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uring the design of a 10 dam high-gain FEL oscillator (TEUFEL Project) we developed a new particle-tracing code to perform
simulations of thermionic- and photo-cathode electron injectors/accelerators . The program allows predictions of current, energy and
beam emittance in a user-specified linac configuration . This paper describes the setup and the mathematical model of the program
and shows some results as an illustration .

The need for a new particle-tracing code arose be-
cause existing programs appeared to be modified so
often that they had lost their continuity and clarity.
Generally, documentation was poor and the mathemati-
cal model and used approximations were unknown.
Furthermore, many scientific computer codes find their
origin in the early seventies, and tend to have a rather
old-fashioned setup compared to modem computer
standards . This fact made the creation ofa completely
new program preferable to modification of the existing
codes .

PAPA stands for a particle-tracing code in Pascal .
The current version offers a solid base for a new,

em and convenient particle-tracing code, to be used
for simulations of all kinds of linear-accelerator applica-
tions .

Keywords for PAPA are :
- modem, clear and consistent programming style,
- extensive explications in source code,
- modular setup - flexibility,
- ease in use,
- g

	

documentation,
- Pascal compatibility .
To keep the Pascal syntax compatible to different

compilers, we only used "standard" Pascal statements
and avoided the use of excessive statements, as used in
e.g . Borland's TurboPascal. Especially when used on a
personal computer this approach unfortunately cancels
much of the power and charm of modem compilers . For
this reason the actions taken by PAPA are restricted to
the creation of an ASCII output file, containing the
input parameters and program output at discrete time
intervals.
To process the data, we load the output file into an

IBM-compatible PC, where it is converted by a number
of TurboPascal programs to create all kinds of graphics
in a fast and convenient way. One option that is worth

mentioning is the creation of a perspective red-green
view on an EGA/VGA monitor, which allows the user
to see a true 3D presentation of the electron trajectories,
using red-green glasses. Since these routines are more
hardware dependent and require only standard pro-
gramming techniques, we do not discuss them here any
further.

2 rief discussion of the pro

	

flow

The program comes as a handful of include files,
each of which contains one or several modules con-
trolled by one main program which is very short. Each
module contains an explanatory text describing what
"goes in" and what "comes out" . Fig. 1 is a simplified
overview of the program's main procedures . The user
can specify an arbitrary electron pulse and a configura-
tion of rf cells, magnetic fields and electrostatic fields,
by means of a simple code in an ASCII file . The field
distribution inside rf cavities is read in from external
ASCII files as well. We did not use Fourier coefficients,
because it is not as fast and less accurate, although it
can save quite an amount of RAM. Maybe is will be
implemented in future versions . The entire mathemati-
cal model is contained in block number 12 and blocks
number 14-16, describing how the electromagnetic in-
teractions take place . The number of devices that can be
specified is limited yet, but can be extended by just
adding modules to the row 14/15/16 . The numerical
routines (11 or 19) do nothing else than solving a set of
N variables, of which the first-order time derivatives are
known (block 12) . They can easily be replaced by any
other routine.

3 . Particle dynamics

In the PAPA code, an electron pulse is represented
by a limited number of uniformly charged, rigid clouds,
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Fig. 1 . Simplified overview of the program's hierarchy .

called mels (which stands for "macro-electrons"). The
mels have a spherical shape in the lab frame . Although
rigid, the spheres are not solid, which means that they
are allowed to merge into each other . Their radius is
calculated by PAPA for every time step as to make the
total volume of all spheres equal to the total volume of
the electron pulse . This radius is then multiplied by a
user-specified factor, DMR (Decreases Mel's Radius) .
When the DMR is chosen to be zero, the mels will
behave like point charges . PAPA uses mels rather then
point charges, to prevent exaggerated force interactions
when two mels come very close to each other. The mel
approximation compensates for this, since, when the
distance between two mels becomes zero (that is : they
overlap completely), the repelling force between them is
also zero . At the same time the recalculation of the
mels' radius for every time step eliminates limitations of
force interactions . Simulations have shown that this
approach reduces significantly the dependence of the
results on the number of particles .

To determine the radius of the mels, PAPA starts
with finding a cylinder of length L and radius R, in
which the main part of the mels fit . The volume of this
cylinder is given by
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The length L is found by averaging over all N mels . If
we assume that the mels are traveling in the (positive)
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z-direction, it is easily seen that a representative value
for L can be found by

N
L=4 1: I!-z.1,

n=I

N

where

	

Z =NE Zn .

n=1

A value for the cylinder's radius R,, could be de-
termined in a similar way by averaging over R., where
Rn = (xn +y2)1/2 and x � and yn are the x- and y-coor-
dinates of successive mels, but there is another way
which avoids the calculation of the square root and the
multiplications in the above equation and is therefore
faster.

If we want to express the average x-coordinate of a
uniform distribution of points in the half circle defined
by

we find

which leads to R, = 3-ir/4x. PAPA finds R, by calculat-
ing

Rc = 4N

	

I xn I *

	

(4)
n=1

If we want to have the volume of all mels together
equal to V, as given in eq. (1), we must have

3R2L
1/3

NNITR3 = irRCL
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,
with L and R c as expressed in eqs. (2) and (4), respec-
tively.

The force reduction for nearby mels is done as
follows . The thin line in fig. 2 shows the force between

I .C ,0 2 .00 3.00 4 .00 5.00

Fig. 2 . Repelling force (arbitrary units) between two homoge-
neously charged rigid spheres with radius R as a function of
r/R, r being the distance between the centers. Thin line: exact
solution (computer calculus) ; thick line : PAPA approximation .
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two uniformly charged, rigid but not solid, spherical
clouds (radius R), as a function of the scaled distance
r/R between their centers. The plot was obtained by a
simple numerical method on a PC. When r > 2R, that
is, the spheres do not "touch" each other, the force will
be proportional to 1/r2, which follows directly from
Gauss' theorem. When they overlap completely (r = 0),
the repelling force is zero. The actual expression for the
force is rather complicated, so PAPA uses the (fast)
approximation as given by the thick line in fig . 1, which
is defined by

8
9R3r
4
9R2

for ~ < R '
The motion of the mels is described by the Lorentz-

force equations [mks units] :

dt (ymv) =

d (ymc2) =- e(v "E)=v-F,dt
where y is the relativistic factor, m the mass of the mel,
v its velocity, -e its charge, E the electrical field, B
the magnetic field, F the total force acting on the mel
and c the velocity of light. (Eq. (7) gives no extra
information, but is added for ease .) The set of equations
(6) and (7) will now be written in a more convenient
form. If we define p = ymv, eq. (6) can be written as

dt(p) =F.

Instead of using eq. (7), one may directly write down an
expression for y in terms of p:

1~2
__ Ip

.y

	

(

	

l2 +1mc
In order to describe the mels' motion completely, we
have to add

d (r) =
My

,

for 0 < R 5

	

,

rfor -j' <RS ,

4. Space-charge forces

-e(E+vxB)=F, (6)
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(10)

where r --- (x, y, z) represents the mel's position.
Determining F as a function of the configuration,

the mels' positions and velocities and the time, PAPA
solves eqs. (8), (9) and (10) for each of the N mels .

Forces due to rf cavities and magnetic fields are
easily implemented in eqn. (8). Space-charge effects are
more complex. They are the most computing-time-con-

suming forces, since they are calculated for each in-
tegration step, and require a handful of multiplications
for all possible combinations of two mels (point-by-point
space-charge calculations).

The expression for the electromagnetic field created
by a mel moving with uniform velocity is given by [1]
E-

	

1

	

Qr
4%Eo Y2s3

and
B= 2vxE,

c
with

2
s ~E ri 1 - v2 sin20

	

(12)
~ c

	

) 1

where r is the vector pointing from the mel to the place
of observation, v the melt's velocity, Q its charge and
the angle between r and v.

If the mel is accelerated, the electromagnetic field
has the form

where the quote stands for
and

, rv-
reff =r - c

PAPA uses eq. (12) rather than eq . (1a), which is not
correct, but a convenient approximatio rl. We will now
make an estimate of the error. Comparing eqs. (12) and
(13) we see that the relative error for the approximated
value of E is
8E~ Y2r dv
É- ~2 dt

d(yß) =

	

3dß __ QErf
dt

	

yd

	

mc '
(where ß --- v/c) so that we find
8E QE,fr r

= ymc2 = P ,

evaluating the retarded value

In a linac, acceleration of the mels is mi inly caused by
rf fields Erf , so that we may write

(15)

where p --- ymc2/QE,,f. If we consider the case of an
electric. field of 100 MV/m and y = 1, we find that
p = 5 x 10 - 3 = 5 mm. A typical value for the average
distance between two mels is 1 mm, which will lead to a
20% error for the lowest energy. As seen from eq. (14),
the error is proportional to 1/y. A typical value for the
energy after a drift of 1 cm in a photocathode cell is 1

dv'
1 f Qreff

Qr' x (reff x dt )
E __ o~

41Tco ', i2s3 + c2s3 (13)

B= r x E (14)
rc



Fig. 3. Paraxial space-charge approximation (see text).

MeV, which corresponds to y = 3. Thus the error will
decrease rapidly when the particles are accelerated. Fur-
thermore, the absolute error 8E is proportional to 1/rp,
and will thus tend to be significant only when space-
charge effects become negligible . The final accuracy will
depend on the number of mels that are used and the
parameters in eq. (14).
We emphasize the fact that in case of bending mag-

nets, or perpendicular magnetic fields like in a micro-

tron, the approximation will usually be insufficient . At
the moment of this writing, we are developing a pro-
gram which calculates the electrons' dynamics in a
race-track microtron, and in this case the full expression
(13) must be used when the electrons travel through the

D's.
If perpendicular velocity components are negligible

compared with the longitudinal velocity, v, << v,,, the
expressions in eqs. (11) can be simplified as to speed up
the computations considerably . Fig. 3 shows two mels,

numbered 1 and 2, with (parallel) velocities vl and v2.

The electric force acting on mel 2 due to the presence of

mel 1 is directed from mel 1 to mel 2 and can be written
out in a perpendicular and a parallel component (with
respect to the plane of the paper):

FE =FE,II +FE,1= -e(EII +Ej.

	

(16)

It is easily shown that the paraxial approximation used

with eq. (12) leads to the following force components :

F1= FE,1 (1 -

	

C2VIV2 sin -0

	

(17)

FII =FE,ue

FEsind

FE
v

° Z
Z sind

c

where 0 is the angle between v2 and FE. Use of eqs.

(17) rather than the full expressions as derived from eq .

(12) avoids the computation of six multiplications for

each cross product, and is considerably faster, especially

for a large number of mels . The paraxial approximation

will be sufficient in most cases. In the PAPA code both
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the complete and the paraxial space-charge routines are
present.

5. The numerical routines

By means of a parameter in the input file, one may
choose between two different numerical routines to
solve eqs. (10) and (11) : either first-order Euler or
fourth-order Runge-Kutta extrapolation [2]. Most exist-
ing particle-tracing codes use the Euler method, which
is not very accurate and often very unstable. The
Runge-lyutta routine allows much larger time steps,
which makes the calculations approximately 5-10 times
faster .

6. Other options

By means of a parameter in the input file, it is
possible to simulate mels emerging from a cathode
surface, instead of just popping them in space at the
beginning of the simulation. If an electrostatic field of
an anode-cathode configuration is put in one of the cell
field files, we expect that PAPA could also be used as a
thermionic gun simulator, with the inclusion of pulse
effects.

To reduce errors, the program (optionally) translates
the code in the input files to plain English, before
starting the calculation . It is also possible to have the
specified rf fields mapped on the screen, as for easy
verification .

Initial coordinates can be generated by the program
(fig . 1, block 8), when some quantities like e.g. beam
current and emittance ar° specified, or can be read from
an ASCII text file (block S). This allows combined use

with other programs, and also eliminates the need to

repeat an entire simulation from the beginning, if it gets

stuck somewhere halfway.
The explanatory text in the program's code is closely

related to the documentation. This makes modification

of the code even easier .

7. Some results

i..- . -

	

:mr.ru-- -F -hat the inriirnm ilne-s_
JUJ< LV givc a.. u..piess-Vaa Va . . . .w . . . .1.. r--.----- __ _ . ,

figs . 4a-c show the results of a 2 ns, 1 A electron pulse

at 100 keV, with zero energy and angular spread, which

is bunched by a 250 MHz, 40 kV rf cell. The cell is

positioned at 21 cm, while the entire configuration was

embe&-d in a 0.08 T magnetic guiding field. A11 the

plots are screen dumps of our graphic routines on an .

Olivetti PC with ATT graphics.
Fig. 4a is a side view of the electron pulse (x- vs

z-coordinate) at three different positions along the z-

VI . ACCELERATORS ETC.
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g. Future actions
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a

axis. The initial bunch of about 35 cm (2 ns at 100 keV
corresponding to .8 = 0.55) is compressed at a maximum
at about 80 cm (rightmost pulse). Bunching seems to
occur at the tail of the pulse, which can he explained by
looking at fig . 4b, which shows the mels' energy as a
function of their z-coordinate for four different posi-
tions along z . Obviously the initial phase of the rf cell
was not perfect . The ripple at the tail of the second
cluster from the left is caused by space-charge interac-
tions, . Fig . 4,,; shows the pulse's rms emittance in mrad
along z, while fig. 4d gives the pulse current [A] along z .
We see that the initial current of 1 A reaches a value of
10 A at about 80 cm.

As we mentioned before, we are currently working
on a similar program, of which input and output will be
compatible with PAP4. which does a particle simula-
tion of a racetrack microtron (RTM). We intend to use
an RTM in combination with a photocathode gun, and
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9. Conclusion
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Fig. 4. (a) A typical simulation result (x-coordinate [m] vertical, z-coordinate [m] horizontal) . A 2 ns, 100 keV, 1 A electron pulse
with zero energy spread and zero emittance is compressed by a 40 keV, 250 MHz bancher. The picture shows the mels' distribution at
three different positions along z . (b) The mels' energy [eV] as a function of z [m] for different positions along z [m]. (c) Current
envelope [A] of the pulse for different positions along z [m]. (d) Rms emittance [mrad] as a function of the pulse's position along z

[m].

the new code is meant to do predictions of the RTM's
high-current behavior [3] .

We have presented a new particle-tracing code, which
is user-friendly, easily accessible and modern. The
numerical procedures are flexible and faster than in
most existing particle-tracing codes. It is to be consid-
ered a public-domain program, and its entire setup is
devoted to the easy extension and modification by other
users . Anyone who is interested can contact us at the
above adress.
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