
A Rigorous, Compositional, and Extensible
Framework for Dynamic Fault Tree Analysis

Hichem Boudali, Member, IEEE, Pepijn Crouzen, and Mariëlle Stoelinga

Abstract—Fault trees (FTs) are among the most prominent formalisms for reliability analysis of technical systems. Dynamic FTs

extend FTs with support for expressing dynamic dependencies among components. The standard analysis vehicle for DFTs is state-

based, and treats the model as a continuous-time Markov chain (CTMC). This is not always possible, as we will explain, since some

DFTs allow multiple interpretations. This paper introduces a rigorous semantic interpretation of DFTs. The semantics is defined in such

a way that the semantics of a composite DFT arises in a transparent manner from the semantics of its components. This not only

eases the understanding of how the FT building blocks interact. It is also a key to alleviate the state explosion problem. By lifting a

classical aggregation strategy to our setting, we can exploit the DFT structure to build the smallest possible Markov chain

representation of the system. The semantics—as well as the aggregation and analysis engine is implemented in a tool, called CORAL.

We show by a number of realistic and complex systems that this methodology achieves drastic reductions in the state space.

Index Terms—Fault trees, reliability, compositionality, formal models, framework.

Ç

1 INTRODUCTION

RELIABILITY engineering is an important activity in the
design of today’s computer and communication sys-

tems. For safety critical systems, such as airplanes and
nuclear power plants, failures can be life threatening; for
other applications, such as online ticket vending systems,
failures often incur a high cost.

One of the most popular formalisms to model and analyze
systems’ reliability is the fault tree (FT) formalism [27].
Dynamic fault trees (DFTs) [13], [8], [26] extend standard (or
static) FTs by defining additional gates called dynamic gates.
These gates allow the modeling of complex system compo-
nents’ behaviors and interactions, which greatly increases the
modeling capabilities of the standard FTs. Like standard FTs,
dynamic fault trees are a high-level formalism for computing
reliability measures of computer-based systems. For over a
decade now, DFTs have been experiencing a growing success
among reliability engineers.

DFTs, like FTs, describe the system failure in terms of the
failure of its components. A DFT is a tree (or rather a directed
acyclic graph (DAG), since subtrees can be shared) in which
the leaves are basic events (BEs) and the other elements are
gates. A BE typically models the failure of a physical
component and is governed by a probability distribution.
In this paper, we consider exponential distributions and

phase-type distributions, the latter allowing to approximate

other probability distributions with arbitrary precision. Gates

express how component failures induce system failures and

are either static (AND, OR, and the K/M voting gate) or

dynamic (Priority AND, SPARE, and the Functional Depen-

dency gate). DFTs are typically used to compute system

unreliability, that is, the probability that the system fails

during a specified period of time (usually called mission

time) and under given conditions. Other measures such as the

average time until a failure occurs can be computed as well.
Despite their success, current DFT analysis methods

have several (mutually related) drawbacks as follows:

1. Existing analysis methods (most notably, the DIF-
Tree method [21] implemented in analysis tools like
Galileo [25] and Relex [23]) typically convert a DFT
into a continuous-time Markov chain (CTMC) whose
states are vectors of modes (up, failed, active,
inactive) for each BE. Hence, the size of the state
space is exponential in the number of basic events.

2. These methods impose rather severe syntactic
restrictions on DFTs, greatly diminishing the model-
ing flexibility and power of DFTs. Most notably, DFT
spare components must be BEs, whereas spare
components, in practice, are often entire subsystems.

3. The DFT semantics is rather imprecise and the lack
of formality has, in some cases, led to undefined
behavior and misinterpretation of the DFT model.

4. DFTs lack comprehensive modular analysis. DIFTree
uses a limited form of compositional analysis: it
solves in a separate way all stochastically indepen-
dent subtrees of a static gate, provided none of its
ancestors in the tree is a dynamic gate. Then it
combines, using Binary Decision Diagrams, their
analysis results to obtain the result for the entire DFT.
However, this method is not applicable to dynamic
gates. In particular, those DFTs whose top node is a
dynamic gate cannot be analyzed compositionally.

128 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

. H. Boudali is with the European Space Agency/ESTEC (TEC-QQD),
Keplerlaan 1, PO Box 299, 2200 AG Noordwijk ZH, Netherlands.
E-mail: hichem.boudali@esa.int.

. P. Crouzen is with the Dependable Systems and Software Group, Computer
Science Department, Saarland University, Campus Saarbrücken, 66123
Saarbrücken, Germany. E-mail: crouzen@cs.uni-saarland.de.

. M. Stoelinga is with the Formal Methods and Tools Group, Department of
Computer Science, University of Twente, PO Box 217, 7500 AE Enschede,
Netherlands. E-mail: marielle@cs.utwente.nl.

Manuscript received 15 Feb. 2008; revised 15 June 2009; accepted 7 Sept.
2009; published online 17 Nov. 2009.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number
TDSCSI-2008-02-0033.
Digital Object Identifier no. 10.1109/TDSC.2009.45.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

5. The current methods are difficult to extend or to
modify.

In this paper, we present a framework for DFT analysis
based on I/O-IMCs that greatly alleviates these drawbacks.
I/O-IMCs are a powerful and versatile formalism to model
and analyze stochastic system behavior, and have been
used in a number of applications, ranging from telecom-
munication systems [18] to railway networks [3] and
multiprocessor arrays [11]. I/O-IMCs extend CTMCs with
input, output, and internal actions, used for communica-
tion between several I/O-IMCs. They are equipped with a
parallel composition operator, allowing one to build larger
I/O-IMCs from smaller ones, and with powerful mini-
mization (a.k.a. lumping) techniques to reduce the state
space of an I/O-IMC.

The core of our methodology is a compositional semantics
of DFTs in terms of I/O-IMCs. That is, we translate each DFT
element (i.e., gate or BE) into one or more I/O-IMCs—ob-
taining these semantics turned out to be nontrivial, and
required a careful reexamination and generalization of the
concept of spare activation. Then, the semantics of an entire
DFT is obtained as the parallel composition of all DFT
element I/O-IMCs. Since these I/O-IMCs semantics pin
down the meaning of a DFT in a mathematically precise way,
we lift drawback 3 mentioned above. Relatedly, Coppit et al.
[10] presented a formal semantics in Z. The main difference
between the formal specification in [10] and the formal
specification used in this paper is that in our framework, we
use a process algebra-like formalism (i.e., I/O-IMC), which
comes with two very powerful concepts, namely parallel
composition and aggregation/minimization.

Since composing all element I/O-IMCs at once would
give the same blowup as the DIFTree method, we use the
compositional aggregation method to reduce the size of the
models. That is, we compose two I/O-IMCs, hide actions
that are no longer needed for communication with other
components, and minimize them. We repeat this process
until all elements I/O-IMCs have been composed. While
this method is still exponential in worst case, our experi-
ments show that serious reductions (one or two orders of
magnitude) are realized in practice. Thus, our methodology
relieves drawback 1 mentioned above. Since this analysis
method is fully compositional, that is, the analysis of a DFT
(i.e., its underlying I/O-IMC) is obtained from analysis
results of its components (i.e., lumped I/O-IMCs of
submodels), we also lift drawback 4.

We note that the order in which we compose these I/O-
IMCs matters for the size of the intermediate I/O-IMC
models, but not for the final result. We employ heuristics,
based on the way individual I/O-IMC models communicate
with each other, to obtain smart composition orders. These
models have specific properties (acyclicity) that we exploit
by tailored algorithms. Also, it turns out that our techniques
require much lighter syntactic restrictions than existing
DFT methodologies. Any subsystem can now be used as a
dependent event and any activation independent subsystem
(see Section 4) can be used as a spare component. Hence,
drawback 2 is alleviated. Finally, we show how the current
DFT semantics can readily be extended or modified; we
present extensions with inhibition, mutual exclusion, and
repair, thus, addressing drawback 5.

We have implemented our DFT framework in a tool called
CORAL. The tool derives all I/O-IMC models and composes
them using the CADP tool set [15], which is also used to
compute the system reliability. We used CORAL to analyze
nine case studies, including ones showing systems with
spare and dependent event subsystems that are currently not
supported by any other DFT tool and a system showing the
need for nondeterminism. We have compared our tool with
Galileo and our experiments show that, in almost all cases,
our tool is much faster and generates significantly smaller
models (where we consider the largest model encountered
during analysis).

This paper combines and extends the work previously
carried out in [7] and [5]. In particular, our contributions in
this paper are the following:

1. A complete semantics of all DFT elements: Whereas
[7] and [5] describe the semantics of DFT gates for a
specific number of inputs, we cover here the general
case, employing the IOIML notation. Moreover, we
allow phase-type distributions as failure distribu-
tions of basic events.

2. A complete proof for the congruence theorem.
3. A more extensive set of case studies including systems

with spare and dependent event subsystems, which
are not currently supported by any other DFT tool and
examples showing the need of nondeterminism.

4. CORAL, our prototype tool for analyzing DFT using
the I/O-IMC semantics. It employs the specialized
I/O-IMC minimization algorithm from [12], yielding
much faster computation times than [7] and [5].

1.1 Organization of the Paper

The remainder of the paper is organized as follows: In
Section 2, we introduce DFTs, and in Section 3, we discuss
I/O-IMCs. In Sections 4 and 5, we present the formal DFT
syntax and semantics, respectively. In Section 6, we show,
through three examples, how one can readily extend the
existing DFT formalism. Section 7 presents the composi-
tional aggregation technique and Section 8 describes the
CORAL tool. Finally, in Section 9, we present a number of
case studies, and Section 10 concludes the paper.

2 DYNAMIC FAULT TREES

As described in Section 1, DFTs and FTs are directed acyclic
graphs describing the system failure in terms of the failure
of its components. Their leaves are labeled with basic events,
and nonleaves with gates.

1. BE. A BE, graphically depicted by a circle (see Fig. 1g),
typically represents the failure of a basic system
component; its failure behavior is governed by a
probability distribution. In order to describe these
distributions using I/O-IMCs, this paper considers
exponential and (acyclic) phase-type distributions,
the latter allowing to approximate other probability
distributions with arbitrary precision.

An exponential distribution has a parameter � that
represents the component’s failure rate (i.e., number
of failures per time unit). A BE has three modes of
operation: dormant, active, and failed. In dormant (or
standby) mode, the BE failure rate � is reduced by a

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 129

factor � 2 ½0; 1� called dormancy factor. Thus, the BE
failure rate in standby mode is � ¼ ��. In active
mode, the failure rate is unchanged and equal to �.
The dormancy is relevant when the BE is used as a
spare (more details on spare BEs are provided
below). In failed mode, the BE, as the name suggests,
has failed and remains in that state (i.e., we do not
consider repairable systems at this point).

Phase-type basic events (PHBEs) are basic events
that fail after a delay governed by a phase-type (PH)
distribution [22] with a finite number of phases. The
passive behavior of a PHBE is also described by a
PH distribution with a finite number of phases.
Activation of a PHBE is described by a function,
which links passive phases to active phases. When a
PHBE is activated, it moves from its current passive
phase to the associated active phase. Note that a BE
(with exponential distribution) is a special case of a
PHBE, where both active and passive distributions
have only one phase.

2. Gates. Nonleaf elements are called gates and express
how component failures induce system failures.
Their graphical representation is given in Figs. 1a,
1b, 1c, 1d, 1e, and 1f. Each gate has one or more
inputs, corresponding to outputs of other elements,
and exactly one output. It often represents or maps
to a subsystem contained in the whole system, the
top element representing the system failure. When
the failure event of a BE or a gate occurs, we use the
terms failing, occurring, or firing interchangeably.

Gates can either be static (AND, OR gate, and
VOTING (also called K/M) gate) or dynamic.
Static gates (which are the only gates in static fault
trees) are combinatorial: they are only sensitive to
the combinations of failures of their inputs and not
to their order.

Dynamic gates allow the modeling of sequence
dependencies (via the priority AND (PAND) gate),
functional dependencies (functional dependency
(FDEP) gate), and spare management and alloca-
tion (via the SPARE gate).1 Thus, DFTs enrich the

FT formalism with powerful and yet easy-to-use
modeling capabilities.

Below, we describe all DFT gates.
3. AND gate. The AND gate fails when all of its

inputs fail.
4. OR gate. The OR gate fails when at least one of its

inputs fails.
5. VOTING gate. A K=M VOTING gate fails when at

least K (called the threshold) out of its M inputs fail.
6. PAND gate. The PAND gate fails when all its inputs

fail and fail from left to right (as depicted in the
figure) order.

7. FDEP gate. The functional dependency gate consists
of a trigger event (i.e., a failure event) and a set of
dependent events. When the trigger event occurs, it
causes all the dependent components to become
inaccessible or unusable. Essentially, once a depen-
dent component is triggered, it is assumed to have
failed. Dependent events, as originally defined in
[13], need to be BEs. This restriction will be later
lifted in our framework. All dependent events and
the trigger event are considered to be inputs to the
FDEP gate. The FDEP gate’s output is a “dummy”
output (i.e., it is not taken into account during the
calculation of the system failure probability).

8. SPARE gate. The SPARE gate has one primary input
and zero (which is a degenerated case) or more
alternate inputs called spares. The primary input of
a SPARE gate is initially powered on (i.e., in active
mode) and the alternate inputs are in standby
mode. When the primary fails, it is replaced by the
first available alternate input (which then switches
from standby mode to active mode). This operation
is called spare activation and causes the spare to
switch from dormant to active mode. In turn, when
this alternate input fails, it is replaced by the next
available alternate input, and so on and so forth.
Note that multiple spare gates can share a pool of
spares. When the primary unit of any of the spare
gates fails, it is replaced by the first available (i.e.,
not failed or not already taken by another spare
gate) spare unit, which becomes, in turn, the active
unit for that spare gate. The SPARE gate fails when
the primary fails and all its spares are failed or
unavailable.

If all SPARE inputs are BEs, two special cases arise
depending on the spare’s dormancy factor �. If � ¼ 0, the
spare is called a cold spare and cannot, by definition, fail
before the primary. When � ¼ 1, the spare is called a hot
spare and its failure rate is the same whether in standby or
in active mode. If 0 < � < 1, the spare is called a warm spare.

Example. Fig. 1g shows a DFT modeling a road trip.
Looking at the top PAND gate, we see that the road trip
fails (i.e., we are stuck on the road) if the car fails after the
mobile phone has failed; if the car fails first, then we can
call the road services to tow the car and continue our
journey. The car subsystem fails if either the engine fails
or the tires subsystem fails. The car is equipped with a
spare tire, which can be used to replace any of the
primary tires; when a second tire fails, the tires subsystem
fails, causing, in turn, a car failure. Thus, we model the
tires subsystem by four spare gates, each having a

130 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 1. DFT gates and example. (a) AND gate, (b) OR gate, (c) VOTING
gate, (d) PAND gate, (e) SPARE gate, (f) FDEP gate, and (g) DFT
example.

1. A fourth gate called “Sequence Enforcing” gate, introduced in [13], can
be emulated using a cold spare gate.

primary tire and all sharing a spare tire. The spare tire is a

cold spare, i.e., its failure rate is zero in standby mode.

2.1 Simultaneity and Nondeterminism

In earlier development of the DFT modeling formalism, the

semantics (i.e., the model interpretation) of some DFT

configurations, where FDEP gates are used, remained

unclear. For instance, in Fig. 2, the FDEP gate triggers (in

both configurations) the failures of two basic events. Does

this mean that the dependent events fail simultaneously,
and if so, what is the state of the PAND gate in the left

configuration and which spare gate gets the shared spare S

in the right configuration? These examples were also

discussed in [10], and we believe that this is an inherent

nondeterminism in these models. Whereas in [10], these

special cases are dealt with by systematically removing the

nondeterminism by transforming it into a probabilistic (or

deterministic) choice. In our framework, we allow non-

determinism should this be intentional or unintentional. If

the nondeterminism was not intended, then its presence

(which is easily detected) indicates that an error occurred

during the model specification. Nondeterminism could also

be an inherent characteristic of the system being analyzed,

and therefore, should be explicitly modeled.
In the I/O-IMC formalism, the DFT configurations

depicted in Fig. 2 will be interpreted as follows: Whenever

the dependent events failure has been triggered, then the

trigger event (the cause) happened first and was then

immediately (with no time elapsing) followed by the failure

of the dependent events (the effect). This adheres to the

classical notion of causality. Moreover, the dependent events

fail in a nondeterministic order (i.e., essentially considering

all combinations of ordering). In this case, the final I/O-IMC

model is not a continuous-time Markov chain but rather a

continuous-time Markov decision process (CTMDP), which

can be analyzed by computing bounds of the performance

measure of interest [2]. As an example, we have modeled

and analyzed a simple nondeterministic case study (see

Section 9) using the MRMC model checker [19]. However,

the conversion of I/O-IMCs to CTMDPs, which closely

follows [17], has not yet been automated in the tool chain.

2.2 Lifting DFT Restrictions

Previously, DFT required all inputs to a SPARE gate and all

dependent events of an FDEP gate to be basic events. This

restriction greatly diminishes the modeling power of DFTs,

since it is very natural to have spare components that are

comprised of multiple components or subsystems. To lift

this restriction, we need to carefully reexamine the notion of

spare activation.

For primaries and spares that are complex systems, we

say that a BE b is a primary BE (or just primary) of a SPARE

gate G if b is contained in the subtree that constitutes the

primary of G. This is the case if there exists a path from b to

G whose last edge ends in the first input of G. Spare-BEs are

defined analogously.
The basic idea behind spare activation is that all BEs

that are primary-BEs of some SPARE gate are activated

from the beginning. A BE that is a spare-BE of some

SPARE gate gets activated as soon as one of its SPARE

parents is activated. Since spares can be shared, a BE can

have multiple SPARE parents.
When a BE is both a primary-BE and a spare-BE,

activation is unclear: is this BE activated from the beginning

or through the SPARE gate? To rule out such situations,

we require all primaries and all spares to be activation-

independent subtrees. This means that primaries and spares

are disjoint subtrees and that spares can only be shared via

their top node.
To illustrate the activation, consider Fig. 3a. Here, the

activation of module “spare” simply means the activation of

the BEs C and D. The AND gate has the same behavior

whether “spare” is active or not. In fact, whenever the SPARE

gate (i.e., “system”) is activated, it activates BEs A and B.
The behavior of all the non-SPARE gates is unchanged

whether they are used as spares or not; the SPARE gate

does behave differently when used as a spare. To illustrate

this, consider Fig. 3b. When “spare” is not activated (i.e.,

“primary” has not failed), BEs C and D are dormant; and

even if C (being a warm spare) fails, D remains dormant.

This is the same behavior as for the “spare” AND gate in

Fig. 3a. If now “spare” is activated, the activation signal is

only used to activate the primary C and D remains dormant

(this is clearly different from the AND gate “spare,” where

both BEs are activated). Should C fail and “spare” being in

its active mode, then D is activated. Thus, “system”

activates “spare,” while “spare” activates D.

3 INPUT/OUTPUT INTERACTIVE MARKOV CHAINS

3.1 The I/O-IMC Model

Input/output interactive Markov chains (I/O-IMCs) are a

combination of input/output automata (I/O-automata) [20]

and interactive Markov chains (IMCs) [16].
I/O-IMCs distinguish two types of transitions: 1) Inter-

active transitions labeled with actions; 2) Markovian transitions

labeled with rates �, indicating that the transition can only

be taken after a delay that is governed by an exponential

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 131

Fig. 2. The occurrence of nondeterminism.

Fig. 3. Complex spare modules.

distribution with parameter �. Inspired by I/O-automata,
actions can be further partitioned into the following:

1. Input actions (denoted by a?) are controlled by the
environment. They can be delayed, meaning that a
transition labeled with a? can only be taken if
another I/O-IMC performs an output action a!. A
feature of I/O-IMCs is that they are input-enabled,
i.e., in each state, they are ready to respond to any of
their inputs a?. Hence, each state has an outgoing
transition labeled with a?.

2. Output actions (denoted by a!) are controlled by the
I/O-IMC itself. In contrast to input actions, output
actions cannot be delayed, i.e., transitions labeled
with output actions must be taken immediately. An
observable action is either an input or an output
action.

3. Internal actions (denoted by a;) are not visible to the
environment. Like output actions, internal actions
cannot be delayed.

States are depicted by circles, initial states have an incoming
arrow without origin, Markovian transitions are denoted by
dotted lines, and interactive transitions by solid lines. Fig. 4
shows an I/O-IMC B with two Markovian transitions: one
from state 1 to state 2 and one from 3 to 4, both transitions
with rate �. The I/O-IMC has one input action a?. To ensure
input enabling, we specify a?-self-loops in states 3, 4, and 5.2

Note that state 1 exhibits a race between the input and the
Markovian transition: in 1, the I/O-IMC delays for a time
that is governed by an exponential distribution with
parameter �, and moves to state 2. If, however, before that
delay ends, an input a? arrives, then the I/O-IMC
transitions to 3. The only output action b! leads from 4 to 5.

Formally, an I/O-IMC is defined as follows:

Definition 1 (I/O-IMC). An input/output interactive
Markov chain P is a tuple hS; s0; A;!;!Mi, where:

. S is a set of states.

. s0 2 S is the initial state.

. A is a set of discrete actions, where A ¼ ðAI;AO;AintÞ
is partitioned into a set of input actions AI , output
actions AO, and internal actions Aint. This partition is
called the action signature of P. We write AV ¼
AI [AO for the set of visible actions of P.

. !� S �A� S is a set of interactive transitions. We
write s!a s0 for ðs; a; s0Þ 2! . We require that I/O-
IMCs are input-enabled:

8s 2 S; a? 2 AI � ð9s0 2 S � s!a?
s0Þ:

. !M� S � IR>0 � S is a set of Markovian transitions.

We write s!� Ms0 for ðs; �; s0Þ 2!M .

We denote the components of P by SP , s0
P , AP , !P , ! M

P ,

and omit the subscript P whenever clear from the context.

3.2 Parallel Composition and Hiding

The parallel composition operator allows one to build larger

I/O-IMCs out of smaller ones. We say that two I/O-IMCs

synchronize if either 1) they are both ready to accept the same

input action or 2) one is ready to output an action a! and the

other is ready to receive that same action (i.e., has input

action a?). I/O-IMCs are also equipped with a parallel
composition operator “k,” to build larger I/O-IMCs out of

smaller ones. The behavior of P ¼ QkR, i.e., the parallel

composition of I/O-IMCsQ andR is the joint behavior of its

constituent I/O-IMCs and can be described as follows:

1. If an action does not require synchronization (i.e., it

belongs to only one of the I/O-IMCs), then Q and R
can evolve independently, i.e., if Q (resp. R) can

make any transition (interactive or Markovian) and

behaves afterward as Q0 (resp. R0), the same

behavior is possible in the parallel context, i.e.,

QkR can evolve to Q0kR (resp. QkR0).
2. If an action of an interactive transition requires

synchronization, then both I/O-IMCs Q and R must

be able to perform that action at the same time, i.e.,

QkR evolves simultaneously into Q0kR0. Note that

when an output and an input action synchronize, the
result is an output action.

Fig. 5 illustrates the parallel composition of I/O-IMCs A

and B, where synchronization is on the shared action a.

Formally, we have the following:

Definition 2 (Parallel composition). Let P and Q be two

I/O-IMCs.

1. P and Q are composable if AO
P \AO

Q ¼ Aint
P \AQ ¼

AP \Aint
Q ¼ ;.

2. If P and Q are composable, their composition PkQ is

the I/O-IMC

�
SP � SQ;

�
s0
P ; s

0
Q
�
;
��
AI
P [AI

Q
�
n
�
AO
P [AO

Q
�
;�

AO
P [AO

Q
�
;
�
Aint
P [Aint

Q
��
;!PkQ;! M

PkQ
�
;

132 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

2. In the sequel, we often omit these self-loops for the sake of clarity and
simplicity of the I/O-IMC representation.

Fig. 4. Two examples of I/O-IMCs.
Fig. 5. I/O-IMC (hide a in AkB).

where:

!PkQ ¼ fðs; tÞ!
a
PkQðs0; tÞ j s!

a
Ps
0^

a 2 AP nAQg
[fðs; tÞ!a PkQðs; t0Þ j t!

a
Qt
0^

a 2 AQ nAPg
[fðs; tÞ!a PkQðs0; t0Þ j s!

a
Ps
0 ^ t!a Qt0^

a 2 AP \AQg

! M
PkQ ¼

�
ðs; tÞ!� Mðs0; tÞ j s!� M

P s
0�

[
�
ðs; tÞ!� Mðs; t0Þ j t!� M

Q t
0�:

Like in process algebras, the hiding operator hide B in P
makes internal all actions in a set B of output actions such
that no further synchronization is possible over actions in B
(e.g., in Fig. 5, we hide action a).

Definition 3 (Hiding). Let B � AO
P be a set of output actions.

We define hide B in P as the I/O-IMC given by
ðSP ; s0

P ; ðAI
P ; A

O
PnB;Aint

P [BÞ;!P ;!M
P Þ.

3.3 Weak Bisimilarity

State equivalences, such as bisimulation relations, are
crucial in reducing the size of the model to be analyzed.
By grouping together equivalent states, one obtains a model
that is equivalent but smaller. This operation is called
aggregation, lumping, or minimization. For two states s; t to be
bisimilar, one requires that all a-transitions in state s can be
mimicked in state t. Weak bisimulations abstract from
internal computation, thus, the matching transition in t may
be a weak transition, consisting of some internal steps, an
a step (omitted if a is internal), and some more internal
steps. For Markovian transitions, we compare the accumu-
lated rates in s and t.

In this way, bisimilar states have the same observable
behavior, and in particular, bisimilar states exhibit the same
performance properties.

Our notion of weak bisimilarity for I/O-IMCs generalizes
the one for IMCs [16]. Apart from the distinction between
input and output transitions, an important difference
between our approach and that of [16] is that we ignore
Markovian self-loops (as in [9]), which drastically reduces
the sizes of the I/O-IMC models.

Let s be a state and C � S be a subset of states in an
I/O-IMC P. We use the following notations:

. The accumulated rate from s into the set of states C
is denoted by

�Mðs; CÞ ¼
X�

j� j s!� Ms0 ^ s0 2 Cj
�
;

where fj � � � jg denotes a multiset of transition rates.
. State s is stable if it has no outgoing internal or

output transitions.

. !int
is the internal transition relation, i.e., we have s!int

t

if s!a t for some a 2 Aint. The weak transition relation

¼) arises from! by abstracting from internal steps.

Thus, we have s ¼) t if there is a sequence

s!int � � �!int
t:

We have s ¼)
a
s0 if there exist t; t0 such that 1) s ¼) t,

t!a t0 and t0 ¼) s0 or 2) a 2 Aint ^ s ¼) s0.
. The set Cint ¼ fs0 j 9s 2 C � s0 ¼) sg contains all

states with a weak step into set C.

Definition 4 (Weak bisimulation). Let P ¼ hS; s0; A;! ;
!Mi be an I/O-IMC. Let R be an equivalence relation on S,
then R is a weak bisimulation iff for all ðs; tÞ 2 R, a 2 A:

1. s ¼)
a
s0 implies that there is a weak transition t ¼)

a
t0

with ðs0; t0Þ 2 R.
2. s ¼) s0 and s0 stable imply that there is t0 such that

t ¼) t0 and t0 is stable and �Mðs0CintÞ ¼ �Mðt0CintÞ,
for all equivalence classes C 2 ðS=RÞ n f½s0�Rg.

The states s and t in P are weakly bisimilar, notation s �P t, if
and only if there exists a weak bisimulation R with ðs; tÞ 2 R.
Weak bisimilarity for an I/O-IMCP is defined as the union of
all weak bisimulations on P:

�P¼
[
fR j R is a weak bisimulation on Pg:

We often omit the name of the I/O-IMC if it is clear from context.

The following theorem states that our notion of weak
bisimilarity enjoys the expected properties: �P is the
largest weak bisimulation relation on P and weak bisimi-
larity is a congruence with respect to parallel composition
and hiding. Its proof can be found in the Appendix:

Theorem 1. Let P and Q be two I/O-IMCs with identical action
signatures, R be an I/O-IMC composable with P and Q, and
B � AO

P , then:

1. �P is a weak bisimulation on P and it is the largest
weak bisimulation on P.

2. P � Q implies PkR � QkR.
3. P � Q implies RkP � RkQ.
4. P � Q implies hide B in P � hide B in Q.

Fig. 6 shows the result after applying weak bisimulation
on the I/O-IMC resulting from the composition of A and B
and the hiding (i.e., made internal) of action a.

3.4 IOIML

IMC modeling language (IML) [16] provides a process
algebra-based syntax for specifying IMCs in an easy and
concise way. We extend IML to I/O-IMC modeling
language (IOIML), which provides a similar syntax for
specifying I/O-IMCs. We use IML to describe the semantics
of DFT elements in a parametric way.

We assume that there is a countable set of process variablesV
and a countable action signature A ¼ ðAI;AO;AV Þ.
Definition 5 (IOIML). Let � 2 IR>0, a 2 A, and X 2 V . We

define the language IOIML as the set of expressions given by
the following grammar:

E ::¼ 0 j a:E j ð�Þ:E j E þ E j X j x:¼E j? :

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 133

Fig. 6. Aggregation of hide a in AkB.

The intuitive meaning of the language constructs is
described below:

. The terminal symbol 0 describes a terminated
behavior i.e., the process 0 cannot perform any
output or internal actions and absorbs all inputs of
the I/O-IMC.

. The expression a:E may interact on action a and
afterward behave as expression E. We say that E is
action prefixed by a. As before, we postfix actions
with “?”, “!”, or “;” according to their role as inputs,
outputs, or internal actions.

The remaining constructs are identical to their IML counter-
parts as follows:

. The expression ð�Þ:E, a delay prefix expression,
describes a behavior that will behave as expression
E after a delay that is governed by an exponential
distribution with a mean duration of 1=� time units.

. The expression E þ F describes two alternatives. It
may either exhibit the behavior of expression E or
the behavior of expression F .

. The expression x:¼E describes a recursively defined
behavior. Assuming that the variable X appears
somewhere inside expression E, the meaning is as
follows: Whenever the variable X is encountered
during the evolution of the expression, the expres-
sion will reinitialize its behavior to x:¼E.

. The symbol ? is intended to represent an ill-defined
behavior. We will not use this symbol, but it is
included for completeness.

The formal semantics of an IOIML expression, i.e., its

underlying I/O-IMC, can be obtained in a way similar to

the semantics for IML (see [16]). Since the I/O-IMC P
obtained in this way need not to be input-enabled, we

complete the expression by adding self-loops s!a?
s when-

ever a? is not enabled from state s. An IOIML expression,

therefore, must be accompanied by the action signature of

the I/O-IMC it describes to be meaningful.
The IOIML description of the I/O-IMC B in Fig. 4 is

P1 ¼ ð�Þ:P2þ a?:P3; P3 ¼ ð�Þ:P4;

P2 ¼ a?:P4; P4 ¼ b!:0:

3.5 IMCs versus I/O-IMCs

IMCs only distinguish between observable and internal
actions. All observable actions are delayable and commu-
nication is a handshake, i.e., synchronization on action a
only occurs when both IMCs involved are ready to perform
the a action. While IMCs could in principle be used to
model DFTs, we obtain more natural and more concise
models by introducing an I/O distinction: it is always the
failing DFT element that takes the initiative to notify its
failure to its parents in the DFT.

4 DFT SYNTAX

To formalize the syntax of a DFT, we first define the set E,
characterizing each DFT element by its type, number of
inputs, and possibly some other parameters. We use the

following notations: Given a set X, we denote by PðXÞ the
power set over X and by X� the set of all sequences over X.
For a sequence x 2 X�, we denote by jxj the length of the
sequence (also called list) and by ðxÞi the ith element in x.

Definition 6. The set E of DFT elements consists of the following
tuples. Here, k; n 2 ZZ�0 are natural numbers with 1 	 k 	 n
and �; � 2 IR>0 are rates:

. ðOR; nÞ, ðAND;nÞ, ðPAND;nÞ represent, respec-
tively, OR, AND, and PAND gates with n inputs.

. ðVOT; n; kÞ represents a voting gate with n inputs
and threshold k.

. ðSPARE; nÞ represents a SPARE gate with one
primary and n
 1 spares. By convention, the first
nondummy input to the SPARE gate is the primary
component.

. ðFDEP; nÞ represents an FDEP gate with 1 trigger
input event and n
 1 dependent input events. By
convention, the first nondummy input to the FDEP gate
is the trigger event.

. ðBE; 0; �; �Þ represents a BE, which has no inputs
(i.e., n ¼ 0), an active failure rate �, and a dormant
failure rate �.

. ðPHBE; 0; �A;QA; �P ;QP ; Þ represents a phase-
type BE, which has no inputs (i.e., n ¼ 0), an active
failure distribution with �A 2 ZZ�0 phases and gen-
erator matrix QA 2 IR�A��A , and a dormant failure
distribution with �P 2 ZZ�0 phases and generator
matrix QP 2 IR�P ��P . The activation of the PHBE is
described by the function : ½1; . . . ; �P � ! ½1; . . . ; �A�.

Given a tuple e 2 E, we write typeðeÞ for the first item in e,
and arityðeÞ for the second.

We introduce several notions for graphs (potentially
with cycles) whose nodes are labeled with DFT elements.
An edge in such graphs from v to w means that the output
of the DFT element associated with v is an input to the
DFT element of w. Since the order of inputs to a gate matters
(e.g., for a PAND gate), the inputs to v are given as a
list inðvÞ, rather than as a set.

Definition 7. An element-labeled graph is a triple D ¼ ðV ; in; lÞ,
where

. V is a set of vertices.

. in : V ! V � is an input function that assigns to each
vertex a list of inputs.

. l : V ! E is a labeling function that assigns to each
vertex a DFT element.

We write typeðvÞ for typeðlðvÞÞ and arityðvÞ for arityðlðvÞÞ.

Given in, we define the set of edges Ein by fðv; wÞ 2
V 2j9i:v ¼ ðinðwÞÞig. Thus, Ein contains all pairs ðv; wÞ such
that v appears as an input of w. We also define the pruned
input function in0 that contains only the nondummy
connections between vertices (recall that the outputs of
FDEP gates are dummy outputs). Thus, in0ðvÞ : V ! V � is the
function in0ðvÞ that arises from inðvÞ ¼ v1v2 . . . vn by remov-
ing all elements vi s.t. typeðviÞ ¼ FDEP . Consequently, the
set of edges Ein0 is the set fðv; wÞ 2 V 2jtypeðvÞ 6¼ FDEP ^
9i:v ¼ ðinðwÞÞig containing all pairs ðv; wÞ such that v appears

134 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

as a nondummy input of w. Finally, for the sake of spare

activation, we define another pruned input function in00 that

ignores all inputs, except the trigger input, of allFDEP gates.

Thus, in00ðvÞ : V ! V � is the function in00ðvÞ that arises from

inðvÞ ¼ v1v2 . . . vn by keeping only the first element (i.e., the

trigger) v1 for all v 2 V s.t. typeðvÞ ¼ FDEP . Consequently,

the set of edges Ein00 is the set

fðv; wÞ 2 V 2j9i:ðtypeðwÞ 6¼ FDEP ^ v ¼ ðinðwÞÞiÞ _ ðtypeðwÞ
¼ FDEP ^ v ¼ ðinðwÞÞ1Þg:

We write E for Ein, E0 for Ein0 , and E00 for Ein00 if in is clear

from the context.
Given a DFT node v, the subtree below v consists of all

vertices with a path in E00 leading to v. Node v is activation

independent if there are no edges leading from stbðvÞ to a

node outside stbðvÞ, except for the outgoing edges of v.

Definition 8. Let D be a DFT and v 2 V a node in D.

. Then subtree below v, denoted by stbðvÞ, is the set

fw j 9v0; v1 . . . vn 2 V ; n � 0:v0 ¼ w;
vn ¼ v ^ 80 	 i < n:ðvi; viþ1Þ 2 E00g:

. Vertex v is activation independent if 8w 2 stbðvÞ;
w0 2 V n stbðvÞ:ðw;w0Þ 2 E00 ¼) w ¼ v.

Note that in the definition of an activation-independent
vertex, we ignore the inputs, except the trigger input, to
FDEP gates as, by convention, activation signals do not
propagate through these edges. In the sequel, we will
generally refer to an activation-independent vertex as
simply an independent vertex.

Finally, we define a DFT as an element-labeled graph D
with several restrictions. These restrictions, which are

checked syntactically by our tool, ensure that the DFT

contains no anomalies and that it has a well-defined

semantics.

Definition 9. A DFT is an element-labeled graph D with the

following restrictions:

. ðV ;E0Þ forms a directed acyclic graph.

. All inputs to a DFT element must be connected to some
node inD, i.e., for all v 2 V , we have arityðvÞ ¼ jinðvÞj.

. All DFT gates must have at least one nondummy
input:3 for all v 2 V with typeðlðvÞÞ 6¼ BE and
typeðlðvÞÞ 6¼ PHBE, we have jin0ðvÞj � 1.

. There is a unique top element in D, i.e., a non-FDEP
element whose output is not connected. That is, there
exists a unique v 2 V , typeðvÞ 6¼ FDEP , such that
there is no w 2 V with ðv; wÞ 2 E. This unique v is
denoted by TD or by T if D is clear from the context.

. The first nondummy input of a SPARE gate (i.e., its
primary) cannot be an input to another SPARE gate,
i.e., primary components cannot be shared: If v ¼
ðin0ðwÞÞ1 ¼ ðin0ðw0ÞÞi a n d typeðwÞ ¼ typeðw0Þ ¼
SPARE, then w ¼ w0.

. Nondummy inputs (primary and spare components) to
a SPARE gate must be outputs coming from activa-

tion-independent vertices (see Section 5 for details): for
all ðv; wÞ 2 E0 with typeðwÞ ¼ SPARE, we have that
v is activation independent.

. An output cannot be twice or more the input of the
same gate: For all w 2 V and 1 	 i; j 	 jinðwÞj with
ðinðwÞÞi ¼ ðinðwÞÞj, we have i ¼ j.

5 DFT SEMANTICS

In this section, we first define the semantics of the DFT
elements by giving the I/O-IMC for each of the tuples in E.
We also need two auxiliary I/O-IMCs: the activation
auxiliary, which activates BEs and SPARE gates when they
change from dormant to active mode, and the firing
auxiliary that handles the dependencies between events as
modeled by the FDEP gate. Then, we obtain the semantics
of the whole DFT from the parallel composition of the
semantics of its elements and the auxiliaries.

The semantics of each non-FDEP element in E (denoted
by ½½. . .��ELT) is a function, which takes as input a number of
actions and returns an I/O-IMC. The FDEP gate is handled
through the use of firing auxiliaries. We present the
graphical descriptions for BEs and gates with two or three
inputs and we use the language IOIML to specify the
semantics for the general case.

Basic event I/O-IMC model. As pointed out in Section 2,
a BE has a different failing behavior depending on its
dormancy factor. Fig. 7 shows the (parametrized) I/O-IMCs
associated with a cold, warm, and hot BE,4 i.e., it shows the
functions ½½ðBE; 0; �; �Þ��ELT : A2 ! IOIMC taking as argu-
ments an activation signal a? and a firing signal f!.

In IOIML, the I/O-IMC ½½ðBE; 0; �; �Þ��ELTða; fÞ has action
signature ðfag; ffg; ;Þ and is described by the following
expression E0:

E0 ¼
a?:E1 þ ð�Þ:E2; if � > 0;

a?:E1; otherwise;

�

E1 ¼ ð�Þ:E2;

E2 ¼ f !:0:

Phase-type basic event I/O-IMC model. A PHBE does
not fail after an exponential delay, but rather after a delay
governed by a phase-type (PH) distribution [22]. Here, the
phase-type distributions for failure in either passive or
active mode are described by absorbing CTMCs. A PHBE
is described by the tuple ðPHBE; 0; �A;QA; �P ;QP ; Þ,
where �A; �P 2 ZZ�0 denote the number of phases of the
active and passive PH distributions, respectively. Matrices
QA : ½1; �A� � ½1; �A� ! IR and QP : ½1; �P � � ½1; �P � ! IR are
the generator matrices of the PH distributions.5 Finally,
the function : ½1; �P � ! ½1; �A� matches passive phases to

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 135

Fig. 7. The I/O-IMCs ½½ðBE; 0; �; 0Þ��ELTða; fÞ, ½½ðBE; 0; �; �Þ��ELTða; fÞ,
and ½½ðBE; 0; �; �Þ��ELTða; fÞ, modeling the semantics of a cold, warm,
and hot BE.

3. Otherwise, the gate should be removed. 4. The hot BE I/O-IMC can be reduced to:
J
!� �!f ! �.

active phases. If the basic event is activated while its
passive failure distribution is in phase i, then the I/O-IMC
will move to phase ðiÞ of the active failure distribution.
In the case of a cold spare, the number of passive phases
is set to 1 with the only entry in Qp being 0. This is
interpreted as being the PH representation with a single
state that cannot reach the absorbing state. This represen-
tation, in fact, does not represent a true PH distribution,
but the semantics is clear: the spare can never fail when
it is in passive mode. For other PHBEs, the generator
matrices must have strictly negative numbers on the
diagonal and positive numbers elsewhere. Furthermore,
the sum of each row must be negative.

In IOIML, we find action signature ðfag; ffg; ;Þ for
the I/O-IMC ½½ðPHBE; 0; �A;QA; �P ;QP ; Þ��ELTða; fÞ. The
I/O-IMC is described by the expression EP;1, below i 2
½1; �P � and k 2 ½1; �A�:

EP;i ¼

a?:EA; ðiÞ; if QP ði; iÞ ¼ 0;

a?:EA; ðiÞ þP
1	j	�P^i6¼jðQP ði; jÞÞ:EP;j þ�

P

1	j	�P QP ði; jÞ
�
:EF ; otherwise;

8>>>>>><
>>>>>>:

EA;k ¼
X

1	j	�A^k6¼j
ðQAðk; jÞÞ:EA;j þ

�

X

1	j	�A
QAðk; jÞ

�
:EF ;

EF ¼ f !:0:

VOTING gate I/O-IMC model. Fig. 8 shows the

semantics of the voting gate ðVOT; 3; 2Þ element, i.e., the

function ½½ðVOT; 3; 2Þ��ELT : A4 ! IOIMC, taking as argu-

ments the output and three input signals of the VOTING

gate. The voting gate fires (action f1) when at least two of its

inputs fire (actions f2, f3, and f4).
To define the semantics of a ðVOT; n; kÞ gate with

n inputs and threshold k, we use the process variables
PV ðI; U; f; kÞ, that depend on three parameters; a set I

containing the firing signals of all inputs to the V OT gate, a
set U containing the firing signals of inputs that are still
operational, and an action f , f 62 I [U , being the V OT

gate’s own output firing signal. We set

PV ðI; U; f; kÞ ¼ f!:0 if jI n Uj � k;
PV ðI; U; f; kÞ ¼

X
a2I

a?:PV ðI; U n fa?g; f; kÞ if jI n U j < k:

Thus, PV ðI; U; f; kÞ emits the failure signal f ! after having
received k failure signals. The I/O-IMC of an n-input voting
gate is: ½½ðVOT; n; kÞ��ELTðfo; f1; . . . ; fnÞ ¼ PV ðff1; . . . ; fng;
ff1; . . . ; fng; fo; kÞwith action signature ðff1; . . . ; fng; ffog; ;Þ.
Note that the V OT gate6 does not have an activation signal as
this element does not exhibit a dormant or active behavior
as such.

AND gate I/O-IMC model. Fig. 9a shows the semantics
of the ðAND; 2Þ gate, i.e., the function ½½ðAND; 2Þ��ELT:
A3 ! IOIMC, taking as arguments the output and two
input signals of the AND gate. This I/O-IMC models the
fact that the AND gate fires (action f1) after it receives firing
signals from both its inputs (actions f2 and f3).

The semantics of an ðAND;nÞ gate with n inputs is
defined as a special case of the VOT gate, where the
threshold is equal to the number of inputs. The I/O-IMC
associated with an n-ary AND gate is then given by:

½½ðAND;nÞ��ELTðfo; f1; . . . ; fnÞ
¼ PV ðff1; . . . ; fng; ff1; . . . ; fng; fo; jff1; . . . ; fngjÞ

with action signature ðff1; . . . ; fng; ffog; ;Þ.
OR gate I/O-IMC model. Fig. 9b shows the semantics of

the OR gate ðOR; 2Þ element, i.e., the function ½½ðOR; 2Þ��ELT:
A3 ! IOIMC, taking as arguments the output and two input
signals of the OR gate. The OR gate fires (action f1) after it
receives one of its input firing signals (actions f2 or f3).

The semantics of an ðOR; nÞ gate with n inputs is defined
as a special case of the V OT gate with threshold equal to 1.
The I/O-IMC associated with an n-ary OR gate is then
given by:

½½ðOR; nÞ��ELTðfo; f1; . . . ; fnÞ
¼ PV ðff1; . . . ; fng; ff1; . . . ; fng; fo; 1Þ

with action signature ðff1; . . . ; fng; ffog; ;Þ.
PAND gate I/O-IMC model. Fig. 9c shows the semantics

of the PAND gate ðPAND; 2Þ element, i.e., the function
½½ðPAND; 2��ELT : A3 ! IOIMC, taking as arguments the
output and two input signals of the PAND gate. The PAND
gate fires (action f1) after all its inputs (actions f2 or f3) fire
from left to right order. If the inputs fire in the wrong order,
the PAND gate moves to an operational absorbing state
(denoted by X). The semantics of a ðPAND; nÞ gate with
n inputs is defined by means of the process variables
PP ðU; fÞ. However, now, U is given as a sequence of firing
signals of operational inputs, rather than a set, and f is the

136 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

5. As the initial distribution of our phase-type representation, we always
use the vector ½1; 0; . . . ; 0�, i.e., a single starting state. This is not a problem
since any PH representation can easily be transformed into a PH
representation with the same number of phases and a single starting state.

Fig. 8. The I/O-IMC ½½ðVOT; 3; 2Þ��ELTðf1; f2; f3; f4Þ.

6. This is true for all gates except the SPARE gate.

Fig. 9. (a) ½½ðAND; 2Þ��ELTðf1; f2; f3Þ, (b) ½½ðOR; 2Þ��ELTðf1; f2; f3Þ, and

(c) ½½ðPAND; 2Þ��ELTðf1; f2; f3Þ.

PAND gate’s own firing signal. The actions in U must occur

in the correct order for the PAND gate to fail. We write

U ¼ a1a2 . . . an. We set

PP ðU; fÞ ¼ f !:0 if U ¼ �;
PP ðU; fÞ ¼ ak?:PP ðU n fak?g; fÞ þX

a2Unfak?g
a?:0 if U ¼ akakþ1 . . . an:

Now PP ðU; fÞ emits the failure signal f! after having

received failure signals from all its inputs, which can only

happen if they occurred in the specified order, since

deviations from this order end in 0. We set

½½ðPAND;nÞ��ELTðfo; f1; . . . ; fnÞ ¼ PP ðf1 . . . fn; foÞ

with action signature ðff1; . . . ; fng; ffog; ;Þ.
FDEP gate I/O-IMC model. An FDEP gate does not have

a semantics in itself, but instead, it is used in combination

with the semantics of its dependent events. To model a

functional dependency, we define the firing auxiliary func-

tion FA : A2 � PðAÞ ! IOIMC. This (parametric) I/O-IMC

ensures that a dependent event fires either when the event

fails by itself or when its failure is triggered by the FDEP gate

trigger: Fig. 10a shows the FA to be applied in combination

with an event that is functionally dependent on n triggers.

Signal f2 corresponds to the failure of the dependent event

by itself; signals f3; f4; . . . ; fnþ2 correspond to the failures of

any of the triggers; and f1 corresponds to the failure of the

dependent event when also considering its functional

dependency upon the triggers. Hence, f1 is emitted as soon

as any signal from ff2; f3; . . . ; fnþ2g occurs. Thus, FA takes

as arguments two firing signals and a set of firing signals

(corresponding to all triggers of the dependent event).
The I/O-IMC FAðf1; f2; T Þ can, in fact, be interpreted as

an OR gate:

FAðf1; f2; T Þ ¼ ½½ðOR; jT j þ 1Þ��ELTðf1; f2; t1; . . . ; tnÞ;

where T ¼ ft1; . . . ; tng. The I/O-IMC FAðf1; f2; T Þ has the

following action signature: ðff2; t1; . . . ; tng; ff1g; ;Þ.
Note that the FDEP gate can trigger the failure of any

gate (representing a subsystem) and not only BE as

originally defined in Galileo [25]. Indeed, this extension

comes at no extra cost, and the I/O-IMC used in this case is

still the same as the one shown in Fig. 10a. Fig. 10b shows

such a configuration, where T triggers the failure of the

subsystem A. Note that subsystem A does not need to be an

independent module. Note also that the trigger T only

affects the failure of the gate A and none of its elements

below it such as the basic event C.

When lðvÞ,7 an element of the DFT, is triggered by multiple
FDEP gates, then we define Tv ¼ fft j 9w 2 V :ðv; wÞ 2 E0 ^
typeðwÞ ¼ FDEP ^ t ¼ ðin0ðwÞÞ1g as the set of trigger signals
of FDEP gates on which lðvÞ is dependent.

SPARE gate I/O-IMC model. Given the discussion in
Section 2.2, Fig. 11 shows the I/O-IMC of a SPARE gate
(the spare gate on the left side) sharing a spare with
another SPARE gate. When the SPARE gate is active, the
state reached after the primary fails is of particular interest.
In this state, a nondeterministic situation arises where
the spare can be activated by either of the SPARE gates
(signals aS;A! and aS;B?). This matches exactly the non-
deterministic choice described in Section 2.1.

The semantics of a SPARE gate having n
 1 spares is a
function A3 � ðA2 � PðAÞÞn
1 ! IOIMC that takes as inputs
the firing signal and the activation signal of the SPARE gate,
the firing signal of its primary, and a sequence of spare
tuples containing, for each spare, its firing signal, its
activation signal (output by the SPARE gate in question),
and a list of spare activation signals of the other SPARE
gates sharing that spare.

We now look at the IOIML definition of a spare gate with
n
 1 (possibly shared) spares ½½ðSPARE; nÞ��ELTðf1; a1; f2; SÞ,
where f1 is the failure signal of the spare gate, a1 is the
activation signal of the spare gate, f2 is the failure signal of the
primary component,S ¼ ðf3; a3;1; P3Þ; . . . ; ðfnþ1; anþ1;1; Pnþ1Þ,
and Pi ¼ fai;2; . . . ; ai;mg. The set Pi is, in fact, the set of all
activation signals of the ith spare by other spare gates. The
signals ax;y then correspond to the activation of spare x by
spare gate y. We separate the state space of the spare gate into
four distinct sets as follows:

. DO. The spare gate is dormant and its primary is
operational.

. DN. The spare gate is dormant and its primary is not
operational.

. AO. The spare gate is active and its primary is
operational.

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 137

Fig. 10. FAðf1; f2; ff3; f4 . . . ; fnþ2gÞ (left) and an example of the
FDEP gate extension (right).

7. Does not apply to FDEP gates.

Fig. 11. The semantics ½½ðSPARE; 2Þ��ELTðfA; aA; fP ; ðfS; aS;A; faS;BgÞÞ of
(left) SPARE gate.

. AN. The spare gate is active and its primary is not
operational.

We now define the functions DO;DN;AO;AN :

DOðf; a; fp; SÞ ¼ a?:AOðf; a; fp; SÞ þ
fp?:DNðf; a; fp; SÞ þX
ðk;l;MÞ2S

X
x2fkg[M

x?:DOðf; a; fp; S
 ðk; l;MÞÞ;

DNðf; a; fp; SÞ ¼ f !:0 if S ¼ ;;
DNðf; a; fp; SÞ ¼ a?:ANðf; a; fp; SÞ þX
ðk;l;MÞ2S

X
x2fkg[M

x?:DNðf; a; fp; S
 ðk; l;MÞÞ

if S 6¼ ;;

AOðf; a; fp; SÞ ¼ fp?:ANðf; a; fp; SÞ þX
ðk;l;MÞ2S

X
x2fkg[M

x?:AOðf; a; fp; S
 ðk; l;MÞÞ;

ANðf; a; fp; SÞ ¼ f !:0 if S ¼ ;;
ANðf; a; fp; SÞ ¼ q!:AOðf; a; p; S
 ðp; q; RÞÞ þX
ðk;l;MÞ2S

X
x2fkg[M

x?:ANðf; a; fp; S
 ðk; l;MÞÞ

if S ¼ ðp; q; RÞ; . . .:

Now the IOIML definition of

½½ðSPARE; nÞ��ELTðf1; a1; f2; SÞ ¼ DOðf1; a1; f2; SÞ:

The action signature of ½½ðSPARE; nÞ��ELTðf1; a1; f2; SÞ is:

ðfa1; f2g [ffkg [M j ðk; l;MÞ 2 Sg;
ff1g [fl j ðk; l;MÞ 2 Sg; ;Þ:

The activation auxiliary. BEs and SPARE gates have a

distinct input activation signal. When more than one

SPARE gate can activate any of these two elements, it
becomes convenient to carry out this activation through an

intermediate I/O-IMC model called activation auxiliary.
Activating a BE (or a SPARE gate), lðvÞ is done by

composing ½½lðvÞ��ELT in parallel with an activation auxiliary

I/O-IMC model, where the latter outputs the activation

signal av of lðvÞ. The activation auxiliary I/O-IMC model is
obtained through a function AA : A� PðAÞ ! IOIMC that

takes as arguments an output activation signal and a set of

input activation signals (emitted by some SPARE gates).
The activation auxiliary behaves similarly to an OR gate: It

outputs the activation signal as soon as it receives an

activation signal emitted by one of the SPARE gates.
The general form of v’s activation auxiliary function AA

is AAðav; AtvvÞ, where av is v’s activation signal and

Atvv ¼ faw;sp j typeðspÞ ¼ SPARE ^ w
2 ðin0ðspÞ n ðin0ðspÞÞ1Þ ^ v 2 stbðwÞ ^ ð=9 v0; v1 . . . vn

2 V ; n � 0:v0 ¼ v; vn ¼ w ^ 80 	 i < n:ðvi; viþ1Þ
2 E00 ^ typeðviþ1Þ ¼ SPARE ^ vi
2 ðin0ðviþ1Þ n ðin0ðviþ1ÞÞ1ÞÞg

is the set of activation signals emitted by all SPARE gates

sharing v. The last clause simply ensures that there is no

directed path from v to w containing an edge that is a spare

input (i.e., nonprimary) to a SPARE gate. It is important to

note that activation does not propagate through an FDEP-

dependent event input.
Thus, we can write

AAðav; AtvvÞ ¼ ½½ðOR; nÞ��ELTðav; ðAtvvÞ1; . . . ; ðAtvvÞnÞ;

given that jAtvvj ¼ n (n > 0). The action signature of

AAðav; AtvvÞ is ðAtvv; av; ;Þ. If n ¼ 0 (i.e., no explicit

activation by a SPARE gate, and therefore, activated when

system starts at time t ¼ 0), then AAðav; ;Þ ¼ av!:0.
Complete semantics of a DFT. To obtain the semantics

of a DFT from the semantics of its elements, we need to

appropriately instantiate the parameters of ½½lðvÞ��ELT (we

sometimes use ½½v��ELTfor short) of each node v. We use the

following notations: 1) The firing signal fv of element lðvÞ 2
E denotes the failure of v, 2) the activation signal av denotes

its8 activation, and 3) av;u denotes the activation signal

output by a SPARE gate u to activate spare v. We also

introduce the following notations: VBE is the set of all

nodes v 2 V s.t. typeðvÞ ¼ BE or typeðvÞ ¼ PHBE, VAOVP is

the set of all nodes v 2 V s.t.

typeðvÞ ¼ AND _OR _ VOT _ PAND;

and VSPARE is the set of all nodes v 2 V s.t. typeðvÞ ¼
SPARE. Now, the semantics of a DFT is obtained by

parallel composing the semantics of all (non-FDEP) nodes.

Definition 10. The semantics of a DFT D ¼ ðV ; in; lÞ is the

I/O-IMC

½½D�� ¼ kv2VBE ½½v��ELTðav; f�v ÞkFAðfv; f�v ; TvÞkAAðav; AtvvÞ
kv2VAOVP ½½v��ELTðf�v ; fw1

; fw2
; . . . fwnÞkFAðfv; f�v ; TvÞ

kv2VSPARE ½½v��ELTðf�v ; av; fw1
; S2; . . . ; SnÞkFAðfv; f�v ; TvÞk

AAðav; AtvvÞ;

where in0ðvÞ ¼ w1w2 . . .wn andSi ¼ ðfwi ; awi;v; PwiÞwith i > 1

is a tuple which gives, for spare lðwiÞ the failure signal (fwi),

the activation signal by SPARE gate lðvÞ (awi;v), and the set of

activation signals emitted by all SPARE gates (except v)

sharing spare lðwiÞ:

Pwi ¼ fawi;g j ðwi; gÞ 2 E0 ^ g 6¼ v ^ typeðgÞ ¼ SPAREg:

To compute the reliability of D, we are only interested in

the failure of the top node T . Hence, we hide all signals

except fT , i.e., we compute MD ¼ hide AD n fT in ½½D��; recall

that AD denotes the set of all actions in D. The composi-

tional aggregation technique described in Section 7 is an

efficient way to derive MD.

Example 2. Fig. 12 shows the I/O-IMC semantics of a DFT

consisting of a SPARE gate A having a primary B and a

spare C. Since the DFT contains no FDEP gates, we

138 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

8. Only for BEs and SPARE gates.

ignore all firing auxiliaries. The I/O-IMC of the DFT is
obtained by parallel composing ½½A��, ½½B��, and ½½C��:

½½A�� ¼ ½½ðSPARE; 2Þ��ELTðfA; aA; fB; ðfC; aC;A; ;ÞÞkAAðaA; ;Þ;
½½B�� ¼ ½½ðBE; 0; �; 0Þ��ELTðaB; fBÞkAAðaB; ;Þ;
½½C�� ¼ ½½ðBE; 0; �; �Þ��ELTðaC; fCÞkAAðaC; faC;AgÞ:

6 DFT ELEMENTS EXTENSION

In this section, we show, through three examples, how one
can readily extend the DFT elements within the I/O-IMC
framework. These extensions concern the modeling of
inhibition, mutually exclusive events, and repair.

Adding/modifying elements is done at the level of the
elementary I/O-IMC models. Moreover, adding/modifying
one element does not affect the remainder of the elements
(i.e., their corresponding I/O-IMC models). This is indeed a
desirable property of the I/O-IMC framework, where the
behavioral details and interactions of any element are kept
as local as possible. These extensions only affect Step 1 of
the DFT conversion/analysis algorithm laid out in Section 7,
leaving the other five steps unchanged.

Inhibition and mutual exclusion. We say that event A
inhibits the failure of B if the failure of B is prevented when
A fails before B. Following the idea of the firing auxiliary
(cf., Section 5), this could be modeled by simply adding an
inhibition auxiliary (IA). Fig. 13 shows the configuration of
such inhibition and the corresponding I/O-IMC model of
the IA of B. f�B corresponds to the failure signal of B taken
in isolation, i.e., without A’s inhibition. Note that, as with
the FA, any element which has B as input has to now
interface with B’s IA rather than directly with B.

If A inhibits the failure of B and B also inhibits the
failure of A, the failure of A and the failure of B become two

mutually exclusive events. Clearly, this can be modeled in
our framework by adding IAs for both A and B. Mutual
exclusion is very useful for modeling different failures of a
single component with different effects (e.g., a valve being
stuck open or closed).

Repair. Adding a notion of repair is somewhat more
complicated as every DFT element can now fail or be
repaired. Thus, no longer only a “failed event” should be
signaled but also a “repaired event.” However, as mentioned
above, we only need to modify “locally” the elementary
I/O-IMC corresponding to each DFT element behavior.
Here, we will only discuss the new I/O-IMC for the BE and
the AND gate (other elements are treated in the same
fashion). The repairable cold BE’s I/O-IMC is shown in
Fig. 14. Here, � denotes the BE repair rate and r! is a signal
output by the BE notifying the rest of the elements that it has
been repaired. The repairable AND gate I/O-IMC model is
shown in Fig. 15. The AND gate has its own repair output
signal (i.e., r!) and needs to consider both failure (fA? and
fB?) and repair (rA? and rB?) signals coming from its
inputs A and B. Compared to the unrepairable AND gate
(Fig. 9), Fig. 15 has three extra states. If we consider a very
simple repairable system composed of an AND gate with
two BEs A and B (Fig. 16a), then the resulting I/O-IMC after
automatic composition, hiding of all signals and aggregation
is, as expected, the CTMC shown in Fig. 16b. At this point,
one can perform analysis on the CTMC such as computing
the system unavailability.

7 COMPOSITIONAL AGGREGATION APPROACH

The technique of compositional aggregation consists of
composing a large model out of smaller ones and aggregat-
ing submodels after each compositional step. This approach

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 139

Fig. 12. A DFT example and the six I/O-IMCs that model its behavior.

Fig. 13. The I/O-IMC model of the IA.

Fig. 14. The repairable BE I/O-IMC model.

Fig. 15. The repairable AND gate I/O-IMC model.

Fig. 16. A simple repairable system. The gray state denotes the state in
which the DFT has failed.

is to be contrasted with a more classical approach of model
generation, such as the one used by Galileo DIFTree [21],
where the model of a system is generated at once and as a
whole and then eventually aggregated at the end. Composi-
tional aggregation is very effective in combating the state-
space explosion problem and has been already successfully
used on a number of case studies, most notably in [18].

Once the DFT elements have been converted into a set of
I/O-IMCs, the compositional aggregation methodology can
be applied to combine the set into a single I/O-IMC. The
final I/O-IMC reduces in many cases to a CTMC. This
CTMC can then be solved using standard methods [24] to
compute performance measures such as system unrelia-
bility. The conversion/analysis algorithm9 is as follows:

1. Map each DFT element to its corresponding (aggre-
gated) I/O-IMC and match all inputs and outputs.
The result of this step is a set of I/O-IMCs.

2. Pick two I/O-IMCs and parallel compose them.
3. Hide output signals that won’t be subsequently used

(i.e., synchronized on).
4. Aggregate (using weak bisimulation) the I/O-IMC

obtained from the composition of the two I/O-IMCs
picked in Step 2 and the hiding of the output signals
in Step 3.

5. Go to Step 2 if more than one I/O-IMC is left;
otherwise, go to Step 6.

6. Analyze the aggregated CTMC.

The choice of I/O-IMCs made in step 2 is important as it
influences the size of the generated state space during the
intermediate steps. If no nondeterminism is present in the
DFT model, then the algorithm yields a CTMC. However, in
some cases where nondeterminism arises, the result is a
continuous-time Markov decision process, which can be
analyzed by computing bounds on the performance mea-
sure of interest [2].

8 TOOL SUPPORT

In this section, we describe the CORAL [6] tool chain, which
supports our DFT analysis methodology. The tools pre-
sented in this section use the CADP tool set [15] for many
operations on I/O-IMCs, such as composition, aggregation,
and CTMC analysis. Before discussing the various tools in
detail, we will first give an overview of the tool chain.

Tool chain overview. Fig. 17 shows an overview of the
tool chain for our DFT analysis methodology. The user must
supply the following inputs: the DFT in a file using the
Galileo format, a composition script denoting the order of
composition used in the compositional aggregation phase,
and the mission times for the unreliability analysis.

A DFT can be analyzed by performing the following
three steps, which are elaborated below:

1. call the dft2bcg tool with as input the DFT file in
extended Galileo format,10

2. call the composer tool with as input a composition
script, and

3. call the dft_eval tool with as input a number of
mission times. The dft_eval tool then calculates the
unreliability of the system modeled by the original
DFT for the given mission times. It generates a
CTMC model describing the exact failure distribu-
tion of the system if there is no nondeterminism.

Generating I/O-IMC models: dft2bcg. The dft2bcg tool
generates a number of I/O-IMC models that describe the
behavior of a given DFT. To be more exact, each of the
I/O-IMCs describes one element in the DFT (see Section 5).
These I/O-IMC models are stored in binary coded graph
(BCG) format supported by CADP. The dft2bcg tool uses a
number of script verification language (SVL) scripts to
generate BCG files. These scripts are interpreted by the
SVL tool, which is part of the CADP tool set, to perform
generation, parallel composition, hiding, and minimization
of BCG files. dft2bcg also uses the bcg_labels tool of the
CADP tool set, which allows the renaming of the actions of
an I/O-IMC.

The dft2bcg tool performs the following steps to generate

the I/O-IMC models:

1. parses the DFT input file,
2. checks the validity of the DFT (i.e., syntactic check),
3. calls the SVL tool to generate I/O-IMC models with

generic action names (f1; f2; . . .) using the DFT SVL
scripts, and

4. calls the bcg_labels tool to create the I/O-IMC models
by renaming the generic actions to the specific actions
derived from the names of the DFT elements.

All generic models generated in step 3 are stored in a
DFT repository for reuse in later calls of the dft2bcg tool.
For instance, if we need three different 3-input AND-gates,
we can simply use the same generic 3-input AND gate,
renaming it differently in step 4 of the dft2bcg tool. The

140 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

9. Note that this algorithm is amenable to parallelization.

Fig. 17. An overview of the CORAL tool chain.

10. The standard Galileo format is extended to allow complex spares and
dependent events.

repository also holds a number of basic I/O-IMC models,
which are used to generate the models of all DFT elements.

Compositional aggregation: composer. We have seen
above that the dft2bcg tool generates a number of I/O-IMC
models. The composer tool uses as input these I/O-IMC
models and a composition script supplied by the user. The
composition script describes the order in which the I/O-IMC
models should be composed. The composer tool executes the
commands in the script, composing the I/O-IMC models
into a single I/O-IMC model that represents the stochastic
behavior of the entire DFT. Our choice of composition script
is based on heuristics, such as maximizing the number of
transitions that will be hidden and minimizing the number
of actions that are not synchronized. After each composition,
the resulting I/O-IMC model is minimized using the
acyc_min tool [12]. The acyc_min tool minimizes acyclic
(except for self-loops with input actions) I/O-IMCs with
respect to weak bisimulation for I/O-IMCs (see Section 3).

Calculating measures: dft_eval. In many cases, the

stochastic behavior of the system described by a DFT can

be modeled as a CTMC. To be more specific, if there is no

nondeterminism present in the DFT model of the system,

the I/O-IMC generated in our approach reduces to a CTMC.

See Section 2.1 for a detailed discussion on the occurrence of

nondeterminism in DFT analysis. The dft_eval tool first

reduces the I/O-IMC representation of the DFT into a

CTMC and then invokes the CADP tool bcg_transient to

find the unreliability of the DFT for a set of mission times

supplied by the user.

9 CASE STUDIES

We have assessed the efficiency of our compositional

aggregation approach by performing nine case studies from

different application areas. We analyzed a cascaded PAND

system (CPS), two versions of a cardiac assist system (CAS),

five versions of a fault-tolerant parallel processors (FTPPs),

and finally, a pump system with inherent nondeterminism.

We systematically compare our results (using the CORAL

tool) to the Galileo DIFTree tool [14] results, see Table 1

for an overview. Here, the number of states/transitions

corresponds to the largest I/O-IMC or CTMC encountered

during analysis. All experiments were run on an AMD
Athlon XP 2;600þ running at 1.9 GHz with 1 GB memory.

The cascaded PAND system. This system, taken from
[7] and shown in Fig. 18a, illustrates the enhanced
modularity of our methodology compared to Galileo
DIFTree. In fact, given that the top node of the tree is a
PAND dynamic gate, Galileo DIFTree can only consider the
tree as a whole when generating/solving its corresponding
CTMC. In our compositional aggregation approach, we
realize that there are independent modules, in particular, A,
C, and D are all identical (all BEs have a failure rate equal to
1) and independent modules. In fact, it suffices to generate
and aggregate the I/O-IMC of one of these three modules
and reuse the result, given some renaming of signals, for
the remaining two modules. In this way, A, C, and D each
have an aggregated I/O-IMC of seven states only. The
CTMC generated by Galileo has 4,113 states. This result is
to be compared with the largest I/O-IMC of 113 states
obtained during the compositional aggregation.

The cardiac assist system. This system, taken from [5]
and shown in Fig. 18b, consists of three separate modules
(i.e., CPU, motors, and pump units). Table 2 shows the
failure rates of the various components. In addition, B is a
warm spare with a dormancy factor � ¼ 0:5, and MB and PS
are cold spares (i.e., � ¼ 0). During analysis, Galileo DIFTree
modularizes the DFT into three independent modules
(namely CPU, motors, and pump units) and generates a
separate CTMC for each one of them. The biggest CTMC has
eight states. The CTMCs’ results are then combined
(through the top OR gate) using BDDs. Using the composi-
tional aggregation approach, and without modularization,
the biggest I/O-IMC encountered has 36 states. The results
of CAS are summarized in Table 1. Here, clearly Galileo
outperforms CORAL because it uses modularization which
has not been implemented yet in CORAL. If we switch off
modularization in Galileo (i.e., generate a single CTMC for
the whole system), then it produces a CTMC with 85 states.

To illustrate the possibility of using phase-type distribu-
tions, we have modified the CAS case study by replacing
BEs with PHBEs (case CAS-PH). In this case, all basic events
occur after a delay governed by an Erlang distribution with
four phases and the same expectation as the exponential

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 141

TABLE 1
Results of the Case Studies

Fig. 18. DFTs for CPS (a) and CAS (b) case studies.

TABLE 2
Failure Rates for CAS

delay from the CAS case study (for instance, PHBE CS is
governed by a 4-phase Erlang with rate parameter 0.8
instead of an exponential distribution with rate 0.2). For the
passive delay of warm spare B, we also use an Erlang
distribution with four phases and the same expectation as
the passive exponential delay.

The fault-tolerant parallel processors.This system, taken
from [5], consists of 16 processors divided into 4 logical
groups. In each group, a processor is used as a shared
cold spare. A network element (NE) physically connects 1
processor in each group (thus there are 4 NEs) to the rest of
the system. The failure of an NE makes the four processors
connected to it unavailable (i.e., essentially failed). The
requirement is to have at least two processors operational
in each group. The DFT is shown in Fig. 19, where the
processors are denoted by Ai, Bi, Ci, Di, and the network
elements with N . All network elements have a failure rate
equal to 0.017, and all processors have a failure rate equals
0.11. The four spare processors are cold spares (i.e., � ¼ 0).

To illustrate even further the state-space explosion
problem, we took the FTPP system and made it larger by
considering 5 (FTPP-5), respectively, 6 (FTPP-6) processors
in each group. For these case studies, the Galileo tool runs
out of memory. The (FTPP-C) case study is an extension to
the FTPP system, where each of the processors (e.g., A1) is
replaced by a complex element that consists of an OR-gate
with two inputs: a BE “CPU” and a spare gate “memory”
with primary BE “M1” and cold spare BE “M2.” All these
BEs have failure rate 0.11. No results are available from
Galileo DIFTree as this kind of extended DFTs cannot be
handled by Galileo. It is interesting to investigate how
dependent the success of the compositional aggregation
technique is on the symmetries in the DFT models. In the
case study FTPP-A, we have therefore considered a variant
of the FTPP case study, where almost all basic events have
different rates. The rates used are given in Table 3. We see
that indeed the models encountered are larger by a factor of

15, but still the computational time required is manageable
at under five minutes.

Nondeterministic pump system (NDPS). This case study
illustrates how we deal with nondeterminism in DFT models.
The I/O-IMC model of the DFT is generated as usual and
then converted into a CTMDP following [17]. This CTMDP is
then analyzed using the MRMC [19] tool to obtain maximum
and minimum unreliability. The DFT is a simple pumping
system with five pumps: main pumps A and B, auxiliary
pumps C, D, and spare auxiliary pump E (see Fig. 20). BE A
has rate 0.05 and BE B has rate 0.1; BEs C and D both have
rate 0.2 and BE E has rate 0.3 with dormancy � ¼ 0. Finally,
BEX has rate 0.002. This DFT is nondeterministic sinceC and
Dmay fail at the same time due to their dependence on BEX.
It is then undetermined whether spareE replacesC orD. We
can see that the maximum and minimum unreliabilities are
not far apart, this is caused by the low probability of the
“problematic” BE X.

10 CONCLUSION AND FUTURE WORK

In this paper, we have formalized the syntax and semantics
of DFTs and introduced a DFT analysis framework based
on I/O-IMCs, increasing the DFT modularity both at the
analysis level and the model building level. We have also
demonstrated the ease with which one can define new
DFT elements and provided examples of such extensions.
Finally, we have built a prototype tool for analyzing DFTs
named CORAL and run some experiments to compare our
methodology and results to the Galileo DFT tool.

Areas of future research include: 1) From a process
algebra point of view, we would like to achieve even
more drastic state-space reduction using more suitable
aggregation techniques. 2) Adapt the I/O-IMC approach
to other formalisms, such as the Architecture Analysis and
Design Language [1]. A first step toward this goal has
been made in [4].

ACKNOWLEDGMENTS

The authors thank Holger Hermanns and the anonymous
reviewers of this paper for their helpful comments. This
research has been partially funded by the Netherlands
Organization for Scientific Research (NWO) under FOCUS/
BRICKS grant number 642.000.505 (MOQS); by the EU
under grant IST-004527 (ARTIST2) and FP7-ICT-2007-1
grant 214755 (QUASIMODO); and by the DFG/NWO
bilateral cooperation program under project number DN
62-600 (VOSS2).

142 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 19. DFT for the FTPP-4 case study.

TABLE 3
Failure Rates for FTPP-A

Rates are scaled up by a factor of 105.

Fig. 20. DFT for NDPS case study.

REFERENCES

[1] As-2 Embedded Computing Systems Committee, Architecture
Analysis & Design Language (AADL), Number: AS5506,
Revision: A, Jan. 2009.

[2] C. Baier, H. Hermanns, J.P. Katoen, and B.R. Haverkort, “Efficient
Computation of Time-Bounded Reachability Probabilities in
Uniform Continuous-Time Markov Decision Processes,” Theore-
tical Computer Science, vol. 345, no. 1, pp. 2-26, 2005.

[3] E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R.
Pulungan, J. Rakow, R. Wimmer, and B. Becker, “Compositional
Dependability Evaluation for Statemate,” IEEE Trans. Software
Eng., vol. 35, no. 2, pp. 274-292, Mar./Apr. 2009.

[4] H. Boudali, P. Crouzen, B.R. Haverkort, M. Kuntz, and M.
Stoelinga, “Architectural Dependability Evaluation with Arcade,”
Proc. 38th IEEE/IFIP Int’l Conf. Dependable Systems and Networks,
pp. 512-521, 2008.

[5] H. Boudali, P. Crouzen, and M. Stoelinga, “A Compositional
Semantics for Dynamic Fault Trees in Terms of Interactive Markov
Chains,” Proc. Fifth Int’l Symp. Automated Technology for Verification
and Analysis, pp. 441-456, 2007.

[6] H. Boudali, P. Crouzen, and M. Stoelinga, “Coral—a Tool for
Compositional Reliability and Availability Analysis,” Proc.
ARTIST WS: Tool Platforms for ES Modelling, Analysis and
Validation, 2007.

[7] H. Boudali, P. Crouzen, and M. Stoelinga, “Dynamic Fault Tree
Analysis Using Input/Output Interactive Markov Chains,” Proc.
37th IEEE/IFIP Int’l Conf. Dependable Systems and Networks, pp. 708-
717, June 2007.

[8] M.A. Boyd, “Dynamic Fault Tree Models: Techniques for
Analyses of Advanced Fault Tolerant Computer Systems,” PhD
dissertation, Dept. of Computer Science, Duke Univ., 1991.

[9] M. Bravetti and R. Gorrieri, “The Theory of Interactive General-
ized Semi-Markov Processes,” Theoretical Computer Science,
vol. 282, no. 1, pp. 5-32, 2002.

[10] D. Coppit, K.J. Sullivan, and J.B. Dugan, “Formal Semantics of
Models for Computational Engineering: A Case Study on
Dynamic Fault Trees,” Proc. Int’l Symp. Software Reliability Eng.,
pp. 270-282, Oct. 2000.

[11] N. Coste, H. Garavel, H. Hermanns, R. Hersemeule, Y. Thonnart,
and M. Zidouni, “Quantitative Evaluation in Embedded System
Design: Validation of Multiprocessor Multithreaded Architec-
tures,” Proc. Conf. Design, Automation and Test in Europe, pp. 88-89,
2008.

[12] P. Crouzen, H. Hermanns, and L. Zhang, “On the Minimisation of
Acyclic Models,” Proc. 19th Int’l Conf. Concurrency Theory, pp. 295-
309, 2008.

[13] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Dynamic Fault-Tree
Models for Fault-Tolerant Computer Systems,” IEEE Trans.
Reliability, vol. 41, no. 3, pp. 363-377, Sept. 1992.

[14] J.B. Dugan, B. Venkataraman, and R. Gulati, “DIFTree: A
Software Package for the Analysis of Dynamic Fault Tree
Models,” Proc. Reliability and Maintainability Symp., pp. 64-70,
Jan. 1997.

[15] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2006: A
Toolbox for the Construction and Analysis of Distributed
Processes,” Proc. 19th Int’l Conf. Computer Aided Verification
(CAV), 2006.

[16] H. Hermanns, Interactive Markov Chains. Springer Berlin, 2002.
[17] H. Hermanns and S. Johr, “Uniformity by Construction in the

Analysis of Nondeterministic Stochastic Systems,” Proc. 37th
IEEE/IFIP Int’l Conf. Dependable Systems and Networks, pp. 718-
728, 2007.

[18] H. Hermanns and J.P. Katoen, “Automated Compositional
Markov Chain Generation for a Plain-Old Telephone System,”
Science of Computer Programming, vol. 36, no. 1, pp. 97-127,
2000.

[19] J.-P. Katoen, M. Khattri, and I.S. Zapreev, “A Markov Reward
Model Checker,” Proc. Second Int’l Conf. Quantitative Evaluation of
Systems, pp. 243-244, 2005.

[20] N.A. Lynch and M.R. Tuttle, “An Introduction to Input/Output
Automata,” CWI Quarterly, vol. 2, no. 3, pp. 219-246, 1988.

[21] R. Manian, J.B. Dugan, D. Coppit, and K.J. Sullivan, “Combining
Various Solution Techniques for Dynamic Fault Tree Analysis of
Computer Systems,” Proc. IEEE Int’l High-Assurance Systems Eng.
Symp., vol. 3, pp. 21-28, 1998.

[22] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Dover, 1981.

[23] Relex “Fault Tree and Event Tree Software,” http://www.
relex.com/products/ftaeta.asp, 2008.

[24] W.J. Stewart, Introduction to the Numerical Solution of Markov
Chains. Princeton Univ. Press, 1994.

[25] K.J. Sullivan, J.B. Dugan, and D. Coppit, “The Galileo Fault Tree
Analysis Tool,” Proc. 29th Ann. Int’l Symp. Fault-Tolerant Comput-
ing, pp. 232-235, June 1999.

[26] K.K. Vemuri, J.B. Dugan, and K.J. Sullivan, “Automatic Synthesis
of Fault Trees for Computer-Based Systems,” IEEE Trans.
Reliability, vol. 48, no. 4, pp. 394-402, Dec. 1999.

[27] W.E. Veseley, F.F. Goldberg, N.H. Roberts, and D.F. Haasl,
technical report, Fault Tree Handbook, NUREG-0492., NASA,
1981.

Hichem Boudali received the computer science
engineering degree (MSc equivalent) from the
Polytechnic School and Applied Sciences at the
Université Libre de Bruxelles, Brussels, Belgium,
in 2002, the MSc degree in electrical engineering
from the University of Virginia, and the PhD
degree in computer engineering from the School
of Engineering and Applied Science at the
University of Virginia, Charlottesville, in 2005.
He is a member of the IEEE.

Pepijn Crouzen received the computer science
engineering degree (MSc equivalent) from the
University of Twente, Enschede, Netherlands, in
2006. He is now working toward the PhD degree
in the Dependable Systems and Software Group
of the Computer Science Faculty at Saarland
University, Saarbrücken, Germany.

Mariëlle Stoelinga received the PhD degree
in computer science from the University of
Nijmegen, Netherlands, in 2002. She is cur-
rently an assistant professor in the Formal
Methods and Tools Group at the University of
Twente, Netherlands.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BOUDALI ET AL.: A RIGOROUS, COMPOSITIONAL, AND EXTENSIBLE FRAMEWORK FOR DYNAMIC FAULT TREE ANALYSIS 143

