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A. DEMONSTRATING EXAMPLE FOR SOME DISCUSSION ON RELATED WORK

As mentioned in Section 2, Ioannou et al. cannot ensure that from their approach
always the most probable worlds result. Moreover, this approach disregards nega-
tive information (information that two entities are not duplicates for sure) which
makes the result more inaccurate and which makes an introduction of negative do-
main knowledge during the initially offline performed linkage creation impossible.

As an example consider the probabilistic linkage database PLDB =<E ,L, pa, pl>
with the five entities E = {e1, e2, e3, e4, e5} which has been already used in [Ioannou
et al. 2010], but let us assume that the linkage between e4 and e5 has a probability of
pl(e4, e5) = 0.4 instead of 0.8 and let us assume that e2 and e3 are not linked because
a domain expert know with absolute certainty that both entities are no duplicates.
Nevertheless, the probabilities of all remaining linkages which are not presented in
this example can be greater than 0. The modified database is graphically illustrated
in Figure 15 (i).

We understand the approach of Ioannou et al. in a way that linkages between
some entities, e.g. the linkage between e3 and e4, are not present in Figure 1
in [Ioannou et al. 2010], because their probabilities (e.g. pl(e3, e4)) are too small
for being of interest. As a consequence, we assume that the presented linkages
result from using a threshold Tl which demarcates all the linkages being of interest
(all linkages with a probability greater than or equal to Tl) from all remaining
linkages. Our modified example (Figure 15 (i)) would for example result by using
a threshold Tl = 0.4, because the lowest probability of all presented linkages is 0.4.
The probabilities of all missing linkages must be smaller than 0.4, because otherwise
(for reasons of consistency) these linkages must be present in this figure as well. By
increasing Tl from 0.4 to 0.8 the linkage between e1 and e3 as well as the linkage
between e4 and e5 are further removed (see Figure 15 (ii)).
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title: Harry Potter and the Chamber of Secrets 0.6

starring: Daniel Radcliffe 0.7

starring: Emma Watson 0.4

writer: J.K. Rowling 0.6

genre: Fantasy 0.6
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Fig. 15. The marginally modified sample probabilistic linkage database from Fig-
ure 1 in [Ioannou et al. 2010], with the threshold (i) Tl = 0.4 and (ii) Tl = 0.8

Let Q be a query which condition is satisfied by all five entities. Thus, from
applying Q with the threshold Tl = 0.8 (Figure 15 (ii)), the two possible worlds I1 =
{e1, e2, e3, e4, e5} or I2 = {µ({e1, e2}), e3, e4, e5} result. However, since the case of
nonexistence for the linkage pl(e1, e2) is more unlikely than the case of existence of
the linkage pl(e4, e5), the ignored possible world I3 = {µ({e1, e2}), e3, µ({e4, e5})}
is more probable than the considered world I1. For that reason in our (α, β)-
restrictions, we always restrict the decision considered to be uncertain at both ends
of the probability range.

Furthermore, let the threshold be Tl = 0.4. As mentioned above, this configu-
ration leads to all the linkages explicitly presented in Figure 15 (i). Because for
each linkage specification Lsp ⊃ L the transitive closure is performed, among others
the possible world I4 = {µ({e1, e2, e3}), e4, e5} results (compare with the possible
world I2 in Example 2 in [Ioannou et al. 2010]), Nevertheless, since e2 and e3 are
not linked, because both entities are known to be definitely no duplicates, this
world is definitely not possible. As a consequence, information on non-duplicates
is ignored during query evaluation and hence cannot be incorporated by the user
(or domain expert) during linkage creation. In order to avoid such situations, we
firstly consider all matching results (whether possible or not), then create all pos-
sible combination of uncertain edges (worlds) and finally remove impossible ones
(see Section 5.1.2.3).

B. INDETERMINISTIC DEDUPLICATION WITH MAYBMS:

MayBMS is a probabilistic database management system developed at the Cornell
University [Koch 2008; 2009]. For a succinct representation of probabilistic data
with attribute value dependencies and tuple correlations MayBMS uses the concept
of U-relations (U-relational databases) which is based on probabilistic conditional
Journal of the ACM, Vol. V, No. N, Month 20YY.
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tables [Suciu et al. 2011]. This means that tuples can be assigned with boolean
conditions defined on a finite set of variables7. Each variable can be interpreted
as an independent probabilistic event. U-relational databases are restricted to a
finite set of possible worlds. Thus, each variable is defined on a finite domain (its
set of possible outcomes). Correlations are modeled by using same variables for
attribute value combinations (attribute value dependencies) or for different tuples
(tuple correlations). To increase succinctness further on, MayBMS uses vertical par-
titioning to decompose tuples in several probabilistic independent set of attributes
(also denoted as normalization [Suciu et al. 2011]). A U-relation consists of a set
of attributes to be stored (value columns) and, in addition, a set of pairs (Vi,Di)
(condition columns) for modeling variable assignments which serves as atomic con-
ditions for tuple existence. The possible outcomes of variables along with their
probabilities are separately stored in a ternary relation W, called world-table. As
ULDB, U-relational databases are a complete and closed representation system for
finite probabilistic databases. From a U-relational database, an arbitrary possible
world can be derived by (1) mapping each variable in W to one of its possible
outcomes (the world’s corresponding variable assignment θ), (2) joining each U-
relation with W on the condition columns, (3) selecting all tuples whose conditions
satisfy θ, and (4) projecting away the condition columns.

A succinct U-relational database representation whose set of possible worlds is
equivalent to this of the ULDB database shown in Figure 3 is presented in Figure 16.

UR1[name] V D TID name
v 1 t1 Tim
v 2 t1 Jim
w 1 t2 Tim

UR1[firm] V D TID firm
v 1 t1 Oracle
v 2 t1 Nokia
w 1 t2 IBM

UR2
V D TID firm industry
x 1 t3 IBM software
y 1 t4 Oracle software
z 1 t5 Nokia cell-phone

W V D P
v 1 0.3

v 2 0.7

w 1 0.6

x 1 1.0

y 1 1.0

z 1 1.0

Fig. 16. Succinct representation of the sample probabilistic database of Figure 3 with U-relational
databases

B.1 Modeling Tuple Dependencies in MayBMS

Since U-relational databases are principally based on the concept of conditional
tables, tuple dependencies can be simply modeled by variables. To model the
complementation cpl(A1, . . . , Ak), a new U-relation UR[corr.] and one variable x
with k possible outcomes is required. The newly created U-relation UR[corr.] needs
only one pair of condition columns, and hence has the following three attributes:
(1) V for storing the variable x, (2) D for storing the possible outcome of x being

7Note, in U-relational databases variables are not allowed as attribute values [Koch 2009].
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the condition that the considered tuple exists, and (3) TID for storing the identifier
of the considered tuple. Each tuple t ∈

⋃
i∈[1,k]Ai is stored in UR[corr.] with the

same variable V = x. To each tuple in Ai the possible outcome i is assigned.
Finally, the newly created variable x along with the probabilities of its k possible
outcomes are stored in the world-table W.

For demonstration, we consider the same example as already used in Section 3.2.2,
i.e. the complementation cpl({t1, t2}, {t12}). This dependency is modeled by cre-
ating the U-relation UR[corr.] and extending the world table W as illustrated in
Figure 17.

UR[corr.] V D TID
x 1 t1
x 1 t2
x 2 t12

W V D P
x 1 0.4

x 2 0.6

Fig. 17. Tuple correlations modeled with U-relational databases

B.2 Generation of Probabilistic Result Data with U-Relations

For representing the set of possible worlds W = {I1, . . . , Ik} resulting from an
indeterministic deduplication as a U-relational database, a new variable x of the
world-table W having |W | possible outcomes (one for each world) is required. For
each tuple ti of the possible world Ij , a new tuple (x, j, ti) is inserted into the
U-relation UR[corr.], where j is the index number of the considered possible world.

For the purpose of demonstration, we consider our example already used for x-
relation generation. We create a variable x with one possible value for each of the
five resultant possible worlds W = {I1, I2, I3, I4, I8} and generate the new tuples in
the way described above (prior condition variables are assumed to be non-existent).
The resultant U-relation UR[corr.] and the extended world-table W are shown in
Figure 18.

UR[corr.] V D TID
x 1 t1
x 1 t2
x 1 t3
x 2 t12
x 2 t3
x 3 t13
x 3 t2
x 4 t23
x 4 t12
x 5 t123

W V D P
x 1 0.138

x 2 0.553

x 3 0.092

x 4 0.059

x 5 0.158

Fig. 18. U-relation UR[corr.] (left) and world-table W (right)

Journal of the ACM, Vol. V, No. N, Month 20YY.
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C. PROOFS FOR THEOREMS 1 AND 2

In this section, we prove Theorems 1 and 2 which are introduced in Section 5.1.2.3.

Theorem 1: A W-graph G = (N,E, P ) is consistent,
if and only if G is equivalent to its transitive closure: G = G∗.

Proof. (⇒) Assumption: G 6= G∗, but G is consistent.
⇒ (∃t1, t2, t3 ∈ N) : {t1, t2}, {t1, t3} ∈ E ∧ {t2, t3} 6∈ E
⇒ the world I = {t1, t2, t3, . . .} is impossible
⇒ G is inconsistent

Proof. (⇐) Assumption: G is inconsistent, but G = G∗.
⇒ the world I = N is impossible
⇒ (∃t1, t2, t3 ∈ N) : {t1, t2}, {t1, t3} ∈ E ∧ {t2, t3} 6∈ E
⇒ G 6= G∗

Theorem 2:An M-graph M = (N,E, γ) is consistent, if and only if:
(∀t1, t2, t3 ∈ N) : γ({t1, t2}) = γ({t1, t3}) = 1⇒ γ({t2, t3}) > 0.

Proof. (⇒) Assumption: (∃t1, t2, t3 ∈ N) :
γ({t1, t2}) = γ({t1, t3}) = 1 ∧ γ({t2, t3}) = 0, but M is consistent.
⇒ (∀G = (N,E, P ) ∈ ν(M)) : {t1, t2}, {t1, t3} ∈ E ∧ {t2, t3} 6∈ E
⇒ (∀G = (N,E, P ) ∈ ν(M)) : G is inconsistent
⇒ M is inconsistent

Proof. (⇐) Assumption: M is inconsistent, but
(∀t1, t2, t3 ∈ N) : γ({t1, t2}) = γ({t1, t3}) = 1⇒ γ({t2, t3}) > 0.
⇒ (∀G = (N,E, P ) ∈ ν(M)) : G is inconsistent
⇒ (∃t1, t2, t3 ∈ N) : (∀G = (N,E, P ) ∈ ν(M)) :
{t1, t2}, {t1, t3} ∈ E ∧ {t2, t3} 6∈ E

⇒ (∃t1, t2, t3 ∈ N) : γ({t1, t2}) = γ({t1, t3}) = 1⇒ γ({t2, t3}) = 0

D. ALGORITHM

In this section, first we present an algorithm for possible world creation and then
two algorithms for generating probabilistic result data (one for the ULDB model
and one for U-relational databases).

D.1 Algorithm for Possible World Creation

An algorithm for possible world creation is shown in Figure 19. The input of the
algorithm is a set of consistent W-graphs (WSet). Based on these W-graphs, a
set of possible worlds (denoted as W ) is generated (one world for each consistent
W-graph). For each W-graph an initially empty world (I) is defined (Step 2.1).
Then, for each of the W-graph’s components a tuple is added to the possible world
by merging the tuples belonging to the component’s nodes (Step 2.2). Finally, the
resultant world is added to the set of possible worlds (Step 2.3) and its probability
is defined as the probability of the corresponding W-graph (Step 2.4).

D.2 Algorithm for Generating X-Relations

A complete algorithm for x-relation generation is shown in Figure 20. The input of
the algorithm is W , a set of possible worlds and P a probability distribution over

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Input: Set of consistent W-graphs WSet

1. W = ∅
2. For each graph G = (N,E, P ) ∈WSet

2.1 I = ∅
2.3 For each component Gi = (Ni, Ei)

I = I ∪ {µ(Ni)}
2.4 W =W ∪ {I}
2.5 P (I) = P

Output: Set of possible worlds W = {I1, I2, . . . , Ik},
Probability distribution P :W 7→ [0, 1]

Fig. 19. Algorithm for possible world creation

these worlds. First, a new indicator tuple is created (Step 1). Second, for each
possible world an alternative of the indicator tuple is generated (Step 2.1). Then
we iterate over all tuples of the considered world (Step 2.2). If a tuple already
belongs to the output x-relation RX , the lineage and probability of this tuple is
adapted. Otherwise, the tuple along with its new lineage and probability is inserted
into RX . Finally (Step 3), prior lineage is taken into account. For merged tuples,
we consider the prior lineage generation as a part of the tuple merging step.

Input: Set of possible worlds W = {I1, I2, . . . , Ik},
Probability distribution P :W 7→ [0, 1]

1. Create an indicator tuple i ∈ Itd
2. For each world Ij ∈W

2.1 Create the alternative ij with probability p(ij) = P (Ij)

2.2 For each tuple t ∈ Ij
If t ∈ RX

λ(t) = λ(t) ∨ (i, j)

p(t) = p(t) + P (Ij) //if probability is not only computed at query time

Else
Insert t into RX
λ(t) = (i, j)

p(t) = P (Ij) //if probability is not only computed at query time

3. For each tuple t ∈ RX
3.1 λ(t) = λ′(t) ∧ λ(t)

Output: Probabilistic X-relations RX and Itd

Fig. 20. Algorithm for x-relation generation

D.3 Algorithm for Generating a U-relational Database

A complete algorithm for U-relation generation is shown in Figure 21. The input
of the algorithm is a set of possible worlds W = {I1, I2, . . . , Ik}. First, the variable
x is created (Step 1). Second, for each possible world Ij the tuple (x, j, P (Ij)) is
inserted in the world-tableW (Step 2.1). Finally, for each tuple ti of the considered
world Ij , the tuple (x, j, ti.T ID) is inserted into the resultant U-relation UR[corr.]
(Step 2.2).
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Input: Set of possible worlds W = {I1, I2, . . . , Ik}
1. Create a variable x
2 For each world Ij ∈W

2.1 Insert the tuple (x, j, P (Ij)) into W
2.2 For each tuple t ∈ Ij

Insert the tuple (x, j, t.T ID) into UR[corr.]

Output: U-relation UR[corr.], world table W

Fig. 21. Algorithm for U-relation generation

E. FURTHER SEMI-INDETERMINISTIC APPROACH

In this Section, we introduce a fifth semi-indeterministic approach, called knowledge-
based-restriction.

E.1 Knowledge-Based-Restrictions

During an integration process additional information on the given sources can be
available. Sometimes, this information can be used to restrict the set of uncertain
decision. For instance, one or more source relations can be known (no heuristic, be-
cause certain knowledge is used) or assumed (heuristic) to be duplicate-free. Thus,
w.r.t. these relations instead of intra-source duplicates only inter-source duplicates
need to be detected. In this case, tuples originating from same sources do not need
to be compared and corresponding matching probabilities can be automatically set
to 0. This enormously decreases the number of worlds which have to be considered.

As an example, we consider the two relations R1 = {t1, t2, t3} and R2 = {t4, t5}.
Both relations are known to be duplicate-free. For that reason, in the corresponding
M-graph M1 (see Figure 22) all edges connecting two nodes representing tuples of
the same source are weighted with 0 (for simplification, these edges are removed
in Figure 22). Thus, by using the available knowledge the initial M-graph can
be restricted to a bipartite graph. As a consequence, each W-graph is a bipartite
graph, too, which is only consistent, if each node is only connected with at most one
other node. This in turn reduces the number of considered W-graphs enormously.

R1

R2

t3

t2

t1

t4

t5

0.8

0.1

0.2

0.4

ν(M1)−−−−→

Fig. 22. Bipartite M-graph M1 resulting from a knowledge-based restriction on the two duplicate-
free relations R1 and R2 (left) and the resultant set of its bipartite W-graphs (right)
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F. COMPLEXITY

In this section, we formally discuss the complexity of our full-indeterministic ap-
proach.

As known from other techniques which are based on the possible world semantics,
a full-indeterministic approach has, in theory, a very high complexity. The number
of W-graphs which can be generated from an M-graph with k uncertain edges is:

NW-graph(k) = 2k

A fully connected M-graph with n nodes has |E| = n(n − 1)/2 edges. As a con-
sequence, given a source relation with n tuples, the number of resultant W-graphs
(k = |E|) is at most:

Nmax
W-graph = NW-graph(|E|) = 2n(n−1)/2

The number of consistent possible worlds resulting from a certain source relation
with n tuples, where each duplicate decision is uncertain, is equal to the number of
possible partitions of the relation’s tuples. Thus, the maximal possible number of
resultant possible worlds can be reduced to the complexity of set partitioning and
results in:

Nmax
PW = Bn =

1

e

∞∑
i=1

in

i!

where Bn is the nth bell number [Rota 1964].
If each edge is uncertain, the resultant x-relation can be mapped to the power

set of the source relation’s tuples without the empty set. Thus, in the worst case,
the number of resultant x-tuples is:

Nmax
|RX | = |2

R| − 1 = 2|R| − 1

In order to get an idea of the dramatic complexity scale, we assume a source
relation R with 10 tuples. The number of W-graphs which can be generated from
the initial M-graph is maximal:

Nmax
W-graph = 245 ' 3.5184 · 1013

The number of resultant possible worlds and hence the number of indicator alter-
natives is at most:

Nmax
PW = B10 = 115, 975

Finally, the maximal number of resultant x-tuples is:

Nmax
|RX | = 210 − 1 = 1, 023 ' 100 · |R|

In summary, the complexity of the indeterministic deduplication algorithm, as
well as the size of the resultant data increases dramatically with the number of
uncertain edges. As a consequence, a full-indeterministic approach is in general
only of theoretical value and not usable in practice.

G. EQUIVALENT AND WORKING QUERIES

The queries Q1-Q3 presented in Section 6 are only of a theoretical nature and do
not work on the current Trio prototype (query Q4 works as it is). In this Section, we
Journal of the ACM, Vol. V, No. N, Month 20YY.
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present sequences of TriQL commands which are working on the current prototype
and which lead to same results as the presented ones.

G.1 Working Implementation of Query Q1

Query Q1 does not work, because it uses the IN-predicate and a vertical subquery.
The IN-predicate was realized by a join and the subquery by an auxiliary table
MaxIndAlternative. Thus, in the first step the table MaxIndAlternative was created
by Statement S1:

S1: CREATE TABLE MaxIndAlternative
AS SELECT * FROM Ind i WHERE Conf(i)=[max(Conf(*))];

The final result is produced by Statement S2:
S2: SELECT * FROM R_X t, Ind i, MaxIndAlternative mia

WHERE Lineage(t,i) AND i.id=mia.idAND i.val=mia.val COMPUTES Confidences;

G.2 Working Implementation of Query Q2

Query Q2 does not work for the same reasons as Q1 (EXISTS-predicate and vertical
subquery). The EXISTS-predicate was realized by a join and the subquery by
an auxiliary table PersonWithNonUniqueName. Thus, in the first step the table
PersonWithNonUniqueName was created by Statement S3:

S3: CREATE TABLE PersonWithNonUniqueName
AS SELECT DISTINCT t1.tid FROM Person t1, Person t2
WHERE t1.tid!=t2.tid AND t1.name=t2.name;

The final result is produced by Statement S4:

S4: SELECT * FROM PersonWithNonUniqueName WHERE Conf(*)=1.0;

G.3 Working Implementation of Query Q3

Query Q3 does not work for the same reasons as Q1 and Q2 (IN-predicate and
vertical subquery). The IN-predicate was realized by a join and the subquery by
an auxiliary table LessCertainDecision. Thus, in the first step the table LessCer-
tainDecision was created by Statement S5:

S5: CREATE TABLE LessCertainDecision
AS SELECT id FROM Ind i WHERE [max(Conf(*))]<0.6;

The final result is produced by Statement S6:
S6: SELECT * FROM R_X t, Ind i, LessCertainDecision lcd

WHERE Lineage(t,i) AND i.id=lcd.id ORDER BY Confidences ASC;

Note, NOT IN- and NOT EXISTS-predicates cannot be realized by using theta-
joins only, but also require a set minus operator (EXCEPT or MINUS) or an outer
join (LEFT OUTER JOIN or RIGHT OUTER JOIN). Outer joins are not implemented
in the current Trio Prototype even if they are listed in the TriQL manual. In con-
trast, a set minus operator is part of the currently implemented TriQL, but did not
work correctly. Therefore, using queries based on one of these subquery predicates
is more complicated at the moment, but will not pose a problem, when all the query
features which are currently listed in the TriQL manual will be implemented in the
Trio prototype.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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H. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments on efficiency in more detail.
All these experiments were performed on machine with an Intel(R) 2.8GHz dual
core processor, 4GB main memory, and a 64-bit operating system. We conducted
a set of (α, 1 − α)-restrictions with different threshold settings and the original
W-graph-generation mapping ν. Moreover, we consider the improvement of effi-
ciency by additionally using a HC-restriction (W-graph-generation mapping ν2) in
Section H.4. In all experiments, we use M-graph decomposition for making our
indeterministic deduplication approach feasible in practice. The setting α = 0.0165
was the lowest threshold for which we were able to perform an (α, 1−α)-restriction
with the W-graph-generation mapping ν. In contrast, by using the mapping ν2
(HC-restriction), we were able to perform an (α, 1−α)-restriction up to the thresh-
old setting α = 0.002.

H.1 Algorithm Complexity

In Table IV, we present our results on algorithm complexity for (α, 1−α)-restrictions
with the W-graph-generation mapping ν (without HC-restriction). We measure
complexity by the number of definite positive edges (matches, i.e. edges weighted
with γ = 1), the number of uncertain edges (possible matches, i.e. edges weighted
with 0 < γ < 1), the number of partial M-graphs in which the initial M-graph
could be decomposed, the number of partial W-graphs which could be derived from
these partial M-graphs, the number of consistent partial W-graphs, and runtime.
As mentioned in Section 7, runtime started from processing the initial M-graph and
hence did not include tuple matching.

α
#definite #uncertain #partial #partial #consistent runtime
positive edges M-graphs W-graphs partial [sec.]
edges W-graphs

0 9 577004 →∞8 →∞8 →∞8 →∞8

.0165 9 98 1905 133296 3085 18.519

.0175 9 95 1907 4288 2119 10.549
.02 9 84 1915 2354 2041 8.644
.03 9 60 1935 2122 2015 4.926
.04 9 43 1951 2018 1997 2.581
.05 9 42 1952 2011 1996 2.519
.06 9 41 1953 2011 1996 2.406
.07 10 37 1955 2003 1992 2.232
.08 10 33 1958 1997 1990 2.013
.09 10 33 1958 1997 1990 1.984
.1 10 30 1961 1996 1990 1.845
.2 11 13 1977 1991 1989 1.131
.3 15 4 1982 1986 1986 1.009
.4 16 2 1983 1985 1985 0.969
.5 17 0 1984 1984 1984 0.966

Table IV. Algorithm Complexity of several (α, 1 − α)-restrictions with decomposition and the
W-graph-mapping ν

8Due to our limited resources, processing a full-indeterministic approach was not feasible.
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The results presented in Table IV show that the number of partial W-graphs
only linearly increased with a growing number of uncertain edges, if this number
remained low, but increased exponentially, if this number exceeds 50.

Moreover, in Table V, we present the absolute frequencies of the different sizes of
partial M-graphs (frequency distribution of partial M-graph size) of several (α, 1−
α)-restrictions. Note, a M-graph of size 1 represents a unicum. The largest M-graph
size we measured in our experiments for restrictions with non-hierarchical cluster-
ings with the settings α ∈ [0.0165, 0.5] was 13. In contrast, the largest M-graph
size we measured in our experiments for restrictions with hierarchical clusterings
with the settings α ∈ [0.002, 0.5] was 213. Per definition, these frequencies are
independent from the use of a HC-restriction. Nevertheless, additionally using a
HC-restriction allowed us to perform experiments also for extreme small values of
α (α < 0.01) and hence supply us more results on frequency distribution. However,
distributions having frequencies up to the size of 213 are hard to present in a sin-
gle table. For that reason, Table V only shows the results for the indeterministic
approach performed with the non-hierarchical W-graph-mapping ν.

α
frequency of partial M-graph size

1 2 3 4 5 6 7 8 9 ... 13

.0165 1848 42 8 2 2 1 1 0 0 ... 1

.0175 1850 41 8 3 2 1 1 0 1 ... 0
.02 1858 42 8 4 2 0 0 1 0 ... 0
.03 1886 40 6 1 1 0 1 0 0 ... 0
.04 1912 31 7 0 1 0 0 0 0 ... 0
.05 1913 31 7 1 0 0 0 0 0 ... 0
.06 1915 30 7 1 0 0 0 0 0 ... 0
.07 1918 29 8 0 0 0 0 0 0 ... 0
.08 1922 30 6 0 0 0 0 0 0 ... 0
.09 1922 30 6 0 0 0 0 0 0 ... 0
.1 1927 29 5 0 0 0 0 0 0 ... 0
.2 1955 21 1 0 0 0 0 0 0 ... 0
.3 1965 16 1 0 0 0 0 0 0 ... 0
.4 1967 15 1 0 0 0 0 0 0 ... 0
.5 1969 14 1 0 0 0 0 0 0 ... 0

Table V. Absolute frequencies of different partial M-graph sizes of several (α, 1 − α)-restrictions
with decomposition and the W-graph-mapping ν

In large restrictions (α > 0.6) the initial M-graph could be completely decom-
posed in partial M-graphs with one node (unicum) or two nodes respectively. In
contrast, the smaller the restrictions, the less the number of partial M-graphs the
initial M-graph could be decomposed into and the greater the resultant partial
M-graphs became.

H.2 Data Complexity

In Table VI, we present our results on the complexity of the resultant data measured
by the number of resultant tuples, the number of indicator alternatives required to
model all resultant complementations, and the number of unicums, i.e. tuples which
are no duplicates with absolute certainty.
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α
#result #indicator #unicumstuples alternatives

0 →∞8 →∞8 12

.0165 5739 1194 1848

.0175 2349 227 1850
.02 2156 140 1858
.03 2091 88 1886
.04 2039 53 1912
.05 2036 51 1913
.06 2035 50 1915
.07 2027 44 1918
.08 2022 37 1922
.09 2022 37 1922
.1 2019 33 1927
.2 2001 12 1955
.3 1990 4 1965
.4 1987 2 1967
.5 1984 0 1969

Table VI. Data (Storage) complexity resulting from several (α, 1− α)-restrictions with decompo-
sition and the W-graph-mapping ν

From α = 0.5 to α = 0.04 the increase of resultant tuples and the amount
of required indicator alternatives remained low, with or without a HC-restriction.
Moreover, the most tuples were unicums. For smaller values of α, storage complex-
ity increased dramatically. For example, for α = 0.0165 from 2000 input tuples
5739 output tuples and 1194 indicator alternatives resulted.

H.3 Data (Un)certainty

In Table VII, we present the (un)certainty of the resultant data measured by the
number of resultant possible worlds, Uncertainty Density, and Answer Decisiveness.

α
#possible Uncertainty Answer
worlds Density Decisiveness

0 →∞8 → 18 → 08

.0165 3.599 · 1023 0.0151 0.9915

.0175 1.045 · 1023 0.0153 0.9911
.02 1.205 · 1021 0.0149 0.9915
.03 4.696 · 1015 0.0117 0.9934
.04 2.378 · 1011 0.0088 0.9939
.05 1.698 · 1011 0.0087 0.9939
.06 8.493 · 1010 0.0084 0.9940
.07 7.644 · 109 0.0078 0.9942
.08 1.019 · 109 0.0073 0.9947
.09 1.019 · 109 0.0073 0.9947
.1 1.698 · 108 0.0067 0.9951
.2 4, 096 0.0030 0.9973
.3 16 0.0010 0.9989
.4 4 0.0005 0.9994
.5 1 0 1

Table VII. Data (un)certainty resulting from several (α, 1 − α)-restrictions with decomposition
and the W-graph-mapping ν
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The number of modeled possible world increased exponentially with a growing
area of indeterministically handled decisions. However, Uncertainty Density as well
as Answer Decisiveness remained close to the optimal value of complete certainty,
even if α was very low.

H.4 Efficiency Improvement by HC-Restrictions

For demonstrating the ability of HC-restrictions to improve efficiency, we conduct
the same set of experiments as before, but now with the hierarchical W-graph-
generation mapping ν2. The results on algorithm complexity, data complexity and
data (un)certainty are presented in Table VIII and Table IX. Note, per definition
the number of definite positive edges, the number of uncertain edges and the number
of partial M-graphs (as well as its frequency distribution) are not affected by the
hierarchical clustering and hence remained unchanged.

α
#definite #uncertain #partial #partial #consistent runtime
positive edges M-graphs W-graphs partial [sec.]
edges W-graphs

0 9 577004 →∞8 →∞8 →∞8 →∞8

.002 9 618 1725 1891 1766 497.867

.003 9 359 1779 1923 1828 232.122

.004 9 207 1830 1970 1883 69.568

.005 9 169 1851 1984 1912 46.942

.006 9 161 1857 1984 1918 41.839

.007 9 155 1862 1983 1921 35.488

.008 9 149 1867 1983 1926 31.518

.009 9 148 1868 1983 1927 32.467
.01 9 137 1872 1980 1928 25.104
.0165 9 98 1905 1991 1963 10.886
.0175 9 95 1907 1993 1965 11.143
.02 9 84 1915 1992 1970 8.575
.03 9 60 1935 1991 1980 4.986
.04 9 43 1951 1991 1983 2.620
.05 9 42 1952 1991 1984 2.484
.06 9 41 1953 1991 1984 2.374
.07 10 37 1955 1989 1983 2.267
.08 10 33 1958 1990 1985 1.999
.09 10 33 1958 1990 1985 1.982
.1 10 30 1961 1990 1986 1.874
.2 11 13 1977 1989 1989 1.118
.3 15 4 1982 1986 1986 1.028
.4 16 2 1983 1985 1985 0.937
.5 17 0 1984 1984 1984 0.902

Table VIII. Algorithm Complexity of several (α, 1 − α)-restrictions with decomposition and the
W-graph-mapping ν2

The presented results show that the additional HC-restriction improved efficiency
enormously for small (α, 1− α)-restrictions, even not in terms of runtime. That is
because the decomposition of the initial M-graph is in general one of the most time
consuming steps, especially if the size of the resultant partial W-graphs is relatively
small. Since the complexity of decomposition depends on the number of uncertain
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edges which is not affected by the HC-restriction, the runtime of an (α, 1 − α)-
restriction combined with a HC-restriction did not decrease noticeably compared
to the runtime of an (α, 1 − α)-restriction without a HC-restriction. The reason
that runtime significantly grew further on for small values of α was the enormous
sizes of the created W-graphs (up to 213).

In contrast, the number of partial W-graphs and the number of consistent partial
W-graphs did not grow exponentially anymore and was always lower than 1994
graphs. An interesting observation is that the number of consistent partial W-
graphs initially grew from 1984 to 1989, if the area of indeterministically handled
decisions was increased from α = 0.5 to α = 0.2, but then shrank up to 1766 for
α < 0.2. Instead the number of partial W-graphs initially increased from 1984
(α = 0.5) to 1993 (α = 0.0175), then varied between the values 1980 and 1991
for the settings α ∈ (0.005, 0.02), and finally shrank noticeably up to 1891 for
α = 0.002. Data complexity and data uncertainty (Table IX) stayed low even for
small values of α. Moreover, instead of dramatically increasing, the number of
required indicator alternatives shrank surprisingly from 69 to 45, if α was lower
than 0.005.

α
#result #indicator #unicums #possible Uncertainty Answer
tuples alternatives worlds Density Decisiveness

0 →∞8 →∞8 ≥ 12 →∞8 → 18 → 08

.002 2064 45 1901 1.359 · 1011 0.0096 0.9953

.003 2070 53 1883 2.505 · 1014 0.0123 0.9948

.004 2062 59 1875 2.630 · 1016 0.0135 0.9936

.005 2069 69 1861 1.818 · 1019 0.0156 0.9927

.006 2067 68 1863 9.089 · 1018 0.0155 0.9931

.007 2063 64 1867 5.112 · 1018 0.0154 0.9931

.008 2063 64 1867 2.272 · 1018 0.0152 0.9934

.009 2063 64 1867 2.272 · 1018 0.0151 0.9934
.01 2060 59 1872 2.840 · 1017 0.0143 0.9935
.0165 2057 65 1869 7.213 · 1017 0.0143 0.9927
.0175 2055 66 1870 1.154 · 1018 0.0144 0.9924
.02 2051 62 1875 2.886 · 1017 0.0140 0.9929
.03 2040 50 1895 1.113 · 1014 0.0114 0.9940
.04 2023 35 1921 2.446 · 1010 0.0085 0.9945
.05 2023 35 1921 2.446 · 1010 0.0085 0.9945
.06 2022 34 1923 1.223 · 1010 0.0082 0.9946
.07 2018 30 1926 3.057 · 109 0.0077 0.9947
.08 2017 27 1927 1.019 · 109 0.0073 0.9949
.09 2017 27 1927 1.019 · 109 0.0073 0.9949
.1 2015 25 1931 1.699 · 108 0.0067 0.9951
.2 2001 12 1955 4, 096 0.0030 0.9973
.3 1990 4 1965 16 0.0010 0.9989
.4 1987 2 1967 4 0.0005 0.9994
.5 1984 0 1969 1 0 1

Table IX. Data (Storage) complexity and data (un)certainty resulting from several (α, 1 − α)-
restrictions with decomposition and the W-graph-mapping ν2

Another difference results in the number of unicums, e.g. 1848 unicums for
mapping ν and 1869 unicums for mapping ν2 for the setting α = 0.0165. Whereas,
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by using the W-graph-generation mapping ν the number of unicums is equivalent
to the number of partial M-graphs with exactly one node, by using the mapping
ν2 unicums can also result from partial M-graphs with more than one node. An
example of such a situation is illustrated in Figure 23. The initial M-graph M1 has
one definite negative edge {t1, t2} and two uncertain edges ({t1, t3} and {t2, t3}).
From applying the mapping ν2 the three W-graphs G1, G2 and G3 result. Only two
of theseW-graphs, namely G1 and G2, are consistent. Since t1 is not connected with
any other tuple in one of these two consistent W-graphs, t1 is a unicum, despite of
the fact that it is involved in an M-graph with more than one node. In conclusion,
the number of unicums resulting from an (α, 1 − α)-restriction is always equal or
greater by using an additional HC-restriction than by using without.

t1

t2

t30

0.4

0.8

M-graph M1

ν2(M1)−−−−−→

t1

t2

t3

t1

t2

t3

t1

t2

t3

W-graph G1 W-graph G2 W-graph G3

consistent consistent inconsistent

Fig. 23. The initial M-graph M1, its the three W-graphs G1 to G3 and the unicum t1.

A further interesting aspect is that the number of resultant possible worlds was
dramatically increasing (up to 3.6 · 1023) for a shrinking value of α in our non-
hierarchical approach (W-graph-generation mapping ν), but was always lower than
2 ·1019 by using a HC-restriction. Moreover, by additionally using a HC-restriction,
the number of possible worlds decreased for settings α < 0.005.

To illustrate the improvement of efficiency further on, we compare the number of
generated partial W-graphs, the number of generated consistent partial W-graphs,
the number of resultant tuples, the number of resultant indicator alternatives, the
number of resultant unicums, and the number of resultant possible worlds with and
without using an additional HC-restriction in Figure 24-29.

All six figures show that the complexity (algorithm complexity in terms of number
of partial W-graphs and number of consistent partial W-graphs, and data (storage)
complexity in terms of number of resultant tuples and number of resultant indicator
alternatives) as well as data uncertainty (in term of number of possible worlds) dra-
matically increased for α ≤ 0.03, if the non-hierarchical W-graph-generation map-
ping ν was used. In contrast, by using the hierarchicalW-graph-generation mapping
ν2 the results remained stable, even for small settings of α. Moreover, as already
discussed above, the number of unicums resulting from an (α, 1 − α)-restriction
combined with a HC-restriction was always higher than 1980. In contrast, for small
settings of α the number of unicums became less than 1700 (and theoretically only
12 for a full-indeterministic approach), if no HC-restriction was used.

In summary, the benefits of the HC-restriction were that (α, 1 − α)-restrictions
became computable even for small values of α, because of the reduced number of
partial M-graphs, and that the data (storage) complexity was manageable even for
large areas of indeterministically handled decisions (α < 0.01).
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Fig. 24. Number of partial W-graphs for α ∈ (0.5−0.002) with and without using a HC-restriction
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Fig. 25. Number of consistent partial W-graphs for α ∈ (0.5 − 0.002) with and without using a
HC-restriction

1900

2000

2100

2200

2300

2400

2500
without HC

with HC

Fig. 26. Number of resultant tuples for α ∈ (0.5− 0.002) with and without using a HC-restriction
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Fig. 27. Number of indicator alternatives for α ∈ (0.5 − 0.002) with and without using a HC-
restriction
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Fig. 28. Number of resultant unicums for α ∈ (0.5−0.002) with and without using a HC-restriction
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Fig. 29. Number of possible worlds (measured in lb(#possible worlds)) for α ∈ (0.5− 0.002) with
and without using a HC-restriction
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