
the larger the variance of the conditional slowdown becomes.

In Fig. 10, we plot the variance of the slowdown of each class and of overall classes, varying the weight ratio
α1/α2 (=α2/α3). We observe that the variance of the slowdown of a class 3 job (resp. a class 1 job) increases (resp.
decreases) as the weight ratio α1/α2 increases. The variance of the slowdown of overall classes will be discussed in
the following subsection.

4.4. An unfairness measure

Let S denote the slowdown of an arbitrary customer in overall classes. Then

ES =

K∑
i=1

λi

λ
ESi and Var S =

K∑
i=1

λi

λ
ES2

i − (ES)2,
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where λ =
∑K

i=1 λi . Avi-Itzhak et al. [2] introduced two unfairness measures, one of which is VarS; see the last
paragraph above Section 3.1 in [2]. In Fig. 10, the variance of the slowdown of overall classes corresponds to the
unfairness measure in Example 3.

5. Conclusion

In this paper we obtained the first and second moments of the slowdown in the M/M/1 queue with the
discriminatory processor-sharing (DPS) service discipline. The slowdown is a measure for queueing fairness: jobs
in the standard M/G/1 queue with egalitarian processor-sharing (EPS) have a constant mean slowdown, i.e., the
mean slowdown is independent of the job size, and this reflects the fairness of the EPS service discipline. In contrast,
DPS aims to differentiate the Quality-of-Service among different types of jobs, and we discuss the observation that a
job of a certain size may sometimes be treated better or worse (in terms of slowdown) compared to a similar queueing
model with equal weights.

How fairly jobs are treated under DPS depends on several parameters; in particular, it depends on the set of DPS
weights (α1, . . . , αK ) in combination with the mean job sizes (1/µ1, . . . , 1/µK ), and the job size x > 0 of a particular
class i , i = 1, . . . , K . The highest priority class with the largest DPS weight is always treated better under DPS than
under EPS at the expense of other classes. The lowest priority class is always treated worse under DPS than under
EPS. However, the unfairness also depends on the job size; short lowest priority jobs are generally treated the most
unfairly. Short highest priority jobs are generally treated the best; these jobs benefit the most from the preemptive
priority effect that the highest priority jobs observe.

When there are middle classes, i.e., classes with weights in between the largest and smallest weights, the
characterization of the fairness and unfairness of the middle class is less straightforward. In the numerical examples
we have observed and explained the following possible cases for the middle class:

• All jobs are always treated worse under DPS than under EPS.
• All jobs are always treated better under DPS than under EPS.
• Sometimes short jobs are treated worse and long jobs are treated better under DPS than under EPS.
• Sometimes short jobs are treated better and long jobs are treated worse under DPS than under EPS.

We also observed that the slowdown curve for the middle class jobs is generally not monotonic in the job size,
unless the weight of the middle class is sufficiently close to weight of the highest or lowest priority class. The
slowdown curves of the highest and lowest priority classes are increasing and decreasing, respectively.

In the paper of Avi-Itzhak et al. [2] two (un)fairness measures are proposed. The first fairness measure is defined by
Var(T −

ET
EX X), where T denotes the sojourn time and X denotes the required service time for an arbitrary customer.

A second and alternative approach for defining fairness is the variance of the slowdown S. Avi-Itzhak et al. [2]
mentioned that this fairness measure is very hard to compute, and they left computation of such a fairness metric as
an open research topic. This paper provides an analytical computation of the latter fairness measure for the M/M/1
DPS queue. Our results can be used for the analysis of the fairness measure and provide tools for a numerical study
of the M/M/1 DPS queues.
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