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Testabilitv Analvsis of Analoe Svstems 
J J 

GERTJAN J. HEMINK, BEREND W MEIJER, AND HANS G. KERKHOFF 

Abstract-In this paper a new method is presented to analyze the 
testability of both linear and nonlinear analog systems. It combines a 
rank-test algorithm with statistical methods. The algorithm will find 
sets of dependent parameters and determine whether it is possible to 
calculate a certain parameter with sufficient accuracy. It also deter- 
mines a subset of appropriate measurements if redundant measure- 
ments are present. 
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NOMENCLATURE 

Number of parameters. 
Number of measurements. 
Nominal value of parameter j. 
Deviation of p j .  
Standard deviation of p,. 
Required accuracy of parameter j .  
Inaccuracy of the computed value of parameterj. 
Measurement vector. 
Measurement vector of nominal system. 

Measurement error vector. 
Standard deviation of measurement i. 
Sensitivity of measurement i for deviation of pa- 

Sensitivity matrix. 
Inverse of matrix S. 
Number of dependent column vectors. 
Transformation matrix. 
Solution of reduced set of equations. 

X - &om. 

rameter j .  

I. INTRODUCTION 
TH THE increasing complexity of analog inte- w grated circuits, the testability of those circuits be- 

comes more difficult. It is, of course, of great importance 
to design circuits which are testable within a reasonable 
time. This can reduce the costs of testing. The presented 
method can be used to evaluate the testability of analog 
integrated circuits but its use is not restricted to these types 
of circuits. It can also be used to evaluate the testability 
of analog circuits (printed circuit boards) or other (elec- 
tromechanical, mechanical, etc.) analog systems. 

An approach to investigate the correctness of a system 
is to determine all the parameters necessary for its func- 
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tion. This does not imply that all parameters have to be 
determined on the lowest possible level (for instance, 
transistor level); it is sufficient to determine the high-level 
functional parameters. These high-level parameters can 
be, for instance, the gain of an opamp, the cutoff fre- 
quency, or the Q-factor of a filter. It is clear that this ap- 
proach is closely related to functional testing, which is 
applied to most analog circuits. With the method pre- 
sented in this paper it is possible to carry out a functional 
testability evaluation in an early design stage since only 
a high-level functional description of the system is re- 
quired. This is important in order to avoid expensive rede- 
signs in a later stage. In general, not all functional param- 
eters of a system can be determined independently from 
another, especially when a reduced set of test vectors is 
used. These parameters are called dependent parameters. 
Independent parameters on the other hand are parameters 
which can be determined independently of the other pa- 
rameters. The presented method will detect the sets of de- 
pendent parameters and calculate the accuracy with which 
all parameters can be determined. This accuracy will be 
called the determination accuracy in the rest of this paper. 
Another feature of the method is that it determines the 
best subset of measurements required to compute the pa- 
rameters. 

In the following section some previous work will be 
considered. This section states the advantages and disad- 
vantages of some testability evaluation methods as used 
in the past. Section I11 describes the relations between pa- 
rameters and measurements. In that section the influence 
of measurement errors and nearly dependent parameters 
on the determination accuracies will be explained. Two 
examples, a simple linear circuit and a somewhat more 
complex nonlinear circuit, are included to illustrate the 
advantages of the proposed method. The paper is com- 
pleted with a discussion, conclusions, and an appendix 
which contains the description of the algorithms based on 
the relations derived in Section 111. 

11. PREVIOUS WORK 
The testability of digital circuits can be described with 

measures like controllability and observability [ 11-[3]. 
Unfortunately this approach is not very suitable for analog 
circuits. This is because many faults appearing in analog 
circuits are soft faults. Soft faults are the result of a pa- 
rameter deviating too much from its nominal value. Hard 
faults, such as stuck-at faults, often cause a full absence 
of a function. In general, such soft faults are harder to 
detect than hard faults, as they do not cause a full absence 
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of a function but merely result in deviating specifications. 
Hard faults can be considered as extreme large parameter 
deviations. In the succeeding part of this paper the as- 
sumption is made that a fault in an analog system is the 
result of a parameter deviating too much from its nominal 
value (soft fault). 

Most testability evaluation methods which have been 
presented are based on a rank-test algorithm [4]-[7]. 
These methods determine the solvability of a set of equa- 
tions describing the relations between measurements and 
parameters. The measure of solvability 6 equals zero if all 
parameters can be determined independently from an- 
other; the equations then have a unique solution. 6 = 1 
implies that one parameter must be known to determine 
the values of the other parameters. So with increasing val- 
ues of 6 the solvability of the set of equations is decreas- 
ing. A disadvantage of these algorithms is that the effects 
of measuring errors on the determination accuracies are 
not taken into account. Because of the measurement er- 
rors it is not possible to determine the parameters exactly. 
The set of equations describing the relations between pa- 
rameters and measurements is called ill conditioned if it 
is not possible to determine the parameters with sufficient 
accuracy. The solvability of a system can be good ( 6  = 
0) but the set of equations describing the relations be- 
tween parameters and measurements can be ill condi- 
tioned, which results in an insufficient determination ac- 
curacy of one or more of the parameters. The method 
proposed here should overcome these disadvantages. 

111. RELATIONS BETWEEN PARAMETERS AND 

MEASUREMENTS 
The algorithm described in this paper finds the sets of 

dependent high-level parameters and computes the deter- 
mination accuracy of the parameters. The latter are com- 
puted from a particular set of testvectors. If a parameter 
is a member of a set of dependent parameters then a fault 
in that parameter may be detected. It is not certain, how- 
ever, which parameter of the set caused the failure; in 
other words the fault cannot be located exactly. The al- 
gorithm also determines an appropriate subset of mea- 
surements by removing measurements containing redun- 
dant data. The number of measurements can be less than 
the number of parameters in the system. This can result 
in additional dependent parameters which can be removed 
by increasing the number of measurements. In general, a 
certain number of parameters will remain dependent even 
when the number of measurements is increased. The only 
possibility to overcome this problem is to increase the 
number of test points in the circuit. 

If a particular set of input signals is given, then the 
relations between parameters and output signals can be 
written as follows: 

= f ( P )  (1) 

with U as the vector of output signals, p as the vector of 
parameters, and f as the function describing the relations 
between parameters and output signals. 

The vector U contains the values of a number of output 
signals. These output signals are not necessarily repre- 
sented in the time domain, they can be in the frequency 
domain as well. Since output signals can, of course, be 
measured, (1) can be used to describe the relation between 
the parameters and the measurements. These measure- 
ments cannot be carried out with infinite accuracy, and 
therefore, an error vector e is introduced, which depends 
on the accuracy of the measurement methods used. The 
following equation then describes the relation between 
parameters and measurements: 

with x as the vector of measurements and e as the vector 
of measurement errors, resulting from the measurement 
method used. 

It can be very difficult to derive the function f( p )  es- 
pecially if nonlinear systems have to be analyzed. How- 
ever, simulation can be used to obtain a set of sensitivity 
vectors which describe the influence of parameters on out- 
put signals. These sensitivity vectors can be used to ap- 
proximate (2) by a first-order description [8]. The func- 
t i on f (p )  is in general nonlinear even if a linear system 
is analyzed. A linear system containing a feedback loop 
already results in a nonlinear f( p ) .  The first-order de- 
scription can, therefore, only be used if we assume that 
the parameter deviations are sufficiently small. The first- 
order description is then given by 

J 

x + e = x,,, + C S, ~ p ,  ( 3 )  
J =  1 

with x,,, as the vector of measurements with nominal pa- 
rameters, Sj as the vector of sensitivities of the measure- 
ments for parameterj, Apj  as the deviation of parameter 
j from the nominal value, and J as the number of param- 
eters. 

If a matrix notation is used, then (3) can be rewritten 
as 

SAP = Ax +- e (4) 

with S as the sensitivity matrix of dimension I * J ,  I as 
the number of measurements, A p  as the vector of param- 
eter deviations, and Ax  as the vector x - x,,,. 

If the rank of matrix S is smaller than J then this equa- 
tion cannot be solved and sets of dependent parameters 
have to be found in order to reduce the number of vari- 
ables. In this case the variables are the parameters which 
have to be determined. It is possible that the number of 
measurements is larger than the number of parameters ( I  
> J ) .  In that case, there are at least ( I  - J )  redundant 
measurements, which means that the number of measure- 
ments can be reduced. This procedure will be explained 
later. 

Now the influences of dependent and nearly dependent 
parameters are considered. First a small example will be 
given and then a general description of the problem is pre- 
sented. 
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Consider a system with at least 3 parameters p l ,  p 2 ,  p 3 ,  
and assume that the corresponding sensitivity vectors are 
“nearly” dependent and that the matrix S is square (num- 
ber of measurements equals the number of parameters). 
This means that one of the vectors can be written as a 
linear combination of the other vectors, with just a small 
error. S3 can be written as 

S3 = a * S1 + @ - S2 + err ( 5 )  
with SI, S2,  S3 as the sensitivity vectors and also column 
vectors of matrix S, a, /3 are the real constants, and err 
is the error vector. 

With the error vector err given by 

err = S3 - a - S1 - /3 - S2.  (6) 

* (7)  

Writing (4) in a different form results in 

A X  + e = S I A p l  + S2Ap2 + S3Ap3 + 
Now (5) and (6) can be substituted in (7) to obtain: 

Ax + e = S1 - ( A p l  + a A p 3 )  + S2 

- (Ap2 + @Ap3)  + err Ap3 + - . (8)  
The third right-hand term of (8) is an error vector re- 

sulting from the approximation made in (5). If one of the 
vectors S, ,  S2,  S3 can be written as an exact linear com- 
bination of the others, then this error vector will equal 0. 
The “nearly” dependent column vector of the matrix S 
can now be removed. Note also that a suitable row vector 
(measurement) must be removed to construct a square ma- 
trix again. The selection of the redundant rows and the 
‘ ‘nearly” dependent parameters will be explained in the 
Appendix. Resulting from this mechanism, the extra error 
vector turns out to have no influence on the computations 
because the removed measurement contained the infor- 
mation which distinguished the “nearly” dependent pa- 
rameter from the other parameters. Therefore, the error 
vector can be ignored. The resulting set of equations is 
better conditioned because one of the “nearly” dependent 
vectors is removed. Note also that the number of variables 
is reduced. The variables are not equal to the parameter 
deviations anymore, but are now equal to a linear com- 
bination of the parameter deviations ( Ayl = A p l  + aAp3 
and Ay2 = Ap2 + @ A p 3 ) .  The variables can now be de- 
termined with a higher accuracy than before the reduc- 
tion. Note that in this case p l ,  p 2 ,  and p 3  are a set of de- 
pendent parameters. This means that one of the values 
A p l ,  Ap2,  or Ap3 must be known to determine the two 
other parameter deviations. Consequently a deviation in 
one or more of these parameters may be detected but can- 
not be located anymore. 

In general, if there are D column vectors dependent or 
“nearly” dependent on other column vectors, then these 
dependent (or “nearly” dependent) vectors must be re- 
moved. The procedure described above has to be repeated 
D times in that case. This results in a set of independent 
column vectors and the old matrix S is reduced to a matrix 
of dimension (J - D) * (J - D). The number of vari- 

ables A y  is also reduced from J to (J - D). Applying 
this to the general (4), we thus obtain 

Ay = , ! - ‘ ( A x  + e )  (9) 
with S-’ as the inverted sensitivity matrix of dimension 
(J - D) * (J - 0 )  and Ay as the variables of the reduced 
set of equations (vector with dimension (J - D)).  

In (9), A x  is a known vector (calculated by x - xnom, 
x is measured) but the error vector e is unknown. The 
elements of e are assumed to be normally distributed with 
a zero mean value and a standard deviation dependent on 
the measurement method and statistically independent of 
another. The assumption that the mean values of the ele- 
ments of e are zero is not necessary but it simplifies the 
computations. Therefore, the determination accuracies 
( eyj)  of the variables can be computed with the following 
equation: 

I 

eyj’ = r = l  ,Z (s;’ Ei)’ (10) 

with ei as the standard deviation of the error in measure- 
ment i and eyj as the determination accuracy of variable 

The next step is the computation of the determination 
accuracy of the parameter deviations (ep) from the deter- 
mination accuracies of the variables (ey).  As seen pre- 
viously, the elements of the vector Ay are linear combi- 
nations of the parameter deviations. So the relation 
between Ap and Ay can be written in a matrix form as 
shown in (1 1): 

j .  

Ay = TAp (11) 
with Tas the transformation matrix of dimension (J - D) 
* J. 

The rank of matrix T equals J - D, which means that 
the value of D parameter deviations must be known to 
compute the value of the other (J - D )  parameter devia- 
tions (there are J variables and only J - D equations). If 
a row vector of T contains only one nonzero element, then 
the associated parameter deviation and its determination 
accuracy can be computed independently of all the other 
parameters. The parameters corresponding with the non- 
zero elements of a row vector of matrix T, which contains 
more than one nonzero element, are dependent parame- 
ters. In a set of dependent parameters at least one param- 
eter has to be known (that parameter is assumed to be fault 
free) in order to be able to compute the parameter devia- 
tion and the associated determination accuracy of the other 
parameters in that particular set of dependent parameters. 
The value of a fault-free parameter is assumed to be nor- 
mally distributed with a mean value which equals the 
nominal value and a standard deviation which equals the 
deviation of the parameter due to production variations. 

In the previous example we found A y ,  = A p ,  + aAp3 
and Ay2 = Ap2 + @Ap3.  The determination accuracy of 
the variables A y 1  and Ay2 can be computed using (10). 
The determination accuracy of A p I  , Ap2,  and Ap3 cannot 
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be computed independent of each other because only two 
equations are available. To compute, for example, the de- 
termination accuracy of Ap,, it is necessary to know the 
value of one of the other parameters. Suppose that param- 
eter p3 is fault free, then the determination accuracy of 
A p l  can be computed using the following equation: 

with u3 as the standard deviation of p3 due to production 
variations. 

The same method can be used to compute the determi- 
nation accuracies of Apz and Ap3. 

In the Appendix the two algorithms which are used for 
the testability analysis are described. The algorithms are 
based on the relations derived in this section. The first 
algorithm is used to compute the determination accuracies 
and to detect dependencies between parameters. The sec- 
ond algorithm is used to find out if it is possible to deter- 
mine all the parameters with the desired accuracy. The 
desired accuracy must be defined by the user. If the pa- 
rameters cannot be determined with the desired accuracy, 
then the algorithm tries to find and remove nearly depen- 
dent sensitivity vectors to improve the determination ac- 
curacies. In any case the algorithm will compute the best 
possible determination accuracies which can be obtained 
with a given set of measurements. If redundant measure- 
ments occur, then these measurements are removed from 
the initial set of measurements. 

IV. EXAMPLES 
In this section two examples of a testability analysis are 

given. The analysis is carried out with the help of the 
computer program “TASTE” introduced in [9] and com- 
pletely described in [lo]. The algorithm described in the 
Appendix of this paper and a simulation program which 
is used to compute the necessary sensitivity vectors are 
both implemented in the program “TASTE.” The models 
implemented in the simulation part of the program are 
high-level models, so it is possible to analyze the test- 
ability of a system in an early design stage. 

The first system is very straightforward and linear in 
order to facilitate the interpretation of the results of the 
analysis. The second system is nonlinear; the results of 
its analysis are, therefore, not as easy to interpret as for 
the linear system. 

4. I. Linear System 
In Fig. 1 a linear analog system is given. The low-pass 

filter is a second-order filter. Its transfer function can be 
described as 

(13) 
1 

1 + a  - j w  + b * ( j w ) ’  
H ( j w )  = 

with w as the frequency in radians per second and a ,  b as 
the filter coefficients. 

A deviation of this transfer function from the nominal 
transfer function can be represented as a deviation in the 

Fig. 1 .  Linear system with one output node. 

coefficients a and b. It is not specifically necessary to use 
these parameters. For instance the Q-factor and the cutoff 
frequency can also be used to describe the behavior of the 
filter, since they can be written as a function of the coef- 
ficients a and b. Furthermore, the system contains two 
gain blocks, which can be described with one parameter: 
the input signal is multiplied with the corresponding gain 
to obtain the output signal. 

The behavior of this system can be described with four 
parameters: a ,  b, gainl, and gain2. If we want to deter- 
mine all parameters, then four measurements are required 
in principle. However, considering that only the output 
signal of the system can be observed, it is obvious that 
the parameters gainl and gain2 cannot be determined in- 
dependent of each other. Only their product can be deter- 
mined, and thus only three measurements are required. 

The algorithm described in the Appendix of this paper 
can be used to select an optimal set of measurements. For 
this, an input signal with an excessive number of fre- 
quency components can be used. A very suitable signal is 
the sum of a number of sine functions with random phase: 

(14) 

with m as the number of frequency components, fa as the 
lowest frequency component in the input signal, A as the 
amplitude of the signal, and (0, as the phase of the nth 
frequency component. Due to the random phase compo- 
nents, pn, this signal approximates a white noise signal. 
For m > 3 the output signal will contain a number of 
redundant frequency components, that will be removed by 
the algorithm. 

To use the algorithm the following data are needed: the 
nominal values and the standard deviations of the param- 
eters and their desired determination accuracies, the stan- 
dard deviations of the measurement errors, and the defi- 
nition of the input signal. In Table I the desired 
determination accuracies are divided by the standard de- 
viations of the corresponding parameters. A desired rel- 
ative determination accuracy of 1 .O means that the desired 
determination accuracy equals the standard deviation of 
the parameter. 

It is assumed that the standard deviation of the mea- 
surement errors equals 1E-3. If the output signal is a volt- 
age, this corresponds with a voltage of 1.0 mV. Note that 
no units have to be specified, for the testability analysis 
it is not important whether we use voltages, currents, me- 
chanical forces, velocity, or other quantities. 

The input signal consists of 20 frequency components 
(0.1, 0.2, - * , 2.0 Hz) with equal amplitude of 25 mV 
and random phase, and as mentioned previously, this sig- 
nal approximates a white noise signal. 

rn 

in(t) = ( A / & )  * c sin (n 2rfO * t + cp,) 
n = l  
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TABLE I 

Desired 
Relative 

Determination 
Nominal Value Nominal Value ) Accuracy 

Standard Deviation ( % of 

a = 1.4142/2nfc 10% 1 .o 
b = l.0/(2nfc)* 10% 1 .o 
gainl = 2.0 5 %  1 .o 
gain2 = 2.0 10% 1 .o 

with: f, = 1.0 (cutoff frequency in hertz) 

First a simulation of the system is carried out in order 
to obtain the sensitivity vectors. In this simulation only 
the amplitude of the frequency components is considered. 
The absolute value of the relative sensitivity of the output 
signal on the parameters as a function of the frequency is 
shown in Fig. 2. The relative sensitivity is defined as the 
sensitivity multiplied by the standard deviation (due to 
production variations) of the corresponding parameter. 
The sign of the sensitivity to a variation in parameter b 
changes for frequencies higher than 1 .O Hz from positive 
to negative. 

The sensitivity vectors obtained by the simulation are 
used as input for the testability analysis algorithm. This 
algorithm is used to find dependencies between parame- 
ters, to compute the relative determination accuracies, and 
to select an optimal set of measurements. The relative de- 
termination accuracy is defined as the determination ac- 
curacy divided by the standard deviation of the parameter. 
The algorithm also finds the required nonfaulty parame- 
ters. These are the parameters that have to be assumed 
fault free in order to obtain the best possible determina- 
tion accuracy of another parameter in the same set of de- 
pendent parameters. After the testability analysis the fol- 
lowing results are obtained, as shown in Table 11. 

As can be seen from the results the algorithm has re- 
moved 17 redundant measurements, only the measure- 
ments of the amplitude at 0.1, 1 .O, and 1.7 Hz are used 
to compute the relative determination accuracies. Fur- 
thermore, it can be seen that the relative determination 
accuracy of parameter gainl is not within the required 
value of 1 .O. 

To interpret the results obtained by the algorithm, the 
plot of the relative sensitivities (Fig. 2) can be used. The 
sensitivity of the amplitude of the 1.0-Hz component to 
parameter a is much larger than the sensitivity to param- 
eter b, and at 1.7 Hz the sensitivities to both parameters 
are almost the same (only the sign differs). Therefore, 
these measurements are very suitable to determine the pa- 
rameters a and b independently from another. 

The parameters gainl and gain2 are dependent, so only 
one extra measurement is required to determine the prod- 
uct of these parameters. The frequency selected by the 
algorithm is 0.1 Hz. At that frequency the sensitivity to 
gainl and gain2 is large compared to the sensitivity to the 
parameters a and b. To compute the determination accu- 
racy of parameter gainl , the parameter gain2 must be as- 

0.1 1 

Frequency (Hz) 

Fig. 2. Absolute values of the relative sensitivities on the output node. 

TABLE I1 

Relative Determination Required Nonfaulty 
Parameter Accuracy Parameters 

gain2 0.510 
a 0.180 
b 0.549 
gain 1 2.010 

gain 1 
none 
none 
gain2 

The selected frequencies are: 0.1, 1 .O and 1.7 Hz 

sumed to be nonfaulty and vice versa. The relative de- 
termination accuracy of the parameter gainl is not as good 
as the relative determination accuracy of parameter gain2, 
which is caused by the larger standard deviation of param- 
eter gain2 compared to the standard deviation of gainl. 
The parameter gainl cannot even be determined with suf- 
ficient accuracy (relative determination accuracy > 1 .O). 
The only way to remove the dependency is to add a test- 
point between the two gain blocks (node 2 or node 3).  

4.2. Nonlinear System 
In Fig. 3 a nonlinear system is given. This system con- 

tains three second-order low-pass filters, two gain blocks, 
two summing blocks, and a multiplier. The two summing 
blocks are used to model the effect of an offset at the in- 
puts of the multiplier. 

The behavior of the system is described with ten param- 
eters. The parameters a l ,  b l ,  a2, b2, a3, and b3 are filter 
parameters, gainl and gain2 represent the gain of the two 
gain blocks, and the parameters offset1 and offset2 rep- 
resent the offset levels at the inputs of the multiplier. To 
determine all the parameters independent of each other, 
ten measurements and, of course, suitable input signals 
are required. 

First, the nominal values, the standard deviations, and 
the desired determination accuracies of the parameters are 
given. After that, the results of two testability analyses 
with different input signals are given. The first analysis is 
discussed extensively in order to clarify the optimization, 
carried out by the algorithm. 

The nominal values, the standard deviations, and the 
relative desired accuracies of the parameters are given in 
Table 111. 



578 IEEE 

Fig. 3. Nonlinear system with one output node. 

TABLE I11 

Standard Deviation ( % Desired Relative 
Nominal Value of Nominal Value) Determination Accuracy 

a1 = 1 . 4 1 4 2 / 2 ~ 5  
b l  = l .O/(2rfi)* 
a2 = 1 . 4 1 4 2 / 2 ~ &  
b2 = 1 . 0 / ( 2 ~ h ) *  
a3 = 1.4142/2rf3 
63 = l.O/(2?rf,)* 
gainl = 10 
gain2 = 20 
offsetl = 0 
offset2 = 0 

10% 
10% 
10% 
10% 
10% 
10% 
10% 
5% 
0.005* 
0.005* 

1 .o 
1 .o 
1 .o 
1.0 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 

withf, = 6.0,h = 3.0, andf, = 10.0 (cutoff frequency in hertz) 

*These values are absolute, all the other values are given relative to the 
nominal value. 

It is assumed that the standard deviation of the mea- 
surement errors equals l E-3. 

The signals at inputl and input2 are the actual input 
signals of the system. Input3 and input4 are connected 
with dc sources which represent the offset at the inputs of 
the multiplier. In the first analysis the signal at inputl is 
an approached square wave consisting of two frequency 
components (3.0 and 9.0 Hz) with an amplitude of 0.1. 
The signal input 2 is also an approached square wave con- 
sisting of two frequency components (1.0 and 3.0 Hz), 
also with an amplitude of 0.1. Because of the multiplier 
the output of the system contains in the ideal case 7 fre- 
quency components: 3 - 1 = 2 Hz, 3 + 1 = 4 Hz, 3 + 
Hz, 9 - 3 = 6 Hz, and 9 + 3 = 12 Hz. If an offset 
occurs at the inputs of the multiplier, then additional fre- 
quency components appear in the output signal. An offset 
at input3 results in frequency components at 1 and 3 Hz, 
an offset at input4 results in additional frequency com- 
ponents at 3 and 9 Hz. Therefore, the total number of 
frequency components at the output is ten. 

To obtain the sensitivity vectors a simulation is carried 
out, followed by the testability analysis. After the first 
step of the analysis, the following results are computed in 
Table IV. 

In this example, the desired accuracies equal the stan- 
dard deviation of the parameters. Thus a parameter with 
a relative determination accuracy < 1.0 can be deter- 
mined with the desired accuracy. The results show that, 
after the first step of the analysis, the parameters gainl, 
gain2, and a1 do not fulfill this requirement. The other 
result is that the parameters gainl and gain2 are found to 
be members of the same set of dependent parameters. 

3 = 6 Hz, 3 - 3 = 0 Hz, 9 - 1 = 8 Hz, 9 + 1 = 10 
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TABLE IV 

Parameter 
Relative Determination 

Accuracy 

offsetl 
offset2 
gain 1 
gain2 
a1 
bl 
a2 
b2 
a3 
b3 

0.079 
0.168 
1.171 
2.914 
1.886 
0.822 
0.422 
0.617 
0.187 
0.463 

Required Non-Faulty 
Parameters 

none 
none 
gain2 
gain 1 
none 
none 
none 
none 
none 
none 

Next, to improve the determination accuracies, the al- 
gorithm tries to find nearly dependent parameters. There 
are two necessary conditions for the selection of a param- 
eter as a possible nearly dependent parameter: the deter- 
mination accuracy of the parameter must be worse than 
the desired determination accuracy and the parameter may 
be selected only once, because a parameter that is selected 
before is already forced to be dependent on other param- 
eters by the algorithm. From the foregoing results, param- 
eter gain2 has the worst determination accuracy. There- 
fore, in the second cycle parameter, gain2 is assumed to 
be nearly dependent on other parameters. 

The results after the second cycle of the algorithm are 
the same as before because parameter gain2 is truly de- 
pendent on parameter gainl , assuming it to be nearly de- 
pendent obviously adds nothing to this. The next worse 
parameter is a1 , so in the third cycle this parameter is 
assumed to be dependent on one or more of the other pa- 
rameters. This assumption results in the following deter- 
mination accuracies after the third cycle shown in Table 
V.  

Parameter gainl can now be determined with the de- 
sired accuracy, but the relative determination accuracies 
of the parameters gainl and a1 are still larger than 1.0. 
So there are still two parameters which cannot be deter- 
mined with the desired accuracy. The determination ac- 
curacy of almost all other parameters remains the same or 
improves under the assumption that parameter a1  is de- 
pendent on other parameters. 

The algorithm now decides that the best possible solu- 
tion is obtained because there are no other possible nearly 
dependent parameters; both candidates gain2 and a 1 have 
already been used. There is one set of dependent param- 
eters: al, b l ,  a2, b2, gainl, and gain2. This can be de- 
rived from the required nonfaulty parameters which is a 
result of the testability analysis. The determination ac- 
curacies of those parameters cannot be computed inde- 
pendent from each other. Only the parameters offsetl, 
offset2, a3, and b3 can be determined independent from 
the other parameters. 

To remove some of the dependencies and to improve 
the determination accuracies, the input signals can be 
changed. To enhance the determination accuracy of the 
parameters a1  and b l ,  it is possible to increase the am- 
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TABLE V out for each parameter, so it is clear that this simulation 
part of the algorithm will be time consuming. After the 

Parameter Accuracy Parameters necessary simulations the testability analysis can be car- 
ried out. 

Relative Determination Required Non- 

offsetl 0.079 none At this moment only the amplitude of the frequency 
offset2 
gain 1 
gain2 
a1 
bl 
a2 
b2 
a3 

0.168 
0.757 
2.300 
1.975 
0.502 
0.226 
0.327 
0.187 

none 
gain2, a1 
gainl, a1 
gainl, gain2 
a1 
a1 
a1 
none 

components is used in the analysis. In most practical sit- 
uations this will be sufficient, but, for example, a delay 
line may cause testability problems when no phase infor- 
mation is available. The program can easily be changed 
to overcome this problem. 

As shown in the examples, the algorithm is useful to 
b3 0.463 none 

The selected measurements are: 0, 1 ,  2, 3,  4 ,  6 ,  8,  and 10 Hz. 

TABLE VI 

Relative Determination Required Non-Faulty 
Parameter Accuracy Parameters 

offsetl 
offset2 
gain 1 
gain2 
a1 
bl  
a2 
b2 
a3 
b3 

0.079 
0.168 
0.705 
2.229 
0.853 
0.476 
0.191 
0.274 
0.187 
0.463 

none 
none 
gain2 
gain 1 
none 
none 
none 
none 
none 
none 

The selected measurements are: 0, 1 ,  2 ,  3 ,  4 ,  6 ,  8, 10, and 14 Hz 

plitude of the signals on inputl. This will result in an in- 
crease of the amplitude of the output signals and a de- 
crease of the influence of the measurement errors. Another 
possibility is to increase the number of frequency com- 
ponents in the input signal. In the following analysis the 
signal on inputl is an approached square wave consisting 
of three frequency components (3.0, 9.0, and 15.0 Hz) 
and with an amplitude of 0.1. The input signal on input2 
is not changed. The result of the analysis is listed in Table 
VI. 

Parameter gain2 is now the only parameter that cannot 
be determined with the desired accuracy. The determi- 
nation accuracies of almost all other parameters are im- 
proved significantly due to the addition of the 15-Hz com- 
ponent. In this case the parameters gainl and gain2 are 
the only parameters that cannot be determined indepen- 
dent from another. 

V. DISCUSSION 
The algorithm described in this paper is implemented 

on an Apollo workstation. The program is written in Pas- 
cal and can be used to perform an analysis in the fre- 
quency domain. In order to obtain the required sensitivity 
vectors a simple high-level simulation program is devel- 
oped. First the response of the nominal circuit is simu- 
lated and after that further simulations are required to de- 
termine the sensitivity vectors. Because of the possible 
nonlinearities in the system a simulation must be carried 

analyze the testability of both linear and nonlinear analog 
systems. It is also shown that the algorithm can be used 
for test frequency selection. Therefore, it might be pos- 
sible to use this algorithm as part of an automatic test 
pattern generation program. 

A disadvantage of the algorithm is the fact that input 
signals must be defined by the user. This is a result of our 
approach which is closely related with functional testing. 
In reality the testability of a circuit is always dependent 
on the chosen input signals and the accuracy of the mea- 
surement equipment. If a testability model is used which 
does not include the input signals in the testability anal- 
ysis, then a circuit can be classified as being testable but 
it is not known how the test has to be performed. In our 
approach, the input signals, to obtain a particular test- 
ability, are always known because they are defined by the 
user. 

Another disadvantage is that the standard deviation of 
the parameters due to variations in the manufacturing pro- 
cess is required. This again is a result of our approach as 
mentioned above. In an early design stage it can be very 
difficult to determine these standard deviations. 

VI. CONCLUSIONS 
An algorithm is developed to compute the determina- 

tion accuracies of the high-level parameters in an analog 
system based on user-defined measurements. The algo- 
rithm detects dependencies and near dependencies be- 
tween parameters of the system and selects the best set of 
measurements from a given set. It can be used for both 
linear and nonlinear systems. The algorithm combines a 
rank-test method with statistical methods. 

The algorithm has been implemented on a workstation 
and evaluations with small linear and nonlinear analog 
systems show the usefulness of the method. 

APPENDIX A 
DESCRIPTION OF THE ALGORITHMS 

In this Appendix the two algorithms which are used for 
the testability analysis are described. The first algorithm 
is used to compute the determination accuracies and to 
detect dependencies between parameters. The second al- 
gorithm is used to find out if it is possible to determine 
all the parameters with the desired accuracy. If that is not 
the case, then the algorithm will compute the best possi- 
ble determination accuracies which can be obtained with 
a given set of measurements. If redundant measurements 
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occur, then these measurements are removed from the ini- 
tial set of measurements. 

The input required for the algorithms is a set of sensi- 
tivity vectors, the standard deviation of the parameters 
due to variations in the manufacturing process, and the 
desired determination accuracies of the parameters. The 
sensitivity vectors contain the sensitivity of the output 
signals of the system for a variation of the high-level pa- 
rameters. These vectors can be determined by means of 
simulation. In our case we use high-level (circuit) models, 
for instance, opamps, multipliers, VCO's, different kinds 
of filters, etc. [lo]. A relevant set of high-level parame- 
ters for an amplifier can be for instance: differential-gain, 
common-mode gain, offset voltage, and gain-bandwidth 
product. 
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APPENDIX A.  1 .  COMPUTATION OF DETERMINATION 
ACCURACIES AND DETECTION OF DEPENDENCIES 

Using the sensitivity vectors and the standard deviation 
of the parameters it is possible to create a set of equations 
describing the relation between parameters and measure- 
ments: 

ZA 

the assumption A x  = 0 can be made. In this case (A.l )  
reduces to: 

ZA 

A 

This equation can be used as input for the algorithm 
shown in Fig. 4. The algorithm is based on Gaussian 
elimination with full pivoting [9]. 

In order to find the best pivot element in matrix A we 
look for the best relative determination accuracy of a pa- 
rameter based on only one measurement. The relative de- 
termination accuracy is defined as the determination ac- 
curacy of a parameter divided by the standard deviation 
of the parameter due to variations in the manufacturing 
process. Suppose the system is described as in (A.2) and 
the first cycle ( C  = 1 ) of the algorithm is in progress. 
Consider the first row of (A.2): 

This'equation can be rewritten as: 

with Z being the number of measurements, J the number 
of parameters, ui the standard deviation of parameter i due 
to variations in the manufacturing process, and Api/ui the 
normalized parameter deviation of parameter i. 

The matrix on the left-hand side of this equation is an 
Z*Z unity matrix (called ZA) and the matrix on the right- 
hand side is the normalized Z*J sensitivity matrix (called 
A ) .  Different from the description given in Section 111 (4), 
the parameters in (A.l )  are normalized with respect to 
their standard deviations as they result from production 
variations during the manufacturing process. This is done 
in order to simplify the pivot-finding routine as will be- 
come clear in the following part. 

To compute the influence of measurement errors on the 
determination accuracies of the elements of vector A p / o ,  

To estimate the relative determination accuracy of 
Apl /ul ,  the other parameters are assumed to be fault free, 
so only deviations due to production variations are taken 
into account. This results in a standard deviation of 1 for 
all Apj/aj with j # 1. The measurement error el is also 
assumed to be normally distributed with standard devia- 
tion cl  and statistically independent of Apj/uj. In this case 
the estimated relative determination accuracy ep, /U1  of 
Apl/al  can be calculated with 

6 ;  + ( 0 2  ' s12)2 + * ' + (OJ  * S1J)' 
(ePl/ol)z = 

(01 * s11)2 
('4.5) 

A similar equation can be derived for all the other pa- 
rameters with respect to measurement l .  The value of ujSlj  
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c=o 

J 

SWAP ROWS I AND C 

ELIMINATE ALL ELEMENTS 

YES &I DEPENDENT PARAMETERS 

I-J REDUNDANT MEASUREMENTS 

Fig. 4. Algorithm to compute determination accuracies and to detect de- 
pendencies. 

then only occurs in the nominator and not in the numer- 
ator of the equation. Therefore, it is obvious that the pa- 
rameter corresponding with the largest value of aJSlJ has 
the smallest value of epJ/uJ. This is a result of the nor- 
malization of the parameter vector as mentioned previ- 
ously and makes it superfluous to compute all the epJ/oJ 
of a row: looking for the largest value of aJS, in row i of 
matrix A is sufficient to find the best element in that row. 
A comparison of the best values of epJ/oJ over all rows 
is carried out next and the row with the smallest value of 
ep,/uJ is chosen as the pivot row. The pivot column is the 
column with the largest absolute value of uJ S,J in that row. 
This concludes the pivot-finding part of the algorithm 
(step 3). 

Next, the pivot element is placed in the position of ma- 
trix element A l l  by swapping the pivot row with row l 
and the pivot column with column 1 (step 5 ) .  The follow- 
ing step in the algorithm is to eliminate all elements in 
column 1 of matrix A except the pivot element (step 6). 
After the elimination of the first column a second column 
must be eliminated if possible. The same procedure will 
be used to find a new pivot element in the resulting rows 
(row 2, 3, - - 

For the general case it is now assumed that the elimi- 
nation process is in the beginning of the Cth cycle. Hence, 

). 

a pivot element must be found in the rows C up to I of 
matrix A .  In these rows the first ( C  - 1 ) elements are 
made zero by the previously executed elimination steps. 
Row i, with i 2 C ,  can now be described as 

I J 

with I as the number of measurements, J as the number 
of parameters, ApL/oL as the mth element of the swapped 
normalized parameter deviation vector, and f k  as the stan- 
dard deviation of measurement k .  

The swapped normalized parameter deviation vector is 
changing during the elimination process. If a column of 
matrix A is swapped, then the corresponding element of 
the normalized parameter deviation vector is also 
swapped. Equation (A.6) can be used to determine the 
remaining ( J  - C ) parameter deviations. To compute the 
relative parameter deviation corresponding with the jth 
column, withj  I C and i 2 C ,  (A.6) can be rewritten as 
follows: 

I I 

m z j  

(‘4.7) 
As mentioned in Section 111, the elements of the vector 

e are statistically independent and the mean values are 
zero. The relative determination accuracy (see (AS)  is 
then in the general case determined by 

with i as the row number, I as the number of measure- 
ments, J as the number of parameters, ep i /u -  as the 
swapped normalized determination accuracy vector, and 
f k  as the standard deviation of measurement k .  

The smallest value of ( epj /uj ) over all columns C to J 
and measurements C to I provides the best expected de- 
termination accuracy, and the associated element of ma- 
trix A is used as the pivot element. After this pivot-finding 
part, row Cand column Care, respectively, swapped with 
the pivot row and the pivot column. Now column C (ex- 
cept the pivot element &) can be eliminated. 

This procedure continues as described above until one 
of the following conditions is satisfied. 

A) The value of the pivot counter equals the number of 
columns (after the elimination step). This means that all 
columns are eliminated; so there are no dependencies 
found between parameters and a number of redundant 
measurements are found (step 9, 10, and 11). 

B) The value of the pivot counter equals the number of 
rows (after the elimination step). If the number of col- 
umns is also larger than the number of rows, then ( J  - 
I )  dependent parameters are found. Some of the depen- 
dencies are presumably caused by a lack of measure- 
ments. The only way to check this is to increase the num- 
ber of rows in (A.l) by adding measurement results and 
re-executing the algorithm (steps 15, 16, and 17). 

C) No pivot unequal to zero is found. This results in a 
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number of dependent parameters and redundant measure- 
ments. The number of dependencies can probably be re- 
duced by using other measurements (steps 12, 13, and 
14). 

In steps 9, 12, and 15 the matrix A is scaled. This means 
that all diagonal elements of matrix A are made equal to 
1 by multiplying the rows of matrix A and IA with a par- 
ticular factor ( 1 / A i i ) .  

APPENDIX A.2. DETERMINATION OF THE BEST POSSIBLE 
SOLUTION 

In this Appendix the algorithm to determine the best 
possible solution which can be obtained with a given set 
of measurements is described. For this algorithm the de- 
sired determination accuracies of the parameters are also 
required. From now on the algorithm described in the pre- 
vious Appendix is called algorithm 1 and the algorithm 
described in this Appendix is called algorithm 2. A flow 
diagram of algorithm 2 is given in Fig. 5 .  First the influ- 
ence of dependent parameters is described with the help 
of a simple example, after that a general description is 
given. 

Assume that a system with one dependent parameter is 
given, then algorithm 1 (step 1 in algorithm 2) will change 
(A.2) to 

with R as the number of dependent parameters subtracted 
from the number of parameters ( (J - D ) ; in this case ( J  
- 1 ) ) .  

Probably some rows in A will have only one nonzero 
element (Ai i  = 1 and A,., = 0). The column containing 
this element is related with a parameter deviation which 
can be determined independently of the other parameters; 
that parameter is a member of the set of independent pa- 
rameters. 

The determination accuracy of the parameters can in 
this case be computed by using the following equation: 

I 

(ep(/u;)' = c (IA, - + A;. (A.lO) 
j =  1 

It is assumed that Ap;/u; is normally distributed with 
a zero mean value and a standard deviation equal to 1 
(fault-free parameter) and that the measurement errors are 
independent of another and also independent of Ap; / U ; .  

Note that the determination accuracy of the dependent pa- 
rameter p; cannot be computed with (A. 10). 

1 RUN ALGORITHM 1 r"l 

ACCURACY OF THE 
DEPENDENT PARAMETERS 

ACCURACIES 

E DETERMINED ACCURAT , Y E S e X f  ACCURACIES 

IMPROVED 7 

10 1 , 8 l N o  

9 [-) 
Fig. 5 .  Algorithm to determine the best possible solution 

In the general case there can be more parameters which 
are dependent on the other parameters. The result of step 
1 of the algorithm is then given by the following general 
form: 

( A . l l )  

with R as the number of dependent parameters subtracted 
from the number of parameters (J - D ). 

The coefficients of the D last columns of matrix A de- 
scribe the dependencies between the dependent parame- 
ters and the other parameters. Note that one measurement 
is removed for each parameter which is dependent on the 
others. The matrix IA contains (J - D ) columns which 
do not equal 0. The measurements corresponding with 
these columns are used to determine the parameter devia- 
tions. The determination accuracy of the other parameters 
can be computed by assuming that all the dependent pa- 
rameters are normally distributed with zero mean and 
standard deviation U (fault-free parameters). Equation 
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(A.lO) can then be rewritten in the following general 
form: 

I J 

(ep,!/oi)2 = c (ZA, - ej)2 + c A L .  (A.12) 
j =  1 m = J - D  

During step 3 of the algorithm the determination accu- 
racies of the dependent parameters are computed. It is not 
possible to compute the determination accuracies of the 
dependent parameters pk to p; with (A. 12). To compute 
the determination accuracy of these D dependent param- 
eters the other D parameters must be assumed to be fault 
free. To determine the most suitable parameters algorithm 
1 can be used in a slightly modified form. The sensitivity 
vector corresponding with one of the D dependent param- 
eters is placed in the first column of matrix A .  Then the 
first pivot used for the elimination process must be found 
in this first column. After the first cycle the elimination 
process can be continued in the normal way. The elimi- 
nation process must be stopped when D columns remain. 
Then ( J  - D ) columns are eliminated and also ( J  - D ) 
measurements are left. Care must be taken that these are 
the same measurements as in the original solution. Now 
again a set of equations like (A. l l )  is the result of the 
elimination process. The determination accuracy of the 
dependent parameter can now be determined with (A. 12). 
This procedure is repeated until all determination accu- 
racies are computed. 

The parameter p ,  with a determination accuracy not as 
small as desired ( e p ,  > a, with a, the desired determi- 
nation accuracy) can be a parameter which is a member 
of a set of nearly dependent parameters (step 4 of the al- 
gorithm). A nearly dependent parameter is a parameter 
which can be determined more accurately when it is as- 
sumed to be dependent on other parameters. These nearly 
dependencies can be determined also with the first algo- 
rithm. The parameter with the worst relative determina- 
tion accuracy is assumed to be a nearly dependent param- 
eter (step 10). The sensitivity vector corresponding with 
p n  is placed in the last column of matrix A .  Algorithm 1 
is executed again (step 1) but it is not allowed to search 
for a pivot in the last column and it is also not allowed to 
eliminate the last column. By doing this the parameter 
became a dependent parameter ( corresponding with one 
of the D last columns of matrix A ) .  Because the number 
of dependent parameters is increased by one, the number 
of required measurements is decreased by one. The mea- 
surement which is removed contained the information 
which distinguished the nearly dependent parameter from 
the other parameters. After the scaling, matrix A has the 
same form as in (A. 11) .  Now the determination accuracy 
of the parameter can be determined again (step 3). Now 
again all the determination accuracies are compared with 
the desired values (step 4). If all parameters can be deter- 
mined with the desired accuracy then the algorithm stops 
(step 6 ) .  If that is not the case then step 7 is carried out. 
The number of parameters that can be determined with 
sufficient accuracy is compared to the number of those 
parameters before one of the parameters was assumed to 
be nearly dependent of the others. If the number is de- 

creased then the parameter was a nearly dependent param- 
eter. If the number is increased then the previous solution 
is chosen as the best solution. 

The assumption that a parameter is nearly dependent on 
other parameters usually results in a better determination 
accuracy of the set of dependent parameters. If this is not 
the case, then the determination accuracy can only be im- 
proved by using other testvectors. 
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