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Abstract—Template protection techniques are used within bio-
metric systems in order to protect the stored biometric template
against privacy and security threats. A great portion of template
protection techniques are based on extracting a key from, or
binding a key to the binary vector derived from the biometric
sample. The size of the key plays an important role, as the achieved
privacy and security mainly depend on the entropy of the key. In
the literature, it can be observed that there is a large variation on
the reported key lengths at similar classification performance of
the same template protection system, even when based on the same
biometric modality and database. In this work, we determine the
analytical relationship between the classification performance of
the fuzzy commitment scheme and the theoretical maximum key
size given as input a Gaussian biometric source. We show the effect
of the system parameters such as the biometric source capacity,
the number of feature components, the number of enrolment and
verification samples, and the target performance on the maximum
key size. Furthermore, we provide an analysis of the effect of
feature interdependencies on the estimated maximum key size and
classification performance. Both the theoretical analysis, as well as
an experimental evaluation using the MCYT fingerprint database
showed that feature interdependencies have a large impact on
performance and key size estimates. This property can explain the
large deviation in reported key sizes in literature.

Index Terms—Analytical models, biometrics, template protec-
tion.

I. INTRODUCTION

I N recent years, interest in biometric systems has signifi-
cantly increased. Examples include 1) the planned intro-

duction of the United Kingdom National Identity Card based
on biometrics required by the Identity Cards Act 2006 [1] and
2) the recommendation by the International Civil Aviation Or-
ganization (ICAO) [2] to adopt the ePassport that also includes
biometric data.
A biometric system used for authentication primarily con-

sists of an enrolment and verification phase. In the enrolment
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phase, a biometric sample is captured and a reference template
is created and stored. In the verification phase, a new biometric
sample is captured and compared to the stored reference tem-
plate. The subject is considered as being genuine if the new
biometric sample is sufficiently similar to the stored reference
template. A biometric system requires the storage of a refer-
ence template of the biometric data. Hence, the widespread use
of biometrics introduces new security and privacy risks such as
1) identity fraud where an adversary steals the stored reference
template and impersonates the genuine subject of the system
by some spoofing mechanism, 2) limited-renewability implying
the limited capability to renew a compromised reference tem-
plate due to the limited number of biometric instances (for ex-
ample we only have ten fingers, two irises or retinas, and a single
face), 3) cross-matching linking reference templates of the same
subject across databases of different applications, and 4) (sen-
sitive) personal or medical information leakage, implying that
biometric data may reveal the gender, ethnicity, or the presence
of certain diseases.
The field of template protection is focused onmitigating these

privacy risks by developing template protection techniques that
provide 1) irreversibility implying that it is impossible or at least
very difficult to retrieve the original biometric sample from the
reference template, 2) renewability or the ability to renew the
reference template when necessary, and 3) unlinkability which
prevents cross-matching.

A. Overview of the Template Protection Field

As described in Jain et al. (2008) [3], the template protection
techniques proposed in the literature can be divided into two
categories, namely 1) feature transformations and 2) biometric
cryptosystems.
The most common technique based on feature transforma-

tions is known as cancelable biometrics [4], [5]. With cance-
lable biometrics, the reference template is generated by applying
a noninvertible transformation on the enrolment sample. Due to
the noninvertible property of the transformation, it is impossible
to obtain the original biometric sample from the reference tem-
plate. In the verification phase, the same noninvertible transfor-
mation is applied on the verification sample, and the matching
is thus performed on the transformed version of both the enrol-
ment and verification sample.
Biometric cryptosystem techniques can be subdivided into

1) key binding and 2) key generation methods. In the enrol-
ment phase, the key binding techniques combine the key with
a biometric sample into auxiliary data such that the same key

1556-6013/$31.00 © 2012 IEEE
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can be successfully released in the verification phase by using
a new biometric sample and the stored auxiliary data. Exam-
ples of the key binding techniques are the Fuzzy Commitment
Scheme (FCS) [6], the Helper Data System (HDS) [7], and the
Fuzzy Vault [8]. Most key binding schemes first extract a binary
vector from the biometric sample before the binding process.
Key generation techniques extract a robust key from the bio-
metric sample in the enrolment phase, with auxiliary data if nec-
essary. In the verification phase, the same key has to be extracted
using a new biometric sample and, when available, the auxiliary
data. fuzzy extractors are the most common key generation tech-
niques, which can be created using secure sketches [9].
In line with the standardization activities in ISO [10], the hash

of the key is referred to as the pseudonymous identifier (PI) and
the protected reference template is the collection of the auxiliary
data (AD) and (PI).

B. Privacy, Security, and Convenience

We previously mentioned the security risks of identity
fraud and limited-renewability and the privacy risks of
cross-matching and leaking (sensitive) medical information.
We also mentioned that most key binding schemes first extract
a binary vector from the biometric sample before the binding
process. Hence, retrieving this binary vector from the stored
protected template may facilitate a possible replay attack
(makes identity fraud possible) or a cross-matching attack and,
therefore, allows for a security or privacy breach. Besides the
cross-matching privacy breach, the binary vector could also
reveal sensitive or medical information of the subject.
It is known from the key binding technique that given the pro-

tected template, an adversary could retrieve the binary vector
extracted from the biometric sample by guessing the key and
inverting the key binding process. Therefore, the achieved pri-
vacy and security protection depends on the entropy of the key,
i.e., the difficulty of guessing it. Considering the key to consist
of independent and uniform bits, its entropy is then determined
by its size. Having a key of bits on average will take
guesses in order to obtain the correct one, hence adding a single
bit to the key doubles the adversary’s effort.
On the other hand, the classification performance of the tem-

plate protection system also determines the effort of inverting
the key-binding process. In the remainder of this work, we refer
to the classification performance of the template protection
system as the system performance. The system performance
can be expressed by the false match rate (FMR) and the false
nonmatch rate (FNMR). Given an enrolment sample, the FMR
is the probability of incorrectly classifying a verification sample
from a different subject as similar and genuine, hence leading
to a false match. Thus, the FMR also indicates the likelihood
of finding a random verification sample, e.g., from existing
databases, that will lead to a match and, therefore, a security
breach, which is also known as the FMR attack. The work of
Korte and Plaga (2007) [11] and Buhan et al. [12] describe
a relationship between the FMR and the key size, namely

. The FNMR, on the other hand, is the
probability of incorrectly classifying a verification sample from
the same subject as different, thus leading to a false nonmatch.

We consider the FNMR as part of the convenience factor of
the biometric system, because it determines the probability
that subjects have to repeat the verification process which is
considered as an unpleasant experience. It is also known that
increasing the FNMR usually results in a decrease of the FMR,
and consequently an increase in the key size. In other words, the
security and convenience of a biometric key binding system are
often subject to a trade-off. Another factor that influences the
security and performance of a biometric system is the number
of biometric samples that is used for enrolment and verification.
Acquiring multiple biometric samples will improve the system
performance as shown in Kittler et al. (1997) [13], Faltemier
et al. (2008) [14], and Kelkboom et al. [15], and therefore,
also the key size. However, increasing the number of biometric
samples increases the acquisition time which could be experi-
enced as inconvenient by the subject, and is another parameter
to influence the convenience-security trade-off.

C. Reported Performances With Corresponding Key Size

In the literature, there is a significant variability in the re-
ported key sizes when compared to the key size deducted from
the FMR. Table I shows an overview of the reported system
performance and key size for different template protection tech-
niques, databases, and feature extraction methods. It is difficult
to find a relationship between the system performance and the
key size. For example, consider cases 4 and 7 that use the same
template protection technique and modality, and a similar data-
base. While having similar reported performance, the key size
in case 7 is almost three times larger than in case 4. Likewise,
when comparing cases 1c and 6a with a similar template pro-
tection technique, modality, database, and performance, the re-
ported key size in case 6a is almost double of the one of case
1c. As a final example, the separate cases 5 and 6 show that
using exactly the same template protection technique on the
same modality but different databases may lead to a different
performance at an equal key size as in case 5 or different key
sizes at similar performance as in case 6.
Comparing the performance and the key size of template pro-

tection schemes based on different error-correcting code (ECC)
implementations, databases, biometric modalities, or feature ex-
traction algorithms is not straightforward. Different ECC im-
plementations may lead to different error-correcting capabilities
and, therefore, a possible difference between the system perfor-
mance and the key size. Different databases, biometric modal-
ities, or feature extraction algorithms influence the quality of
the extracted features and, therefore, the system performance.
In the comparisons made above, we tried to minimize these dif-
ferences. From the significant differences observed between the
reported system performance (especially the FMR) and the key
size, we may conclude that there seems to be no clear relation-
ship between the system performance and the key size.

D. Related Work and Contributions

We are interested in determining the relationship between the
maximum key size and the system performance. Furthermore,
we also investigate the influence of the system parameters on the
key size and the system performance. The system parameters
are the discriminating power of the biometric Gaussian source,
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TABLE I
OVERVIEW OF THE KEY SIZE AND THE CLASSIFICATION PERFORMANCE OF DIFFERENT BIOMETRIC CRYPTOSYSTEMS TECHNIQUES, MODALITIES

AND DATABASES FOUND IN THE LITERATURE. THE BIOMETRIC CRYPTOSYSTEMS UNDER CONSIDERATION ARE THE FUZZY
EXTRACTORS, THE FUZZY COMMITMENT SCHEMES (FCS), THE HELPER DATA SYSTEMS (HDS), THE FUZZY VAULT,

AND THE CODE-OFFSET CONSTRUCTION

the number of feature components extracted from the biometric
sample, and the number of enrolment and verification samples.
An analysis about the maximum key size given a discrete

biometric source is done in Ignatenko and Willems (2009) [27]
(which is an extended version of Ignatenko and Willems (2008)
[28]) and a similar work of Lai et al. (2008) [29], where they
estimated the secret-key rate. The work of Willems and Ig-
natenko (2009) [30] analyzed the secret-key rate for a Gaussian
distributed continuous biometric source. The framework of
these works assumes that if the number of feature components
goes to infinity, the discriminating power of each component
remains constant. Assuming independent feature components,
this would imply that the biometric source has an infinite
discriminating power. This would not hold for a biometric
system, where the discriminating power of a biometric trait is
limited due to its practical nature, namely measurement noise
or biometric variability.
In our work, we use a Gaussian model for a continuous

biometric source with a limited discriminating power (or input
capacity) that can be distributed over a limited number of
feature components. We present five contributions. First, we
analytically determine the classification performance of the
FCS where the input is a Gaussian modeled biometric source.
We also include the number of enrolment and verification
samples. Second, from the estimated performance we ana-
lytically determine the theoretical maximum key size at the
operating point determined by the target FNMR, assuming an
ECC with decoding capabilities at Shannon’s bound. We also
verify the known relationship between the maximum key size
and the FMR. Third, we investigate by means of numerical
analysis the effect of the parameters such as the capacity of
the Gaussian biometric source, the number of enrolment and
verification samples, and the target FNMR on the maximum
key size. Fourth, we provide an analysis of the effect of feature
interdependencies and differences in their quality. Finally, we
analyze these findings on the MCYT fingerprint database using
two feature extraction algorithms.

Fig. 1. FCS construction combined with a Bit Extraction module.

E. Outline

The outline of this paper is as follows. We briefly describe
the FCS construction in Section II. In Section III, we present the
analytical framework that models the biometric source as par-
allel Gaussian channels. Furthermore, we derive the analytical
system performance and the theoretical maximum key size at
the target FNMR. Section IV illustrates by means of numerical
analysis the effect of the system parameters and feature interde-
pendencies on the maximum key size. The experimental setup
using theMCYT database and the obtained results are discussed
in Section V. Our final remarks and conclusions are given in
Section VI.

II. FUZZY COMMITMENT SCHEME

The FCS construction combinedwith aBit Extractionmodule
is depicted in Fig. 1.
In the enrolment phase or the key-binding process, the real-

valued column feature vector is extracted from each
of the biometric enrolment samples by the feature extrac-
tion algorithm. A single binary column vector is
created from the mean of the feature vectors within the Bit
Extraction module, which we will discuss in Section III. Fur-
thermore, a random key is created and encoded
by the ECC Encoder module into a codeword of size

, where is the ECC codebook (the set of codewords).
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Fig. 2. Modeling the key binding and release process by a binary symmetric
channel (BSC).

The codeword is XOR’d with the binary vector , creating the
auxiliary data (AD). AD is stored as part of the protected tem-
plate together with the hash of . Because of the XOR operation
and the fact that a single bit is extracted from each feature com-
ponent, it implies that the size of the extracted real-valued and
binary vector are equal to the codeword size, namely ,
and in the remainder of this work we will only use .
In the verification phase or the key-release process, the binary

vector is created by quantizing the mean of the verifica-
tion feature vectors . Hereafter, the auxiliary data AD is XOR’d
with resulting in the possibly corrupted codeword . De-
coding by the ECC Decoder module leads to the candidate
secret . The candidate pseudonymous identifier is ob-
tained by hashing . A match is returned by the Comparator
module if PI and are equal, which occurs only when and

are equal, i.e., the key-release process was successful.
Under the assumption that the bit errors are mutually inde-

pendent, the channel between the encoder and decoder of the
key-binding and key-release process can be modeled by a bi-
nary symmetric channel (BSC) as portrayed in Fig. 2, with an
error pattern of weight ,
where is the Hamming distance, corrupts the original code-
word used in the key-binding process. The bit-error probability
, which is the probability that a bit of is “1,” determines

the number of bit-errors that have to be corrected by the ECC
decoder in order to return a match and therefore also the system
performance. The bit-error probability depends on the quanti-
zation method being used, the quality of the features, and the
number of samples (see Section III-B) and is different for im-
poster and genuine comparisons.

III. ANALYTICAL FRAMEWORK

In this section, we present the analytical framework for mod-
eling the biometric source, the quantization method, the system
performance, and the maximum key size that can be extracted.
An overview of this framework is depicted in Fig. 3. The Source
Modeling module models the biometric source from which the
enrolment and verification feature vectors are derived. Given
the input capacity and the number of feature components
as it parameters the SourceModelingmodule outputs the quality
of feature component defined by the within-class and between-
class standard deviation ratio , referred to as the fea-
ture quality. With the quantization method under consideration,

Fig. 3. Overview of the framework used to model the biometric source defined
by the feature quality of the th component, the resulting bit-error
probabilities and , the corresponding performance defined by the
FMR and the FNMR at the operating point , and the maximum
key size that can be extracted.

the number of enrolment and verification samples, and
the feature quality , the Quantization module esti-
mates the bit-error probability of the extracted bit from feature
component at genuine and imposter compar-
isons. Knowing the bit-error probabilities, the Performance Es-
timation module estimates the analytical system performance
defined by the false match rate (FMR) and the false non-
match rate (FNMR) at all possible operating points .
Given the system performance and the target FNMR , the
maximum extracted key size is determined in the Maximum
Key Size module. In the remainder of this section, we discuss
each module in more detail.

A. Biometric Source Modeling With Parallel Gaussian
Channels

The input of the FCS template protection system is a
real-valued column feature vector
of dimension , where “ ” is the transpose operator. The
feature vector is extracted from a biometric sample by the
feature extractor and is likely to be different between two
measurements, even if they are acquired immediately after each
other. Causes for this difference include sensor noise, environ-
mental conditions, and biometric variabilities. To model these
variabilities, we use the parallel Gaussian channels (PGCs) as
portrayed in Fig. 4(a). This approach has been successfully
used in estimating the performance of two biometric databases
in Kelkboom et al. (2010) [31] in which the validity of the
PGC approach is shown. We assume an ideal Acquisition and
Feature-Extraction module which always produces the same
feature vector for subject . Such an ideal module is thus
robust against all aforementioned variabilities. However, the
variability of component is modeled as an additive zero-mean
Gaussian noise with its pdf .
Adding the noise with the mean results in the noisy
feature component , in vector notation .
The observed variability within one subject is characterized
by the variance of the within-class pdf and is referred to as
within-class variability. We assume that each subject has the
same within-class variance, i.e., homogeneous within-class
variance , . We also assume the noise to
be independent across components , subjects , and across
measurements. Hence, the feature vector extracted from each
biometric sample is equivalent to retransmitting over the
same PGC channels.
Each subject should have a unique set of means in order

to be distinguishable. Across the population, we assume
to be another Gaussian random variable with density

. The variability of across the population
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Fig. 4. (a) Parallel Gaussian channels modeling the real-valued features and
(b) the within-class, between-class and the total density and the quantization
method based on thresholding.

Fig. 5. (a) Feature quality as a function of the Gaussian channel ca-
pacity and (b) the genuine bit-error probability as a function of for
different values of the number of enrolment and verification samples.

is referred to as the between-class variability. Fig. 4(b) shows an
example of the within-class and between-class pdfs for a spe-
cific component and a given subject. The total pdf describes
the observed real-valued feature value across the popula-
tion and is also Gaussian with , where

and . For simplicity but
without loss of generality we consider .
The capacity of each channel is given by the Gaussian

channel capacity as defined in Cover and Thomas (1991)
[32]

(1)

which in fact states that a maximum of bits could be sent
per transmission. Note that the Gaussian channel capacity only
depends on the ratio and in Section III-B we will
also show that the bit-error probability depends on this ratio.
Therefore, we can define the ratio as the feature
quality of component and taking its inverse of (1) we obtain

(2)

where the relationship is graphically represented in Fig. 5(a).
With the capacity of feature component equal to the

Gaussian channel capacity , we can define the total ca-
pacity of the input biometric source as the following sum:

(3)

The input capacity thus represents the amount of discrimi-
nating information in a biometric sample across the population

and is distributed among the components. Is this work, we
consider the input capacity to be uniformly distributed
among the components. Hence, the Gaussian capacity of
each component is equal to . By substituting

in (2), the feature quality parameter
related to the total capacity as

(4)

and is thus equal for each component.

B. Quantization Module Based on Thresholding

Fig. 4(b) depicts the quantization method under consider-
ation, which is a binarization method based on thresholding,
where the mean of the total density is taken as the threshold
[19]–[21]. If the real-valued feature is larger than the threshold,
then a bit of value “1” is allocated; otherwise “0.” To estimate
the analytical system performance we need to estimate the
bit-error probability for each component at imposter
and genuine comparisons. In this section, we analytically esti-
mate given the quantization scheme, the feature quality

, and the number of enrolment and verification
samples.
1) Imposter Bit-Error Probability : At imposter com-

parisons, each bit is compared with the bit extracted from a ran-
domly selected feature value from the total density. Because
is the binarization threshold, there is a probability of 1/2 that a
randomly selected bit from the population will be equal, hence

. Note that both the number of enrolment and veri-
fication samples do not have an influence on , and
is equal for each component.
2) Genuine Bit-Error Probability : At genuine com-

parisons, the analytical bit-error probability has been de-
rived in Kelkboom et al. (2008) [15], namely

(5)

which shows that the standard deviation ratio
(the feature quality) and the number of enrolment and
verification samples determine . Note that is
the average bit-error probability across the population. Some
subjects have a larger bit-error probability because their mean

is closer to the quantization threshold , while others
have a smaller bit-error probability because their mean is
further away. However, for estimating the analytical system
performance across an infinite number of subjects, it is only
necessary to compute the average bit-error probability as shown
in Kelkboom et al. (2010) [31]. With the assumption that the
feature quality is equal for each component, substituting (4)
into (5) we obtain

(6)
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With (5) or (6) it is easy to show that for the
case converges to the case when

the feature quality increases. For example, the argument of the
function in (5) for approaching infinity becomes

(7)

Furthermore, under the assumption that
, we can approximate the argument of the

function as

(8)

For the first case we consider the number of enrolment and ver-
ification samples to be equal, namely , while for
the second case we consider . For these two
cases, the error probability is equal if the argument of the
function is equal. This results in

(9)

Hence, we have shown that converges for the cases
and when the feature quality

increases. Note, that the convergence also holds for the
case.

Fig. 5(b) depicts the bit-error probability as a function
of for different settings of and as defined by (6).
By increasing , decreases because the bits extracted in
the enrolment phase are more stable, i.e., a smaller within-class
variance. However, when increasing further to infinity,
stays close to the case and converges when
increases. To further decrease , it is thus necessary to also
increase .
These findings can help the designer of the biometric system

when determining the number of enrolment and verifica-
tion samples. These findings show that the reduction of the
bit-error probability (and thus an improvement of the system
performance) is limited when increasing only the number of
enrolment or verification samples. Above a certain number
of enrolment (verification) samples, the improvement of the
system performance is minimal and it would be more advan-
tageous to increase the number of verification (enrolment)
samples.

C. System Performance

In Section II, we have modeled the channel between the en-
coder and decoder of the FCS template protection system as a

Fig. 6. Toy example of the convolution method given by (7). (From Kelkboom
(2010) [31].)

binary symmetric channel with bit-error probability . The
bit-error probability determines the probability mass function

of the number of bit errors or Hamming distance
. As presented in Kelkboom et al. (2010) [31], the

is defined by the convolution

(10)

where is the marginal of the single
bit extracted from component . A toy example is depicted in
Fig. 6. The toy example shows the marginal at comparisons
between the enrolment and verification bits and ,
respectively. Taking the convolution of all marginal leads
to the of the Hamming distance .
Because we consider the input capacity to be uniformly dis-

tributed across the components, is equal for each com-
ponent, namely . Hence, the convolution in (10) becomes a
binomial as discussed in Daugman (2003) [33]

(11)

with dimension and probability .
1) False Match Rate: The false match rate (FMR) depends

on the of the Hamming distance at imposter comparisons,
where we have the bit-error probability that is equal for
each extracted bit. Therefore, the of the Hamming distance
is the binomial with equal to . Hence, the FMR at
the operating point , , is the probability that is smaller
or equal to (see Fig. 7), namely

(12)

2) False Nonmatch Rate: In general, is not equal for
each bit and therefore the of the Hamming distance at
genuine comparisons is defined by the convolution of (10) with
marginal ’s . Hence, the false
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Fig. 7. False match rate (FMR) and the false nonmatch rate (FNMR) given
the probability mass function of the number of errors at imposter and genuine
comparisons.

nonmatch rate at the operating point , , is the probability
that is larger than (see Fig. 7), namely

(13)

With the input capacity uniformly distributed among the
components, the of is given by the binomial with
probability , namely

(14)

D. Maximum Key Size

As discussed in Section II, the ECC has to decode the cor-
rupted codeword in order to retrieve the encoded key from the
enrolment phase. A decoding error occurs when the number of
corrupted bits is larger than the error-correcting capability of
the ECC. Hence, the decoding error probability determines the
FNMR and FMR of the biometric system. Furthermore, the size
of the encoded key depends on the number of bits the ECC has to
correct, referred to as the operating point, and the codeword size.
We assume an ideal binary ECC that corrects up to random
bit errors of equal bit-error probability and the ECC operates at
the theoretical maximum, e.g., Shannon’s bound.
In this section, we investigate the relationship between the

bit-error probabilities corrupting the codeword, the maximum
key size that can be encoded in the enrolment phase, and the
performance of the biometric system given by the FMR and
FNMR given the ideal ECC we defined above.
First we discuss Shannon’s theorem on which the decoding

properties of our ideal ECC is based. We will show that for a
biometrics system with a limited codeword size , the FNMR
at the operating point stipulated by Shannon’s theorem will be
close to 50%. Such an FNMR is unacceptable for a biometric
system. Hence, we analyze the key size achieved at other oper-
ating points such as the equal-error rate (EER), where the FMR

Fig. 8. (a) Binary symmetric channel (BSC) capacity as a function of the bit-
error probability , and (b) the BSC capacity as a function of the uni-
formly distributed input capacity at different values of the number of
enrolment and verification samples.

is equal to the FNMR, and the operating point determined by the
target FNMR, . We define the maximum key size as the key
size obtained at the operating point . We conclude with the
comparison between the maximum key size at a given operating
point and the upper bound given by the corresponding FMR as
published in Korte and Plaga (2007) [11] and Buhan et al. [12].
1) Shannon’s Theorem: With the code rate equal to the

ratio of the key size and the codeword size , Shannon’s
noisy channel decoding theorem [34] shows that there exists
a decoding technique that can decode the corrupted codeword
with a bit-error rate with an arbitrary small probability of a
decoding error when

(15)

for a sufficiently large value of , where is the channel
capacity defined as

(16)

with being the binary entropy function

(17)

Hence, the key size has an upper limit given by Shannon’s
bound with as

(18)

With use of (6), we have the relationship between the uniformly
distributed input capacity and the BSC channel capacity

as illustrated in Fig. 8(b) for different numbers of en-
rolment and verification samples settings. Increasing the
number of samples decreases of the genuine bit-error proba-
bility and, therefore, increases the BSC channel capacity

.
With a code rate close to the bound given by (18), the de-

coding error is negligible only when is large enough. In a
biometric system, however, is not very large. As described
in Daugman (2003) [33], the intrinsic degrees of freedom of
the binary iris code is 249, which has been derived by fitting
the imposter Hamming distance with a binomial with
probability and dimension . The impact of
this small dimension on the FNMR is depicted by the toy ex-
ample in Fig. 9. The figure illustrates the achieved FNMR when
choosing the operating point close to
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Fig. 9. Toy example of the achieved FNMR when choosing the operating,
close to as stipulated by Shannon’s theorem for

different values of . The solid (blue) curve portrays the of the Ham-
ming distance at genuine comparisons, while the dotted (red) curve depicts
the at imposter comparisons.

Fig. 10. BSC channel capacity at the EER operating point as a
function of the uniformly distributed input capacity at different values
of and .

as stipulated by Shannon’s theorem for different values of .
At a large codeword size of bits, the achieved
FNMR is 0.6%, which is acceptable. Note, however, that the
FNMR significantly increases once decreases, namely 43.9%
at bits, respectively. Hence, when the iris has 249
independent bits and is known as one of the best biometrics
modality, we can conclude that the codeword size is expected
to be too small to achieve an acceptably small FNMR. To lower
the FNMR we have to correct more bits. In Section IV, we de-
scribe two alternative operating points, namely at the EER op-
erating point or at the target FNMR .
2) The EER Operating Point With Gaussian Approximation:

In order to find an analytical expression of the EER operating
point, , we approximate the binomial density used for
modeling the of the Hamming distance by a Gaussian
density. The EER operating point in terms of becomes

(19)

where the complete derivation is presented in Section A. Note
that the relative operating point is fully determined by

and therefore also the uniformly distributed input capacity
. The relationship between the BSC channel capacity at

the EER operating point and is depicted
in Fig. 10.

3) Operating Point at the Target FNMR : We have
shown that the operating point stipulated by Shannon’s theory
leads to an optimistic upper bound with a high FNMR, while
the EER operating point may not be the ideal operating point of
a biometric system in terms of FMR, which consequently leads
to a smaller maximum key size. In this section, we present a
different operating point determined by the target performance,
namely the target FNMR, . Hence, instead of correcting

or bits, we will correct bits, where
is the operating point in order to reach , namely

(20)

Hence, the theoretical maximum key size assuming an ECC at
Shannon’s bound with is then equal to

(21)

Because is larger than and will not exceed , we
know that will be smaller than the upper bound
from (18). However, if is larger than the EER, then will
be larger than .
We have defined the maximum key size , which we will use

in the remainder of this work. In Section IV, we study the ef-
fect of the system parameters of the framework shown in Fig. 3
on .
4) Relationship Between the Maximum Key Size and the

Target FMR : The work of Korte and Plaga (2007) [11]
showed the relationship between the key size and the FMR to
be by using the Hamming bound theorem.
Namely, [35, Th. 6, p. 19] [MacWilliams and Sloane (1977)]
(the sphere packing or Hamming bound) states: A -error bi-
nary code of length containing codewords must satisfy

(22)

With the FMR defined in (12) as with
and , we obtain

(23)

where we define the FMR at the target operating point as
. Thus, we have two upper bounds for the key size at a

given operating point, namely from the Hamming
bound theorem from (23) and from Shannon’s theorem
from (21). We compare the difference between the two bounds

as a function of the relative operating
point at a fixed number of components , as illustrated
in Fig. 11 for different settings. We observe that if no
errors have to be corrected, , then there is no difference
because . However, if errors have
to be corrected, we observe a difference, where its maximum
is around . A larger maximum is observed for
larger values.
Hence, is an upper bound of the key size

at the target operating point. However, given the example of
Fig. 11, is 2–4 bits larger than the maximum key
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Fig. 11. Difference as a function of relative operating
point with fixed at different settings.

size defined by (21). Furthermore, the difference between
the two bounds increases when there are more components. For
example, the difference can be around 3 bits when the codeword
is 127 bits long.

IV. NUMERICAL ANALYSIS OF THE SYSTEM PERFORMANCE
AND THE MAXIMUM KEY SIZE

By means of a numerical analysis we illustrate the effect
of the system parameters on both the system performance and
the theoretical maximum key size . As the system parame-
ters, we have the input capacity , the number of enrolment

and verification samples, and the target FNMR .
In Section IV-A, we analyze the case where the feature com-
ponents are independent, while in Section IV-B, some feature
components are dependent. An extended version of the numer-
ical analysis can be found in [36].

A. Biometric Source With Independent Feature Components

First, we discuss the effect of the parameters on
the maximum key size at the target FNMR. Note that we com-
pute the optimal number of components for the given input
capacity . The optimal number of components is defined as
the number of components, across which is uniformly dis-
tributed, that leads to the best system performance in terms of
the FMR and the FNMR. Fig. 12(a) and (b) portrays the ef-
fect of the target FNMR and the input capacity on the
maximum key size with a single enrolment and verification
sample , where Fig. 12(a) depicts as a func-
tion of with different settings and Fig. 12(b) shows
as a function of with different settings. Similarly, the
effect of and on the relative operating point
and the optimal number of components are illustrated in
Fig. 12(c)–(f), respectively. The results show that increasing ei-
ther the input capacity or the target FNMR increases the
maximum key size and the optimal number of components
, but decreases the relative operating point . Both the

increase of and the decrease of have a positive ef-
fect on the maximum key size . Doubling from 10% to
20% on average adds around 2 bits to , but from 2.5% to 5%
on average adds 1 bit. Furthermore, doubling roughly dou-
bles for the case when and almost triples for

Fig. 12. Subfigures (a), (c), and (e) depict the maximum key size , the rela-
tive targeted operating point , and the optimal number of components
as a function of the input capacity at different target FNMR set-

tings, respectively. Similarly, (b), (d), and (f) depict them as a function of
with different settings.

the case when . Also, Fig. 12(b) shows that if
is small, namely , there is a significant drop of when

decreases further. At smaller , it is required to correct
more bits (as shown in Fig. 12(c) by the increase in ),
hence it is important to extract bits with smaller bit-error prob-
abilities . Therefore, at a fixed , there have to be less
components in order for each component to have a better feature
quality or Gaussian channel capacity leading to a
smaller . On the contrary, when is close to 1, there
is a significant increase in . If converges to 1, goes to
infinity. In this case, because of the large target FNMR it is not
necessary to correct many bits with its extreme case where no
bits at all have to be corrected. Hence, many components [see
Fig. 12(f)] can be extracted with a worse feature quality or a
smaller .
Second, we show the effect of the parameters

on the system performance and the maximum key size. Fig. 13
depicts the effect of the parameters on the max-
imum key size , the relative operating point , and the
optimal number of components . The effect of the input ca-
pacity is similar as illustrated in Fig. 12(a). Furthermore, in-
creasing either the number of enrolment or verification
samples leads to an increase of . However, keeping either
or fixed while increasing the other shows that increases
asymptotically and is limited [see Fig. 13(b)]. Changing both
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Fig. 13. Subfigures (a), (c), and (e) depict the maximum key size , the rel-
ative targeted operating point , and the number of components as
a function of input capacity at different settings, respectively.
Similarly, (b), (d), and (f) depict them as a function of with different

settings. In all cases we have .

and significantly increase . In general, increasing the
number of samples enables the use of components with a worse
feature quality, hence increasing the optimal number of compo-
nents when the input capacity is fixed. Consequently, the
relative operating point increases because of the lower
quality leading to a larger bit-error probability. A larger
leads to a smaller channel capacity and, therefore, a smaller pos-
sible key size. However, the optimal number of components in-
creases stronger leading to a net increase of the maximum key
size .
Some examples of the maximum key size increase are as fol-

lows. Within the specific range of target FNMR
and the input capacity , doubling the target

FMR adds 1 to 2 bits to the maximum keys size . Doubling
the input capacity doubles the maximum key size when

and almost triples when . Further-
more, for the case where the target FNMR is at ,
increasing the number of enrolment samples from one to six
samples increases the maximum key size with 0.6 bits (from
5.9 to 6.5) at bits and bits (from 12.7 to 15.6) bits
at bits. Keeping and increasing the number of
verification samples from one to two samples increases
with 3.0 bits at and 7.6 bits at bits. A fur-
ther increase of from two to six samples increases with
9.3 bits at and 20.8 bits at bits.

B. Biometric Source With Dependent Feature Components

Until now we have assumed the extracted feature vector com-
ponents and the channel noise to be independent across compo-
nents and measurements. However, in practice the components
may be dependent. In this section, we will show that the defined
maximum key size is an overestimation when components are
dependent. Differences in key size estimates due to dependent
feature components may have caused the large deviations be-
tween the reported key size and FMR as outlined in Table I.
In the following analysis, only a limited number of feature

components is assumed to be fully dependent, while the re-
mainder of the feature set is assumed to be independent, because
a detailed analysis of the dependencies is beyond the scope of
this work. Consider a feature vector with components. We
assume that the first components have in addition com-
ponents that are fully dependent (duplicate or identical compo-
nents), while the remaining components have no duplicates.
Hence, it holds that and the total number of
components is equal to . Furthermore,
we define the array with zeros as . With
the assumed dependency model, the of the number of bit
errors as defined by (10) becomes

(24)

where is the marginal of
the Hamming distance from the extracted bits from the set of

identical components for the first components and
is the for the extracted bit from

the last components without duplicates. For the set of
identical bits it is only possible to have zero or bit

errors with probability and , respectively. As in the
previous sections, we can use the same equations for estimating
the performance and the maximum key size at the target FNMR.
The results for the case where with input capacity

bits and target FNMR at is portrayed
in Fig. 14, where the first components have a single dupli-
cate . The ROC performance curve deteriorates once
duplicate components are added as shown in Fig. 14(a). In
other words, the FMR at the target FNMR increases,
as illustrated by the decrease of in Fig. 14(b).
Furthermore, the relative operating point also in-
creases. Although the increase of reduces the capacity

, we observe that the maximum key size in-
creases due to the increase of . However, further increasing
until each component has duplicates leads to

the same and as for the case where no components
have a duplicate . Although the performance is similar,
the maximum key size has doubled.
The effects of changing are shown in Fig. 15. When

all feature components have a duplicate, , we can
see from Fig. 15(a) that the maximum key size increases
by when compared to the case where no feature
components have a duplicate . Furthermore, Fig. 15(b)
shows that the FMR deviation increases when increasing the
number of duplicates . Note that the largest FMR, hence the
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Fig. 14. (a) Performance ROC curve for different settings and (b) the max-
imum key size , the log of the FMR at the operating point , and
the relative operating point as a function of the number of dependent
components . For both cases, the input capacity is bits with the
target FNMR at .

Fig. 15. (a) Maximum key size , (b) the log of the FMR at the operating
point , and the relative operating point as a function of
the number of duplicates .

smallest , is achieved at the point where the av-
erage Hamming distance from the dependent and independent
bits are equal, namely . With ,
we obtain the point . Not only does
influence the FMR at the target FNMR and, therefore, also the
maximum key size , it also influences the relative operating
point , which increases with .
Hence, it seems that the maximum key size could be

increased by adding identical components. However, we argue
that the protection actually does not increase because the FMR

at the target FNMR is either kept unchanged or even
decreases. We also observed in Section III-D4 that another
upper bound for the key size is , which is smaller
than the maximum key size when identical bits are added
by either increasing or . This discrepancy between the
FMR bound and the maximum key size is caused
by the fact that the ECC is modeled as a Hamming distance
classifier that considers each bit to be independent. Hence,
the space is assumed to be fully used and only under
this assumption the maximum key size could be achieved. By
adding identical components the space is not fully
used, but is reduced to .
We can conclude that by adding multiple identical com-

ponents to the feature vector the maximum key size can be in-
creased artificially; however, the actual protection indicated by
the FMR will at most stay equal. We conjecture that this effect
may have caused the large deviations between the reported key
size and FMR as outlined in Table I.

V. EXPERIMENTS

By means of numerical analysis, previous sections illustrated
the effects of the system parameters such as the number of en-
rolment and verification samples on the performance and

the maximum key size . In this section, we will analyze these
findings using an actual biometric database and two feature ex-
traction algorithms.

A. Biometric Modality and Database

The database we use is theMinisterio de Ciencia y Tecnología
(MCYT) containing fingerprint images from a capacitive and
optical sensor as described in Ortega-Garcia et al. (2003) [37].
It contains 12 images of all 10 fingers from 330 subjects for
each sensor. However, we limit our dataset to only the images
of the right-index finger from the optical sensor, hence there are
in total 3960 fingerprint images.

B. Feature Extraction Algorithms

Two types of texture-based features are extracted from a fin-
gerprint, namely directional field andGabor features. In order to
compensate for possible translations between enrolled and ver-
ification measurements, a translation-only prealignment step is
performed during the feature extraction process. Such prealign-
ment requires extraction of the core point which is performed
according to the algorithm described in Ignatenko et al. (2002)
[38]. Around the core point we define a 17 17 grid with eight
pixels between each grid point. The following feature extraction
algorithms extract a feature value on each grid point. Our feature
extraction algorithm failed to extract a feature vector from one
subject, due to the failure of finding a core point, so we excluded
it from the dataset. Therefore, there are effectively
subjects with a total of 3948 fingerprint images.
1) Directional Field Feature: The first feature extraction al-

gorithm is based on directional fields. A directional field vector
describes the estimated local ridge-valley edge orientation in a
fingerprint structure and is based on gradient vectors. The ori-
entation of the ridge-valley edge is orthogonal to the gradient’s
angle. Therefore, a directional field vector that signifies the ori-
entation of the ridge-valley edge is perpendicularly positioned
to the gradient vector. In order to extract directional field fea-
tures from a fingerprint, the algorithm described in Gerez and
Bazen (2002) [39] is applied on each grid point. The directional
field features have a dimension of and are referred
to as the DF features.
2) Gabor Filters Feature: The second type of extracted fea-

tures are the Gabor filters (GF) features, described in Bazen and
Veldhuis (2004) [40], where each grid point is filtered using a
set of four 2-D Gabor filters at angles of ,
respectively. The feature vector is the concatenation of the mod-
ulus of the four complex responses at each grid point, resulting
in a feature vector dimension of .
3) Dimension Reduction: To decorrelate and reduce the

number of feature components, we use the principle component
analysis (PCA) and the linear discriminant analysis (LDA)
techniques, where the LDA transformation is also used to
obtain more discriminating feature components. The PCA
and LDA transformation matrices are computed using the
training set. is the reduced dimension after applying
the PCA transformation and is the reduced dimension
after applying the LDA transformation. We limit to
the number of subjects within the training set from which the
transformation matrices are determined.
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C. Testing Protocol

The performance testing protocol consists of randomly se-
lecting 219 out of subjects as the training set and
the remaining 110 subjects as the evaluation set, which is re-
ferred to as the training-evaluation-set split. The template pro-
tection system parameters such as the quantization thresholds
used within the Quantization module of Fig. 1 and the PCA and
LDA transformation matrices are estimated using the training
set.
From the evaluation set, samples of each subject are ran-

domly selected as the enrolment samples while the remaining
samples are considered as the verification samples. This split
is referred to as the enrolment-verification split. The protected
template is generated using all the enrolment samples and com-
pared with the average of verification samples. When the
verification sample is from the same subject as of the protected
template, it is referred to as a genuine comparison, otherwise
it is an imposter comparison. Note that the number of genuine
and imposter comparisons depends on the number of enrolment
and verification samples. For the genuine case, we have 30 250
comparisons for the case, 16 500 for the case of

, and 2750 comparisons for case. For the
imposter case, we have 3 297 250, 1 798 500, and 299 750 com-
parisons, respectively.
The training-evaluation-set split is performed five times,

while for each of these splits the enrolment-verification split is
also performed five times. From each enrolment-verification
split, we estimate the operating point at the target FNMR

and the corresponding FMR . Note that the splits
are performed randomly; however, the seed at the start of the
protocol is always the same, hence all the splits are equal for
the performance tests at different settings. Hence, the splitting
process does not contribute to any performance differences.

D. Results

First we determine the Gaussian channel capacity of
component of the feature vector obtained after applying the
PCA/LDA transformation with use of (1) and estimating the
feature quality . We consider both on the training
set and the evaluation set. The capacities for the 218 compo-
nents are illustrated in Fig. 16 for both the directional field DF
and the Gabor filters GF features indicating that the capacity is
not equal for each component. Note that the capacity is greater
for the transformed training set than the transformed evalua-
tion set, because the PCA/LDA transformation matrix is deter-
mined on the same set and can thus be perfectly trained and the
training and evaluation sets are disjunct. This perfect training
is also confirmed by the fact that the last components of the
training set have a capacity close or equal to zero, while
they are larger than zero for the evaluation set. By assuming all
components to be independent, we observe that the DF feature
has an input capacity bits on the training set and

bits on the evaluation set, while and
bits for the GF features. Because the capacities are

not equally divided, we already know that the achieved perfor-
mance and the maximum key size will be suboptimal.
With the known capacity of each component, we can thus

compare the maximum key size and the log of the FMR at

Fig. 16. For both the GF and DF features, (a) and (b) illustrate the Gaussian
channel capacity of each component from the training set and evalua-
tion set, and (c) and (d) the input capacity taken as the cumulative sum
of of all components, namely . (a) DF:
Gaussian capacity. (b) GF: Gaussian capacity. (c) DF: Input capacity, (d) GF:
Input capacity.

the target FNMR from the theoretical performance
and the experimental performance. The theoretical performance
is obtained using the analytical framework. These results are
shown in Fig. 17 for different numbers of enrolment and
verification samples for both the DF and GF features. Note
that due to the limited number of imposter comparisons, it is not
possible to obtain a smaller than
except zero for the experimental case with . From
the results we observe four effects. First of all, both the experi-
mental and theoretical results confirm the finding in Section IV
that the components with a smaller capacity have a greater im-
provement when more samples are used. For the single enrol-
ment and verification sample case, the experimental results even
show that the last components with a much smaller capacity
deteriorates the performance and, therefore, also the maximum
key size. However, an improvement is observed when we in-
crease the number of enrolment samples to , and a
greater improvement is observed for when we also increase the
number of verification samples to . Second, the re-
sults also indicate that the estimated and are
much greater for the theoretical case than for the experimental
one. The results in Fig. 17(e) and (f) portray the significant dif-
ference between the obtained relative operating point
between the theoretical and experimental cases. This clearly
indicates that the FNMR curve is not correctly estimated, be-
cause the target FNMR for the experimental case is at a larger
relative operating point than for the theoretical case. As dis-
cussed in Kelkboom et al. (2010) [31], estimation errors are in-
troduced by deviations from the underlying assumptions such as
the Gaussian distribution, an equal and independent within-class
for each subject, and independent feature components. They
proposed a modified analytical framework for relaxing these as-
sumption; however, this approach is out of the scope of this
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Fig. 17. Maximum key size , the log of the FMR at the target FNMR
, and the relative operating point as a function of the

LDA dimension at different and settings indicated as
in the legend. Subfigures (a) and (b) are for the theoretical case for the DF
and GF features, respectively; similarly subfigures (c) and (d) are for the
experimental case, and (e) and (f) are the theoretical and experimental case
combined. (a) DF: Theoretical. (b) GF: Theoretical. (c) DF: Experimental.
(d) GF: Experimental. (e) DF: . (f) GF: .

work. Third, we observe that the relative difference between
the theoretical and experimental results is greater for the

case and decreases when increasing and . It has
also been shown in Kelkboom et al. (2010) [31] that an increase
in the number of samples results in a better Gaussian approxi-
mation of the feature distributions. Hence, a better Gaussian ap-
proximation due to the increase of the number of samples may
be the cause behind the improvement of the estimation error.
The forth and last difference we observed between the theoret-
ical and experimental results in Fig. 17(a)–(d) is the relation-
ship between and the maximum key size . We
have shown in Section III-D4 that they are related to each other,
namely , and this relationship is confirmed
by the theoretical case in Fig. 17(a) and (b). However, the re-
sults in Fig. 17(c) and (d) show that for the experimental cases

are not always larger than . These deviations are
caused by the estimation errors of the FMR curve, leading to an
optimistically smaller FMR and thus a larger at the
same operating point.
As discussed in Kelkboom et al. (2010) [31], having depen-

dent feature components has a great influence on the FMR curve
estimation. Due to the dependencies, the variance of the rela-
tive Hamming distance (the Hamming distance relative to )

Fig. 18. (a) Hamming distance at imposter comparisons from the ex-
perimental case (“Exp”), from the theoretical case (“Theo”), and the corrected
theoretical case (“Theo-cor”) where the experimental data is fitted with a bino-
mial distribution with dimension and bit-error probability . Furthermore,
(b) shows the corresponding FMR curve for the three cases in (a).

distribution at imposter comparisons is larger than the expected
variance of the binomial distribution. Because the variance of
the relative Hamming distance is inverse proportional to the di-
mension, namely , the intrinsic dimension de-
creases when there is a stronger dependency. Similar to the work
of Daugman (2003) [33], we will estimate the intrinsic dimen-
sion by fitting the imposter Hamming distance distribution with
a binomial distribution with a dimension smaller than and a
bit-error probability smaller than . Given the relative Ham-
ming distances at each comparison, we estimate its variance
and mean , from which we can estimate the new binomial
dimensions with bit-error probability as

(25)

An example of this approximation is shown in Fig. 18(a) for the
of the relative Hamming distances and in Fig. 18(b) for the

FNMR curve. The experimentally obtained curves are indicated
with “Exp,” while the original theoretical model curve is indi-
cated with “Theo,” and its corrected version for the intrinsic di-
mension by “Theo-cor.” Note that we multiplied the for the
“Theo-cor” case with in order for its area under the curve
to be as large for the other two cases for a fair comparison. From
these results, we observe that the corrected “Theo-cor”
approximates the experimentally obtained results much better.
However, the estimation errors are now mainly at the tails of the

and thus at the smallest values of the FNMR.
The estimated bit-error probability and the intrinsic di-

mension at imposter comparisons for different LDA dimen-
sions and number of enrolment or verification
samples are depicted in Fig. 19 for both the DF and GF features.
Instead of the actual estimated intrinsic dimension , we show
the ratio . The results from Fig. 19(a) and (b) indicate that
when adding more components by increasing , the rela-
tive intrinsic dimension decreases while the bit-error probability
converges towards . Note that the relative intrinsic dimen-
sion also decreases when more samples are used, hence taking
the average of or samples increases the dependencies
between the bit errors at imposter comparisons.
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Fig. 19. (a) and (b) Estimated relative intrinsic degrees of freedom or dimen-
sion of the Hamming distance at imposter comparisons for dif-
ferent LDA settings and number of enrolment or verification
samples, and (c) and (d) the corresponding estimate bit-error probability
for both the DF and GF features. (a) DF; (b) GF; (c) DF; (d) GF.

Fig. 20. Corrected maximum key size -cor, the log of the FMR at the target
FNMR as a function of the LDA dimension at different
and settings for the DF and GF features. The number of samples is indicated
in the legend with . (a) DF; (b) GF.

The maximum key size estimation can be improved by incor-
porating the intrinsic dimension as

(26)

where the corrected maximum key size is the relative
intrinsic dimension times the original maximum key size
. The improved results are illustrated in Fig. 20. Now also for

the , case, the corrected maximum key size
is always smaller than . The estimation has also
improved for the , case; however, there are still
some deviations, which may be caused by the limited database.

VI. DISCUSSION AND CONCLUSION

The FCS is a well-known template protection scheme in the
literature and is based on a key-binding and key-release mecha-
nism, where the entropy of the key is indicative for the amount
of privacy and security. Considering the key to consist out of

independent and uniform bits, its entropy is then mainly deter-
mined by its size. We have analytically determined the clas-
sification performance and the maximum key size of the FCS
given a Gaussian modeled biometric source, a single bit extrac-
tion quantization scheme, the number of enrolment and verifica-
tion samples, an ECC with a decoding capability at Shannon’s
bound, and the target FNMR. Furthermore, wemodeled the FCS
as a binary symmetric channel with its corresponding bit-error
probability.
We have analytically derived the bit-error probability as a

function of the feature quality denoted by the ratio of the be-
tween-class and within-class variance, and the number of en-
rolment and verification samples. We have shown that having
infinite enrolment samples with verification samples approx-
imates the performance when both are equal to , if the feature
quality is large enough.
We estimated the maximum key size at the target FNMR as-

suming an ideal binary ECC that corrects up to random bit
errors of equal bit-error probability and its decoding capability
at Shannon’s bound. First, we showed that the FNMR is close
to 50% when the operating point of the ECC is set at the point
stipulated by Shannon’s theory. The high FNMR is caused by
the fact that the size of the codeword in the biometric system
is not large enough as required by Shannon’s theorem. We pro-
posed two other operating points, namely the analytical oper-
ating point at the EER and the operating point given the target
FNMR. The key size at the EER is always smaller than at the
operating point from Shannon’s theory. At the EER point, more
bits have to be corrected due the smaller FNMR requirement;
consequently, the operating point is larger leading to a smaller
key size. The operating point at the target FNMR is a compro-
mise between the two aforementioned cases, and leads to the
maximum key size at the desired FNMR. We also discussed the
relationship between the maximum key size and the target FMR
at the target FNMR. We showed that the upperbound from liter-
ature is larger than the maximum key size when
errors have to be corrected. The difference increases when using
larger codewords, and could be around 3 bits when the code-
word is 127 bits long.
We studied the effect of the capacity of the Gaussian bio-

metric source, the number of biometric samples, and the target
FNMR on the FMR and maximum key size. There are two main
scenarios that we investigated, namely the scenarios where the
components are 1) independent or 2) dependent.
For the first scenario, we found the following results for the

cases where the input capacity is 40 bits and 80 bits. Doubling
the input capacity roughly tripled the key size at a target FNMR
of 2.5%, while doubling the target FNMR from 2.5% to 5%
on average added around 1 bit. Increasing the number of en-
rolment samples from one to six added 2.9 bits. With six enrol-
ment samples and increasing the number of verification samples
from one to two added 7.6 bits, while increasing from two to six
samples added 20.8 bits. Thus, if the subjects of the biometric
system have no issue with a less convenient system where the
target FNMR has increased or more biometric samples have to
be acquired, we could create a protected template that is more
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difficult to break by an adversary. Doubling the target FNMR
also doubles the search space of the key. Moreover, an increase
from 1 to 6 enrolment and verification samples increased the
key size by almost 32 bits. Supplying six samples during enrol-
ment seems acceptable, because it only needs to be done once.
Although capturing six samples during verification may be con-
sidered inconvenient, it still gives a good insight into what can
be achieved by such a system. In both the first and second case,
we observed that the maximum key size significantly reduces if
the target FNMR is smaller than 5%.
In the second scenario, we showed that adding fully depen-

dent bits does not improve the system performance, but arti-
ficially increases the maximum key size. The discrepancy be-
tween the FMR and the maximum key size increases when more
components are dependent.
We presented experimental results on the MCYT fingerprint

database using two feature extraction algorithms, namely one
based on directional field and one on Gabor filters. For both al-
gorithms, we observed that the difference between the FMR and
the maximum key size changed when increasing the number of
components. The difference can be made more constant when
the dependency between feature components is taken into ac-
count.
In the Introduction, Table I presents the reported key size

and the system performance from similar template protection
schemes from the literature. The table shows the differences
between the reported FMR and key size. From the results pre-
sented in this work, we conjecture that these discrepancies may
be primarily caused by the dependencies between feature com-
ponents. Hence, both the reported key size and FMR have to be
taken into account when analyzing the actual privacy protection
and security of a template protection system.
The main contribution of this paper is the analytical relation-

ship between the system performance and the maximum key
size given the system parameters. With the analytical frame-
work and experimental results we showed that dependencies be-
tween feature components lead to a difference between the re-
ported FMR and key size. Furthermore, we revealed a trade-off
between the convenience of the biometric system, determined
by the target FNMR and the number of samples to be acquired,
and the maximum key size. Essentially, if desired, a larger key
size can be achieved by sacrificing some convenience.

APPENDIX

In order to find an analytical expression of the EER operating
point , we approximate the binomial density used for mod-
eling the of the Hamming distance by a Gaussian density
as proposed by the Moivre–Laplace theorem [41]. Hence, in-
stead of (11) we use

(27)

Fig. 21. Gaussian approximation of the of the number of errors at gen-
uine (the solid blue curve) and imposter (the dashed–dotted red curve) compar-
isons from Fig. 7.

where we use the mean and the variance of the binomial den-
sity, namely the mean and standard deviation

. The resulting approximated probability density
as a function of the Hamming distance is shown in Fig. 21.
Thus given the operating point , the FNMR from (14) can

be rewritten as

(28)

with and . By applying
the following change of variable with

, we obtain

(29)

where we have the genuine -score that
fully determines the FNMR. Similarly, for the FMR, we have

(30)

where we applied the same variable change, defined the im-
poster -score , and used the prop-
erty that the integral is symmetric. Because , we
have and Being at the EER op-
erating point implies that . Hence,
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(29) and (30) have to be equal. Both equations are equal when
, thus becomes

(31)

Substituting the genuine parameters and
, and the imposter parameters

and , we obtain

or

(32)

Note that the relative operating point and thus the BSC
channel capacity at the EER operating point is
fully determined by
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