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Abstract: At several places in the literature there are indications that many tests are optimal in the sense of Hodges-Lehmann 

efficiency. It is argued here that shrinkage of the acceptance regions of the tests to the null set in a coarse way is already enough to 

ensure optimality. This type of argument can be used to show optimality of e.g. Kolmogorov-Smirnov tests, Cram&-von Mises 

tests, and likelihood ratio tests and many other tests in exponential families. 
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1. Introduction 

There are many ways to describe the relative performance of test procedures in the case of large sample 
size. An overview of six of such methods is given in Serfling (1980, Chapter 10). One of these was 
introduced by Hodges and Lehmann (1956). Keeping the alternative fixed, two competing tests are 
compared with respect to the rate at which the probability of the error of the second kind tends to 0, 
while both tests have the same fixed size. In a sense this is dual to the more familiar notion of Bahadur 
efficiency. Although the latter was introduced as ‘stochastic comparison’ based on the behaviour of the 
level attained or p-value, when considering convergence in distribution of attained levels, Bahadur 
efficiency may be described in the same way as Hodges-Lehmann efficiency above, changing the roles of 
the probability of the error of the second kind and the size (cf., e.g., Chandra and Ghosh (19781, Bahadur 

and Gupta (1986), Kallenberg (1981, 1983)). 
Optimality in the sense of Bahadur efficiency is rather scarce. It seems to be restricted to tests which 

are not too much different from either likelihood ratio tests or tests based on Kullback-Leibler 
information numbers. On the other hand there are several places in literature with indications that many 
tests are optimal in the sense of Hodges-Lehmann efficiency. In TusnAdy (1977, p.391) it is stated in a 
particular example that “the majority of tests of rate A = 0 for this problem are ERO (exponential rate 
optimal) at any Q” (ERO with A = 0 corresponds to optimal in the sense of Hodges-Lehmann 
efficiency). Nikitin (1987, p.78) remarks that a lot of the tests he considers are Hodges-Lehmann optimal 
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in contrast to the Bahadur case. Raghavachari (1983) presents an example where the ranks are 
asymptotically fully informative in Hodges-Lehmann efficiency sense but not in the Bahadur efficiency 

sense. Further a number of other examples can be found in Baringhaus (1987) and Kourouklis (1988). 
It is the purpose of this note to show that the optimality is due to shrinking of the acceptance regions 

of the tests to the null set in a coarse way. This basic convergence is enough to ensure Hodges-Lehmann 
optimality. The same argument is used to show that in regular exponential families many tests including 
the likelihood ratio test are optimal in the sense of Hodges-Lehmann efficiency. In fact it is enough that 
the limit of the acceptance regions is not closer to the alternative than the null set in terms of 
Kullback-Leibler information numbers. On the other hand if a substantial part of the acceptance region 
comes closer to the alternative than the null set, then Hodges-Lehmann optimality fails. 

2. Basic result 

Let 9 be a Hausdorff space and let 9 be the a-field of Bore1 sets in 9’. Let A be the set of all 
probability measures on 5%‘. For P, Q E A the K&back-Leibler information number K(Q, P) is defined 

by 

K(Q> f’) = 
if Q << P, 

-II_ ---.__ 
\a otnerwise. 

(1) 

For any subset 0 of A and any P E A define 

K(R, P) = inf(K(Q, P): Q ~0) (2) 

with, by convention, K(R, P) = ~0 if fi is empty. 

Let Xi, X,,... be a sequence of i.i.d. r.v.‘s taking values in 9 according to P,” A. For each positive 

integer n the empirical probability measure based on Xi,. . . , X,, is denoted by P,. Consider the testing 

problem H 0: PEA, against the alternative Hi: P =A,, where A,, A, CA, A, n A, = 6. Let 4, = 

4JX1,. . . > x,) denote a (randomized) test function and let 

s=~~P{&~,:PEA,}, P,(P)=E,(I-4,). (3) 

We consider tests of asymptotic level-a, i.e. 

lim (Y, = (Y, (4) 
n--tm 

where 0 < 1y < 1 is kept fixed. If for P E A, there exists d = d(P) E (0, m) such that 

lim n-l log p,(P) = -+d(P), 
n-m (5) 

lim inf IZ - ’ log P,(P) >/ -X(A,, P). 
n+m 

(6) 

In view of (6) a sequence of tests (4,} is called Hodges-Lehmann asymptotically optimal at the alternative 
P if its Hodges-Lehmann index equals 2K(A,, PI. 
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Consider now tests $, based on test statistics T(pn,), rejecting H, for large values of the test statistics, 
i.e. 

I 
1 if r(rjn) > c,, 

&(X17 . . ..X.) = y, if T(Pn) =c,, (7) 

0 if r(Pn) cc,, 

where T is an extended real-valued function on A. Denoting the topology of convergence on all Bore1 
sets by 7, it is assumed that T is r-continuous at each Q E A with K(Q, P> < ~0 (cf. Groeneboom et al. 
(19791, p.554). Inspection of the proof of Theorem 3.2 in Groeneboom et al. (1979) yields for each r E R 
and sequence of real numbers {u,) with lim u =o, n-tm n 

lim sup n -’ log P[T(p,) dr+u,] 
n-m 

= lim sup n -’ log P[-T(pn) > -r-u,] =G -K(flr, P), 

where 0, = (Q E A: T(Q) =G r}. 
In many cases n ‘/‘T(P^ > has a limiting distribution under H, and therefore the critical value c, 

converges to 0, implying b;(S), 

lim sup n-l log P,(P) < lim sup n-l log P[T(p,) <c,] < -~(fln,, ~1. 
??+a n--tm 

(9) 

Moreover, often (Q E A: T(Q) < 0) = A, and hence K(fln,, P) > K(A,, P). Together with (6) and (9) 
this yields that the Hodges-Lehmann index equals K(A,, P) and hence the test is Hodges-Lehmann 
optimal. 

Thus we have proven the following theorem. 

Theorem 2.1. Let 4, be given by (7) and satisfy (4). Let T be r-continuous at each Q E A with 
K(Q, P> < m. Assume that lim c = 0 and n+m n 

{QEA: ~(e)d)=A,, (10) 

then ($,} is Hodges-Lehmann asymptotically optimal at the alternative P. 0 

Application of this theorem leads to optimality of (weighted) Kolmogorov-Smirnov statistics, (gener- 
alized) Cramer-von Mises statistics and the (generalized) Watson statistic in testing goodness-of-fit, cf. 
Nikitin (1987). 

Remark 2.1. Generalization of Theorem 2.1 to the k-sample case 

(1987). 

Consistency of a test sequence {4,) of the form (7) at Q typically 

can be done similarly as in Nikitin 

corresponds to T(Q) > 0. Condition 
(10) may fail, because {4,) is not consistent at certain alternatives. Sometimes it seems to be more 
natural to add these alternatives to the null hypothesis, cf. Remark 2.2. For tests which are consistent at 
each alternative, we thus usually have T(Q) > 0 for all Q E A,. Sometimes nevertheless (10) does not 
hold, due to the fact that A, f A -A,. We present two typical examples. 
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Example 2.1. Let P= [0, l] and A, = {Q,] with Q, the uniform distribution on [O, 11. Let A,, . . . , A, be 
a partition of [0, 11. The chi-square statistic is of the form (7) with 

k {Q(Ai) - Q,<'i)j2 
T(Q) = c 

i=l Q,(Ai> ’ 

It is obvious that the chi-square test is not optimal at P for testing Q = Q, against Q + QO for P f Q, 

with P(A,) = Qo(Ai). However, taking 

A,={QEA: Q(A,)=Qo(Ai),i=l ,..., k}, 

Theorem 2.1 ensures the optimality of the chi-square test. Also in the ‘multinomial setting’, i.e. replacing 
Y=[O, llby~={l,..., k), the chi-square test is optimal. 

Remark 2.2. If the practical situation at hand justifies it, one would like to take {Q E A: T(Q) < 01 as the 

null hypothesis to test when using (7) with a critical value tending to 0. For instance, in Example 2.1 one 
could think of the wider null hypothesis {Q E A: Q(A,> = Qo(Ai), i = 1,. . . , k} instead of {QJ. 

Example 2.2. Let P= [0, l] and A, = IQ,} with Q, the uniform distribution on [O, 11. Let A, = 
(Q E A: T(Q) > 0}, where T(Q) = sup,{Q([O, xl) -x}, the one-sided Kolmogorov-Smirnov statistic. Tak- 
ing 4, of the form (7) with T(Q) as above, it is well known that the one-sided Kolmogorov-Smirnov 
statistic is not for all P E A, optimal although the test is consistent at any P E A,, cf. Nikitin (1987, p.84). 
This is due to the fact that there exist PEA, and Q E A such that T(Q) = 0 and K(Q, P> <HA,, PI. 

Remark 2.3. It is easily seen that (10) may be replaced by the weaker condition 0, CA,, or even 

K(fl,, P) >K(&, P). 

However, in applications we usually meet (10) and therefore the theorem is presented in this form. 

Remark 2.4. Condition (10) is the technical expression for what is called in the introduction “shrinking of 
the acceptance region to the null set in a coarse way”. The word coarse is used, because not the limiting 
distribution of something like &T(pJ is involved, but only basic convergence. 

Remark 2.5. Although the one-sided Kolmogorov-Smirnov test seems to be more appropriate for testing 
A, against A, in Example 2.2, the two-sided Kolmogorov-Smirnov test is optimal at any P E A,, and in 
general the one-sided Kolmogorov-Smirnov test is not. This phenomenon is similar to Brown’s (1971) 
heuristic principle 1 (forget ‘extra’ information about the alternative hypothesis) and may be understood 
by realizing that enlarging the alternative hypothesis to A -A, usually implies T(Q) > 0 at each 
Q E A -A, for the new test (consistency), while the change in the acceptance region in the neighbour- 
hood of the null set is of a local character, which is not picked up by the criterion of Hodges-Lehmann 
efficiency. 

We close this section with another application of Theorem 2.1, showing the optimality of a test, which 
is close to Wilcoxon’s one-sample test. 

Example 2.3. Let P= R and A, = IQ E A: T(Q) G 01, where 

T(Q) = j/{h(x, Y) -i} de(x) de(y) 
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with 

h(x, Y> = 
i 

1 if x+y>O, 

0 if x+y<O. 

Consider the test of the form (7) with this T. Note that this test is closely related to Wilcoxon’s 
one-sample test, which itself is not of the form (71, since T in (7) may not depend on IE, cf. e.g. Serfling 
(1980, p.174). Since T is continuous at each Q with respect to the topology induced by the supremum 
metric, T is also T-continuous at each Q (cf. Groeneboom et al. (1979), ~555). Further it is easily seen 
that lim n +mc, = 0 and therefore, by direct application of Theorem 2.1, the Hodges-Lehmann asymptoti- 
cal optimality of the test at each alternative P is obtained. 

3. Exponential families 

Let X,, X,,.. . , X,, be i.i.d. r.v.‘s each distributed according to an exponential family 

dP,(x) =exp{e’x-$(8)} dp(x), BEOC[W~, xe(Wk, 

where I_L is a a-finite non-degenerate measure, 0 denotes the natural parameter 
{0 E Rk: / exp(8’x) dpL(x) < ~1, and 

4(e) = log / exp(e’x) dp( x), e E 0. 

For 0 E O* = {0 E 0: E, 11 X, II <a} define 

h(e) = E,Xl. 

(11) 
space, i.e. 0 = 

(12) 

(13) 

The mapping A is l-l on O* (cf. Lemma 2.2 in Berk (1972)) and A(6) = grad $(fI) if 8 E int 0. We write 
K(6, f3) for KCP,, P,>, KC@,, 0) = inf{K@, 0): 19 E @,I and similarly K(6, @a>, where 0, c 0. Further 
a sort of Kullback-Leibler ‘distance’ from the boundary of 0 to 0 E int 0 is defined by 

K(e) =SUP{U l :{a~O: zc(6,e) G a} is a compact subset of int 0). (14) 

Note that if 0 is open and {x E Rk: sup(0’x - @c/3>: f3 E 0) < ~0) is open, then K(0) = m, cf. Kourouklis 
(1984). Now we have the following result. 

Theorem 3.1. Let (4,) be a sequence of tests bused on x,, for testing Ha: 0 E 0, against H,: 0 E 0, c 
0 - O,, satisfying (4). Let 8 E (int 0) n 0,. Suppose that KC@,, e) G K(e). 

Assume that for each 0 < E <KC@,, 0) there exists N, such that for all n 2 N,, 

{x: $,(x) = l}Ih[{?%& K(6 e) <K(O,, e> -s}]. (15) 

Then (4,) is Hodges-Lehmann optimal at 0. 

Proof. Without loss of generality assume KC@,, 0) > 0. Let 0 < E <KC@,,, f3). By Lemma 3.2 in Kallen- 
berg (1981) we obtain 

P,(Pe) =‘%(I -A) ~Pt+Al(xn) < 11 

<P,[~,$A(IY~@: K(6, 0) <K(O,, 0) -e}] 

= exp{ -n[ K(O,, e) -E] + O(log n)} (16) 
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as n + ~0 and hence 

lim sup n-l log p,(Ps) < -K(O,, 0) +E. 
n-m 

(17) 

Since 0 < E < K(O,, 0) was arbitrarily chosen, the Hodges-Lehmann optimality of (4,) at 8 follows by 

(6) and (17). 0 

Condition (15) holds if in A-l-space the acceptance region converges to 0, and this is satisfied for 
many tests, e.g. usually for the likelihood ratio test if 0, = 0 - 0,. Define 

sup(e’x-4(B)) - sup {S’x-$(6)} 
L(x)= 0EO 

i 

?YE&, 
if 4”~; (6’x-4(G)} <a, 

-0 (IS) 
03 otherwise. 

With this notation the size-a likelihood ratio test of Ha: 8 E 0, against Hi: 0 E 0, = 0 - 0, based on n 
observations is given by 

if L(X,) > d,, 

4&G) = ia if L(X,) =d,, (19) 

0 if L(X,) <d,, 

where 

and 

d,=inf{d: sup P4[L(xn)>d] <a) 
BE@,, 

6, = sup{8 E [O, 11: sup E&,(X,) <a). 
ii=@, 

Corollary 3.2. Let (+,} be the likelihood ratio test for testing H,: 0 E 0, against Hi: 0 E 0, = 0 - @a, 
satisfying (4). Suppose that the critical value d, (cf. (19)) satisfies lim,,, d, = 0. Then the likelihood ratio 
test is Hodges-Lehmann optimal at each 0 E (int 0) n 0, with KC@,, 0) G K(B). 

Proof If X E A(@*) then * n 

L 

1 if K(A-‘(Z,), 0,) >d,, 

c#J,(~,) = 6, if K(A-‘(x,), 00) =d,, 

0 if K(h-I(?,), @a) Cd,. 

If K(O,, 0) = 0, Hodges-Lehmann optimality trivially holds. Therefore assume Kc@,, 0) > 0. Let 
0 < E <Kc@,, 0). The sets 

c= {a~@: K(6, e) <K(O,, e) -E} and D= (6~0: K(6, 0) =K(O,, t9) - $E} 

are compact subsets of int 0. For any 6 E C and B0 E 0, there exists t E (0, 1) such that t6 + (1 - t)O, 
E D. Moreover, 

K(6,e,)~K(6,t6+(1--t)B,)zinf{K(n,D):~~C}>O. 

Because 6 E C and B0 E 0, are arbitrary chosen, we have inf{K(6, 0,): 6 E C} > 0. Since lim, ,,d, = 0 
condition (15) is fulfilled and Theorem 3.1 yields the result. 0 
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Remark 3.1. The condition that the critical value of the likelihood ratio test tends to zero is usually 
fulfilled. For instance the following weak kind of similarity condition, which essentially states that the 
size (or a fixed part of it) is attained at parameter points bounded away from the boundary of the 
parameter space, is sufficient: there exists an E > 0 and a compact set Cc int 0 such that 

su~~~~,,,,cE&, 2 &a,,. Note that the case of a simple hypothesis is covered by it. 

Remark 3.2. If 0, s 0 - 0, optimality of the likelihood ratio test may fail. An example is given in Brown 

et al. (1984). However, if 0, is replaced by 0 - 0, the likelihood ratio test is optimal in their example. 

Remark 3.3. If the acceptance region shrinks to the null set in the sense that for any E > 0 and 

sufficiently large II, 

{_x: 4,(x) <l}c{x: llx-h(6)II GE, 6EOO}, 

then (15) holds. 

Remark 3.4. If a substantial part of the acceptance region comes closer to the alternative than the null 
set, then Hodges-Lehmann optimality fails. More precisely, if for some E > 0 and all n 2 NE, 

{x: 4,(x) = 0) x/t 

for some open subset A of A[{6 E 0: K(6, f3) <K(O,, e))], where K(O,, 13) <K(B), then 

lim inf n-’ log p,( P,) = lim inf K1 log &( 1 - 4,) 
n-m n+m 

2 lim inf IZ- l log P&T, 64) 2 -z+-‘(A), 0) > -K(O,, e) 
n-co 

and hence (4,) is not OPtimal. 

We conclude with some examples. 

Example 3.1 (comparison of Gauss test and t-test). Let Xi,. . . , X,, be i.i.d. r.v.‘s with a normal 
N(B, l)-distribution. Consider the testing problem H,: 8 = 0 against Hi: 0 # 0. Let (&“} be the Gauss 
test and (4’,*‘) the t-test. The Gauss test may be considered as the likelihood ratio test for the present 
testing problem, thus being optimal with Hodges-Lehmann index at 0 equal to d,(8) = i#. The t-test 
may also be considered as a likelihood ratio test, but for the testing problem H,: 0 = 0 against Hi: 0 # 0 
when the observations are normally N(B, a2)-distributed. Again we may apply Corollary 3.2, leading to 
the Hodges-Lehmann index 

d2( 0) = inf E, ma log( dP,,,z/dP, i), 
d>O ’ 

where P O,g~ denotes the normal N(B, a2)-distribution. It is easily seen that d,(8) = @*, implying 
optimality of the t-test also in the present testing problem. So, contrary to comparison in the Bahadur 
case (cf. Bahadur (1971), p.30), there is no difference between the Gauss test and the t-test when using 
Hodges-Lehmann efficiency. The same phenomenon holds in the multivariate case, cf. Kourouklis 
(1988), p.92. 

Example 3.2 (chi-square versus likelihood ratio). Let X= (Xi,. . . , X,) have a multinomial distribution 
with parameters n, p,, . . . , pk (p, > 0, i = 1,. . . , k). Consider the testing problem Ho: p =p,, against 
p ZP,, where P = (pl,. . . , ~~1 and p. = (pal,. . . , pOk), the latter a given fixed point. The optimality of 
the likelihood ratio test follows e.g. from Corollary 3.2, while the optimality of the chi-square test was 
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already established in Example 2.1. So again, both test are different in the Bahadur case (cf. Bahadur 
(1971), p.31) but are both optimal in the Hodges-Lehmann sense. In fact it is easily seen that any test of 
the form 

( 

1 if f(n -lx, ~0) > 4,, 

4,(x) = 6, if f(n-‘x, po) =d,, (20) 

0 if f(n-‘x, po) cd,,, 

with f(p, po> continuous in pO, f(po, po> = 0 < f(p, po> for all P ZP,, is Hodges-Lehmann optimal for 
testing Ha: p =p,, against H,: p Zp,. Note that the whole Cressie-Read class of tests (cf. Cressie and 
Read (1984)) is of the form (20). 

The preceding example may be generalised in an obvious way to general exponential families and tests 
based on ‘distances’, showing that indeed many tests are optimal. 
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