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We consider the single-machine problem of scheduling # jobs to minimize the sum of the deviations of the job completion
times from a given small common due date. For this NP-hard problem, we develop a branch-and-bound algorithm based
on Lagrangian lower and upper bounds that are found in O(n log n) time. We identify conditions under which the
bounds concur; these conditions can be expected to be satisfied by many instances with # not too smail. In our
experiments with processing times drawn from a uniform distribution, the bounds concur for n = 40. For the case where
the bounds do not concur, we present a refined lower bound that is obtained by solving a subset-sum problem of small
dimension to optimality. We further develop a 4/3-approximation algorithm based upon the Lagrangian upper bound.

he just-in-time concept for manufacturing has
induced a new type of machine scheduling prob-
lem in which both early and tardy completions of jobs
are penalized. We consider the following single-
machine scheduling problem that is associated with
this concept.
A set of n independent jobs has to be scheduled on
a single machine, which can handle no more than one
job at a time. The machine is assumed to be contin-
uously available from time zero onwards only. Job J;
requires processing during a given uninterrupted time
p; and should ideally be completed at a given due date
d. Without loss of generality, we assume that the
processing times and the due dates are integral. We
assume furthermore that the jobs are indexed in order
of nonincreasing processing times. A schedule ¢
defines for each job J; a completion time C;, such that
the jobs do not overlap in their execution. The
earliness and tardiness of J; are defined as E; =
max{d; — C;, 0} and T; = max{C,; — d;, 0}, respectively.
The just-in-time philosophy is reflected in the objec-
tive function f(e) = Y= (o,E; + B;T)), where the
deviation of C; from d} is penalized by either «; or 8,
depending on whether J; is early or tardy for j = 1,
., n. For a review of problems with this type of
objective function, we refer to the survey by Baker
and Scudder (1990).

An important subclass contains problems with a
due date 4 that is common to all jobs. The com-
mon due date is either specified as part of the problem
instance, or is a decision variable that has to be
optimized simultaneously with the job sequence. As
the first job may start later than time zero, the optimal
schedule is identical for both problems unless the
common due date d is restrictively small. The first
variant is therefore referred to as the restricted prob-
lem and the second variant as the unrestricted
problem.

Bagchi, Chang and Sullivan (1987) propose a
branch-and-bound approach for the restricted variant
with all earliness penalties equal to « and all tardiness
penalties equal to 8. Szwarc (1989) presents a branch-
and-bound approach for the case that a« = 8. These
branch-and-bound algorithms are able to solve
instances up to 25 jobs. Sundararaghavan and Ahmed
(1984) present an approximation algorithm for the
case o = (3 that shows a remarkably good performance
from an empirical point of view. Lee and Liman
(1992) present an approximation algorithm for the
case a = 3 with performance guarantee 3/2; this means
that for any instance their approximation algorithm
produces a solution with a value no more than 3/2
times the optimal solution value. Hall, Kubiak and
Sethi (1991) and Hoogeveen and van de Velde (1991)
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establish the NP-hardness of the problem, even if « =
B, thereby justifying the enumerative and approxi-
mative approaches. Hall, Kubiak and Sethi propose
furthermore a pseudopolynomial time algorithm run-
ning in O(n Y., p,) time and space for general « and
8, and provide computational results for instances up
to 1,000 jobs for the case a = §. Their experiments
show that the algorithm is mainly limited by space,
not time.

We present a branch-and-bound algorithm for the
case @ = f. Using Lagrangian relaxation, we find new
lower and upper bounds in O(n log n) time. All our
computational experiments with processing times
drawn from different distributions over the integers
1, ..., 100 exhibit that for n = 50 the bounds always
concur.

For the case that these bounds do not concur, we
present a refinement of the lower bound, which is
obtained by solving a subset-sum problem to opti-
mality by a pseudopolynomial algorithm. This can be
done very fast, because the subset-sum problem in our
application is of a considerably smaller dimension
than the common due date problem. Computational
experiments show that, if any, only a small number
of nodes are examined in the branch-and-bound
algorithm.

In addition, we develop a heuristic that is based
upon the Lagrangian upper bound with performance
guarantee 4/3. This means that for any instance the
heuristic produces a solution with a value no more
than 4/3 times the optimal value.

This paper is organized as follows. In Section 1, we
review Emmons’s matching algorithm (Emmons
1987) for the unrestricted variant of the common due
date problem with general o and G; it is needed in
Section 2, where we develop a lower bound based
upon Lagrangian relaxation for the restricted variant
with & = §. In Section 3, we use the insight gained in
Section 2 to develop a heuristic for the restricted
variant. In Section 4, we show that this heuristic has
a performance guarantee 4/3. In Section 5, we describe
the branch-and-bound algorithm, and in Section 6,
we present some computational results. Finally, we
briefly indicate to what extent the analysis apphies to
the case « # 3.

1. EMMONS’S MATCHING ALGORITHM FOR
THE UNRESTRICTED PROBLEM

Kanet (1981) presents an O(n log n) algorithm for
the unrestricted variant with o = 8. Bagchi, Chang
and Sullivan (1987) and Emmons (1987) propose
O(n log n) algorithms for the case that o # 8. We
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briefly review the concepts of Emmons’s matching
algorithm, because they provide the insight needed for
the subsequent sections.

Theorem 1. (Kanet) No optimal schedule has idle time
between the execution of the jobs.

Theorem 2. (Kanet) There is an optimal schedule for
the unrestricted variant in which the due date d coin-
cides with the start time or completion time of the job
with the smallest processing time.

Emmons’s matching algorithm is based upon the con-
cept of positional weights. The scheduling problem
then reduces to an assignment problem where jobs
have to be assigned to positions. The cost of assigning
J; to the kth early position is equal to a(k ~ 1)p;;
the cost of assigning J; to the kth tardy position is
equal to Bkp. The assignment problem is solved in
O(n log n) time by matching the job that has the jth
largest processing time with the position that has the
Jth smallest weight for j =1, ..., n.

Emmons’s matching algorithm shows that in any
optimal schedule the jobs completed before or at d
are scheduled in order of nonincreasing processing
times and the jobs started at or after d are in order of
nondecreasing processing times. Due to this structure,
optimal schedules are said to be V-shaped.

Optimal schedules for the restricted variant have
the same structure, albeit there may be one job that is
scheduled around d. For this particular job, it holds
that the early jobs have equal or larger processing
times, or the tardy jobs have equal or larger processing
times.

2. A NEW LOWER BOUND FOR THE
RESTRICTED VARIANT

We look upon this NP-hard problem as an “easy”
problem complicated by the “nasty” constraint that
the machine is only available from time zero onwards.
If this constraint were not present, then the problem
could easily be solved through Emmons’s algorithm.
This is exactly the approach Szwarc follows in deter-
mining a lower bound. The structure of the problem,
however, suggests that the technique of Lagrangian
relaxation might be more successful. We remove the
nasty constraint and put it into the objective function,
weighted by a nonnegative Lagrangian multiplier. The
resulting problem is easy to solve. It will be referred
to as the Lagrangian problem; its solution provides a
lower bound for the original problem.

The nasty constraint can be formulated as W < d,
where W denotes the total amount of work that is
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processed up to time 4. If we introduce a Lagrangian
multiplier A = 0 and bring this constraint weighted by
A into the objective function, then we get the following
Lagrangian problem, referred to as problem L,: Find
the value L()), which is the minimum of

2 (E+T)+ NW-d),

=1

for a given A = 0. Obviously, L(A) is a lower
bound for the original problem. There are two ques-
tions that immediately arise: Given a value of A, can
L()\) be determined in polynomial time? If so, can the
value A* that maximizes the lower bound L()\) be
found in polynomial time? The latter problem is
referred to as the Lagrangian dual problem. The fol-
lowing two theorems provide affirmative answers to
both questions.

Theorem 3. For any given \, the Lagrangian problem
is solved by applying Emmons’s matching algorithm
with the weights of the early positions increased by .

Proof. Straightforward arguments show that there
exists an optimal schedule for the Lagrangian problem
in which some job is completed exactly on time d.
Hence, there is an optimal schedule with W = 3 ¢,
p;, where ¢ denotes the set of jobs that are scheduled
in the early and just-in-time positions. The Lagrangian
objective function can then alternatively be written as

{}":(Eﬂ' T+ X ij}"\d-

=1 Jj€e

Since the last term is a constant for a given A\, we need
to minimize only the expression inside the braces.
This is achieved by applying Emmons’s matching
algorithm to the case where the weight of the kth early
position is equalto k — 1 + \.

Theorem 4. The optimal value \*, that is, the value
that maximizes the Lagrangian lower bound, is equal
to the index N for which

L(n—-A)/2) L(n—A—1)/2]
2 D2 = d= 2 Dr+i+2),
j=0 =0

where Lx] denotes the largest integer smaller than or
equal to x. If no such index exists, then \* = 0.

Proof. Consider an arbitrary value A. If A is not inte-
gral, then all optimal schedules for (L)) have equal
W. If X is integral, then there are multiple optimal
schedules with different W; these are found by break-
ing ties differently in Emmons’s algorithm. Define for
each integer A (A =0, . . ., n) the schedule ¢7** as the

optimal schedule for the Lagrangian problem (L))
with W maximal for A = 0, ..., n. We define Wy
and WY as the amount of work processed before
time d in ¢7" and o, respectively. Straightforward
calculations show that ¢®" remains optimal if the
Lagrangian multiplier is increased by ¢ with 0 < ¢ <
1; hence, we have that " is identical to ¢7%} and
Wwin = Jmex This implies that 1(A) is a piecewise-
linear and concave function of \. The breakpoints
correspond to the integral values A = 1, ..., n, and
the gradient of the function between the integral
breakpoints A and A + 1 is equal to W&" — dfor A =
0, ..., n — 1. The Lagrangian dual problem is there-
fore solved by putting A* equal to the index A for
which W& > ¢ = WP, Due to the indexing of the
jobs, the theorem follows.

Let o* be an optimal schedule for the Lagrangian
dual problem. If A* = 0, then o* = o is feasible for
the original problem, and hence is optimal. Note that
this also impliesthat d =z p,+ p3+ ... + p,ifnis
odd,and d=p, + ps + ... + pny if n is even. This
agrees with the result by Bagchi, Chang and Sullivan
that the schedules (J), J5, ..., Ju Jo-1, ..., J2) and
(i, I3y ..y Juety Iny ..., J2) are optimal under the
respective conditions.

In the remainder, we assume that A* = 1. Depending
on whether n — A* is odd or even, ¢* has the following
structure. First, suppose that n — A* is odd. Then the
jobs Ji, ..., Jw_, occupy the last A* — | positions in
o*, the pair {J,», Jy»41} occupies the first early position
and the M\*th tardy position, the pair {Jyez, Jiess)
occupies the second early position and the (A* + 1)th
tardy position, and so on. Finally, the pair {J,-, J.|
occupies the positions around the due date. Second,
if n — A* is even, then ¢* has the same structure,
except that J, is positioned between J,, and J,,, and
is started somewhere in the interval [d — p,, d].

Proposition 1. If there exists a schedule o* that is
optimal for the Lagrangian dual problem in which the
first job is started at time zero, then the Lagrangian
lower bound L()\*) is tight and ¢* is an optimal sched-
ule for the original problem.

Proof. In this case we have L(\*) = ¥(E; + T)) +
MW = d) = L(E; + T) = fle*).

If no such schedule o* exists, then there is a gap
between the optimal value for the original problem
and the Lagrangian lower bound. We get a better
lower bound, however, by solving the modified
Lagrangian problem, which is to find a schedule that



minimizes
Y IC—dl + N (W-d)+ |W-d|.
J=1 .

Clearly, the modified Lagrangian problem vyields a
lower bound for the original problem for any A* = 1.

Theorem 5. The modified Lagrangian problem is
solved by a schedule from among the optimal schedules
for the Lagrangian dual problem that has minimal
|W—d|.

Proof. Suppose that = is a schedule that has minimal
Lagrangian cost from among the optimal schedules
for the modified Lagrangian problem; suppose further
that = is not optimal for the Lagrangian dual problem.
Then either the jobs are not assigned to the optimal
set of positions, or there are at least two jobs J; and J;
with p; > p; that are not optimally assigned. As to the
first case, assigning J; to a position with smaller weight
decreases the Lagrangian cost by at least p;, while
| W — d| is increased by at most p;. As to the second
case, the interchange of J; and J; decreases the
Lagrangian cost by at least p; — p;, while | W — d| is
increased by at most p; — p;. In either case, « is easily
transformed into a schedule # that is also optimal for
the modified Lagrangian problem but that has a
smaller Lagrangian cost than «. This contradicts the
assumption that = has a minimal Lagrangian cost.
Hence, = must be also optimal for the Lagrangian
dual problem.

The problem of minimizing | W~ d| is transformed
into a considerably smaller instance of subset-sum in
the following way. Renumber the jobs such that
Jiaxe becomes Jofor k=1,...,n = X+ 1;n
becomes equal to n — A* + 1; the jobs previously
denoted by Ji, ..., J«_, are now simply referred to
as the “remaining” jobs. Hence, the jobs- {1, Jox}
form a pair in the Lagrangian dual for k=1, ...,/
with / = 1, ..., Ln/2]l. Define g; as the difference in
processing time between the jobs of the jth pair (j =
1, ..., ]), and define D = d — Wp3", Remove the
values g; that are zero; suppose that m of them remain.
Define o as the multiset containing the m remaining
a; values; let ag; denote the jth largest element in o/

If n is even, then the problem of minimizing
| W — d| is equivalent to determining a subset 4 C o4
whose sum is as close to D as possible. If n is odd,
then an optimal schedule for the Lagrangian dual
problem is optimal for the original problem in the
case of W € [d — p», d]. Finding such a schedule is
equivalent to determining a subset A C o7 whose sum
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falls in the interval [D — p,, D]. If no such subset
exists, then the goal is to find a subset 4 whose sum
is as close as possible to either D — p, or D. This
problem, known as the optimization version of
subset-sum, is NP-hard in the ordinary sense (Garey
and Johnson 1979).

The instance of subset-sum can then be solved to
optimality by dynamic programming requiring
O(mD) time and space. Note that D < Ya; € Pmax;
hence, the subset-sum problem is of a smaller dimen-
sion than the underlying common due date problem.

3. A NEW UPPER BOUND FOR THE
RESTRICTED VARIANT

Consider an optimal schedule for the Lagrangian dual
problem. If W < {, then it is also a feasible schedule
for the common due date problem; if W > d, then we
defer the schedule to make it feasible. The analysis in
the previous section suggests that we should look for
an optimal schedule for the Lagrangian dual problem
with | W — d| minimal. Recall that W = d is a
sufficient condition for also having an optimal sched-
ule for the common due date problem.

We develop an approximation algorithm for the
common due date problem based upon Johnson’s
approximation algorithm (Johnson 1974) for subset-
sum, which runs in O(m) time after sorting.

Johnson’s Algorithm
STEP 1. &/ =3, j« 1.

STEP 2. If ay;; < D, then & « 27U {a} and
DeD-— ag;)-

STEP3.j«j+ 1;if j € m, then go to Step 2.

Using an approximation algorithm for subset-sum
rather than an optimization algorithm does not affect
the worst-case behavior (see Section 4). As to the
empirical behavior, our computational results suggest
that the loss in accuracy, if any, is small.

Furthermore, we can identify a class of instances
for which Johnson’s Algorithm always finds a solution
value equal to the target sum D. This class comprises
the instances possessing the so-called divisibility prop-
erty; this class is important in our application, as many
instances can be expected to belong to it.

Definition. A multiset of values {a;, ..., a,} with
l=a,<a,<...<a,issaid to possess the divisibility
property if for every j (j = 1, ..., m) and for every
value D € {1, 2, ..., Yia} there exists a subset 4 C
{ai, ..., a;} whose sum is equal to D.
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Theorem 6. A multiset of values {a,, ..., a,} with
1l =a < a < ...< a, possesses the divisibility
property if and only if @y, € Yy a;+ L forj=1,. ..,
n—1.

Theorem 7. If an instance of subset-sum satisfies the
divisibility property, then Johnson’s Algorithm finds a
subset with a sum equal to D.

In our application, each g; is equal to the difference
in processing times between two successive jobs in the
shortest processing time order. If the number of jobs
with different processing times is not too small, then
the values g; tend to be small. Hence, for a randomly
generated instance the likelihood of possessing the
divisibility property increases with the number of jobs.

Johnson’s Algorithm always yields a subset with a
sum no more than D. This handicap is overcome by
also applying the algorithm to the target sum D =
¥, a;— D and taking the complement of the resulting
subset with respect to o7 We use the subscripts 1 and
2 to distinguish the approximation from below and
from above: 4, and D, denote the resulting subset and
the gap for the approximation from below, and 4,
and D, denote the resulting subset and the gap for the
approximation from above.

If both D, > 0 and D, > 0, then we apply the
following algorithm to derive feasible schedules for
the common due date problem from the subsets A,
and A 2.

Algorithm Transform

STEP 1. Consider A4,. Starting with o%", inter-
change the jobs that correspond to a; € A4, for j = 1,
..., m, thereby increasing W by g; per interchange.
Determine the schedule corresponding to A4, in a
similar fashion, starting from ¢%*. Let the resulting
schedules be ¢, and o,.

STEP 2. The schedule o, is started at time D;. Shift
the schedule to the left until the first job is started at
time 0, or until the number of jobs completed before
or at d exceeds the number of jobs completed after 4
by two. Rearrange the jobs to make the schedule
V-shaped again. The resulting schedule is denoted
by ..

STEP 3. The schedule o, is started at time —D:.
Defer the schedule such that the first job is started at
time zero, and rearrange the jobs to make the schedule
V-shaped again; this schedule is denoted by 3. If some
Ji is scheduled around d, then defer &3 until J; is
started exactly at d. Rearrange the jobs to make the
schedule V-shaped; let the resulting schedule be a,.

We now present our approximation algorithm for
the common due date problem; in the remainder, we
refer to it as the Even-Odd Heuristic.

Even-Odd Houristié

STEP 0. Given an instance of the common due
date problem, solve the Lagrangian dual problem, and
apply Johnson’s Algorithm to the corresponding
instance of subset-sum.

STEP I. If D, < D, then apply Algorithm
Transform; go to Step 5.

STEP 2. Let Q = {g;|a; = D,}. If Q # {a\}, then
apply Algorithm Transform, and go to Step 5.

STEP 3. If p, > d, then apply Algorithm Transform
to determine 5. Furthermore, solve the Lagrangian
dual problem under the condition that J, and all the
“remaining” jobs occupy the last positions; go to
Step S.

STEP 4. Solve the Lagrangian dual problem under
the condition that J, and the “remaining” jobs are
assigned to positions after d, and solve the Lagrangian
dual problem with J, assigned to a position before d.
Apply Johnson’s Algorithm and Algorithm Transform
to all these solutions.

STEP 5. Choose a schedule with minimal cost.

4. WORST-CASE BEHAVIOR

For any instance / of the common due date problem,
let EOH(I) denote the solution value determined by
the Even-Odd Heuristic, and let OPT(]) denote the
optimal solution value. We define p as

_ o EOHD)
» =P P

In this section, we prove that p < 4/3, that is, the
Even-Odd Heuristic has performance guarantee 4/3.

Suppose first that Johnson’s Algorithm does not
solve the corresponding instance of subset-sum to
optimality, that is, D, or D, is not minimal. This
means that we do not know the minimal value of
W — d, and therefore cannot use the strengthened
lower bound in our analysis.

Lemma 1. /f Johnson’s Algorithm does not solve the
resulting instance of subset-sum to optimality, then
p<8/7.

Proof. A straightforward analysis shows that, if
Johnson’s Algorithm leaves a gap G that is not mini-
mal, then at least three q; values greater than G are



involved; this means there are at least six jobs with
processing times at least equal to 3G, 2G, 2G, G, G,
and 0, respectively. Furthermore, due to the structure
of the solution of the Lagrangian problem, the A* — 1
remaining jobs must have processing times of at least
3G.

First, assume that D, < D,. Then we have for any
instance 7 that

EOH(I) < f(¢1) = L(\*) + A*D, < OPTU) + M*D..

Inspecting o, we see that L(A*) = D((5 + 3N*(\* +
1)/2). Hence, p < | + 2A*/(10 + 3A*¥(A* + 1)) <
8/7 forany \* = 1.

Second, assume that D, > D,. If D, is not minimal,
then we use the above analysis and find p < 8/7. If D,
is minimal, then D, is not. Consider an element a; &
A; and suppose that ¢; < D, + D,. This implies that
D< Y aw+a<D+ Dy

ked,
as a consequence, the sizes of the elements in o7/ —
A; — {a} add up to a value between D — D, and
D, contradicting the minimality of D;. Hence, g; =
D, + D,, and the above analysis can be applied to
establish p < 8/7.

So, if Johnson’s Algorithm does not give minimal
values of D, and D,, then we surely have p < 4/3.
From now on, we assume that D, and D, are minimal;
hence, we can now use the strengthened lower bound.

Lemma 2. If D, < D,, then p < 4/3.

Proof. Again, we have that EOH(I) < L(\*) +
M*D,. Furthermore, from Theorem 35 it follows that
OPT(I) 2 L(\*) + D,. Every element a; & 4, must
have a size g; = D, + D, = 2D,. Inspecting o, we
see that L(A\*) = M (A* — 1)D,; this gives p < | +
(A* — /(1 + N*(\* — 1)) < 4/3 forany A = 1.

Now suppose that D; > D,. It is easy to show p =
4/3 if there exists an element a, = D, with k = 3. If
no such element exists, then we consider the costs of
all schedules determined by Algorithm Transform. To
that end, we need an upper bound on A = f(a;) —

f(ffz)-

Proposition 2. Suppose that the first job in o, has a
Dprocessing time no more than d. Then A is no more
than the sum of the positional costs in &, of the last k
Jobs before d and the first k + 1 jobs after d, where
k is the number of jobs that have been transferred
from a position before d to a position after d.

Proof. Without loss of generality, we assume that » is
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even; if not, then we add a dummy job with zero
processing time. As a matter of convenience, renum-
ber the jobs temporarily such that J;, ..., J, are the
jobs that are transferred from positions before d to
positions after d (J; is completed at time ), and
Jous ooy Jirrs Jo are the first £ + 1 jobs after d
(Jo is started at time 4). Note that the jobs J; and
Jem (i =1, ..., k) form a pair in the Lagrangian
dual; hence, we must have that min{p, p..} =
max{ P, Preini} fori=1,... k= 1.

Suppose that J, occupies position A* + u in o,
with ¢ = 0. Twice the positional cost of the jobs
Jo, . -+, Ja In @ is then equal to

A+ Do+ .o+ (o + kD

+ N+ oo+ .+ (N +p+ k)

= (M + wpo
+((A* + wpo + (N* + p + Dprsr + 2py)
+ ...+ (A4 u+ k= Dpyey
+ (N + o + k)pa + 2kp)

2N+ ppo+ (AN + p+ 1P+ Pisr)
+ min{py, pri} + (\* + u + 3N p2 + Prs2)
+ min{ps, praa} + ...+ N+ u+2k-1)
* (P« + px) + min{py, pud.

The last expression is exactly equal to the positional
cost due to the jobs Jo, . . ., Jo in 5.

Lemma 3. Suppose that a, and a, are the only ele-
ments larger than D,. Then p < 4/3.

Proof. First, suppose that p, + p; < d. Partition the
jobs into two subsets: The first one is {J3, . . ., J,}, the
second one consists of J,, J>, and the remaining jobs.
As p, + py < d, it follows immediately from
Proposition 3 that for ¢, the sum of the positional
costs of the jobs in {Js, ..., J,} is at least equal to A.
The sum of the positional costs of the jobs in the other
subset is at least (1 + A*)D, = 2x*D,. Hence,
OPT(I) = 2X\*D, + A, implying that p < 4/3.
Second, suppose that p; + p; > d. As a, and a, are
the only two elements greater than D,, it follows

immediately that Dy, =d —pi—pa—ps—...ifa =
a,, and that D, = d — p, — ps — ps — ... otherwise;
D, =p, + ps + ps + ... — d. An easy interchange

argument, validated by the inequality D, > D5, proves
that J, J5, Jo, Ju1, . . ., 1S an optimal schedule for the
case that J; and J; are started before time d. Hence,
we are done unless J, or J; is started at or after time
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d in any optimal schedule. In this case, however, we
impose the additional constraint to the common due
date problem that J, or Js is started at or after time d.
Consider the modified Lagrangian problem with such
an additional constraint. Along the lines of the proof
of Theorem 5, we can show that this problem is solved
by an optimal schedule for the Lagrangian dual prob-
lem with J; or J; scheduled after d for which | W — d/|
is minimal; this is exactly the schedule ¢,. We have
therefore that OPT(I) = L(A\*) +D, = (\** + 2)D,.
As EOH(I) < L(A\*) + M*D,, we obtain p < 1 +
(W = 1)/(A** + 2)) < 4/3.

The analysis of the case that a, is the only element
greater than D, proceeds along the same lines.

Lemmad. Supposethat D, > D,, a, is the only element
greater than Dy, and p, > d. Then EOH(I) = OPT(I).

Proof. An easy interchange argument, validated by
the inequality D, > D,, proves that in any optimal
schedule J, is either started at time 0, or scheduled
immediately before the remaining jobs. The inequality
D, > D, also implies that Emmons’s matching algo-
rithm determines a feasible and hence optimal sched-
ule for the case that J, and the remaining jobs are
started at or after 4.

If p, =< d, then we solve both the Lagrangian dual
problem with the additional constraint that J, and
all remaining jobs are scheduled after d and the
Lagrangian dual problem with the additional con-
straint that J, is scheduled before d.

Lemma 5. Suppose that D, > D,, that a, is the only
element greater than D,, and p\ < d. Then we have
o <4/3.

Proof. First, suppose that there is an optimal schedule
in which J; and the remaining jobs are started at or
after d. Suppose that solving the Lagrangian dual
problem under the condition that J; and all remaining
jobs are assigned to positions after d gives X\*, D;, and
D,. If »* = 0, then we have found an optimal schedule.
If X* = 1, then the schedule that corresponds to D,
must begin with J,, J5, and Jg; if not, then W does not
sum up to 4 + D,. Hence, we have a, = p,. This gives
EOH(I) < L(X*) + X*D,, OPT(I) = L(\*), and
L3 = 3 + (\* + 1)Y(3* + 2)/2)D, from which
p < 4/3 follows.

Second, suppose there is an optimal schedule in
which J; or some remaining job is not started after d.
The optimal solution for the Lagrangian dual problem
with the additional constraint that J, or some remain-

ing job is not started after 4 is such that J, is started
before d and all the remaining jobs after 4; this is
easily proven by an interchange argument. Suppose
that solving this Lagrangian problem gives X*, D,, and
D,. Consider the schedule o that corresponds to D,.
Since A* = \* + 1, the first job after J; must be some
Ji with k = 4; hence, we have D, < p,. The case D, <
D, is easy to handle; assume therefore that D, > D,.
Along the lines of Lemma 3, it can then be proven
that p < 4/3.

Theorem 8. The Even-Odd Heuristic sas a perfor-
mance guarantee 4/3, and this bound can be approx-
imated arbitrarily closely.

Proof. The first part follows immediately from
Lemmas 1-5. The following example, based upon the
case that only a, > D,, shows that we can get arbitrarily
close to this bound. Let D be an arbitrary positive
integer. There are #n = 2D + 6 jobs {J,, ..., J,} with
processing times

p=p2=ps=D*+ 2D,
Ps = Ds = ps = D,
pi=1 fori=7,...,2D + 6,

and with common due date d = 2D? + 5D. The Even-
QOdd Heuristic gives the schedules Jy, Jy, Js, J5, . . .,
Jn, JG, J3, Jz with Jl started at time DZ, and Jx, -13, J5,
Jr, oo Js, Ju, J2 with J) started at time zero. Both
schedules have cost 4D + 18D. The optimal schedule
J], J3, J7, ey J,,, J6, J5, J4, Jz, has cost 3D2 + 19D,
however. Hence, we get arbitrarily close to 4/3 by
choosing D sufficiently large.

5. BRANCH AND BOUND

First, we solve the Lagrangian dual problem. If \* =
0, then ¢* = ¢f" is an optimal solution for the
common due date problem, and we are done. Other-
wise, we determine upper bounds as described in
Section 3; we also apply the heuristic presented by
Sundararaghavan and Ahmed. If the lower and the
best upper bound do not concur, then we solve the
subset-sum problem to optimality by dynamic pro-
gramming. If the bounds still do not concur, then we
apply branch and bound.

For the design of the search tree we make use of the
V-shapedness of optimal schedules. Assume that
the jobs have been re-indexed in oxder of nonincreas-
ing processing times. A node atlevel j(j=1, ..., n)
of the search tree corresponds to a partial schedule in
which the completion times of the jobs J,, .. ., J; are



fixed. Each node at level j has at most #» — j descen-
dants. In the kth descendant (k= 1,...,n—j), Jiis
started before 4 and the jobs Ji., . . ., Ji are to be
completed after d. Given the partial schedule for
Ji, ..., J, a partial schedule for J, . . ., J;, is easy to
compute.

The algorithm that we propose is of the depth-first
type. We employ an active node search: At each level
we choose one node to branch from. We consistently
choose the node, whose job has the smallest remaining
index. A simple but powerful rule to restrict the growth
of the search tree is the following. A node at level j
(j =1, ..., n) corresponding to some J, can be
discarded if another node at the same level corre-
sponding to some J, with p, = p; has already been
considered. This rule obviously avoids duplication of
schedules.

In the nodes of the tree, we only compute the
lower bound L(\*); we neither solve the modified
Lagrangian dual problem nor compute additional
upper bounds.
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6. COMPUTATIONAL RESULTS

We considered two types of instances, depending on
the distributions used to generate the processing times.
Computational experiments were performed with
d=1tY plfort=0.1,02,0.3, 0.4, respectively, and
with the number of jobs ranging from 10 to 1,000.
For each combination of n and ¢ we generated 100
instances. The algorithm was coded in the computer
language C; the experiments were conducted on a
Compaq-386 personal computer.

Table I shows some of the results for instances
with the processing times drawn from the discrete uni-
form distribution [1, 100]. The design of the table
reflects our three-phase approach. The third column,
#0O(n log n), shows the number of times (out of 100)
that the Even-Odd Heuristic finds a schedule with a
cost equal to the Lagrangian lower bound L()\*); this
is the number of times that the common due date prob-
lem was provably solved to optimality in O(x log n)
time. The fourth column, # DP, shows how many of
the remaining instances were provably solved to

Table 1
Computational Results
Maximum

# of # Even-Odd #SA #LB

n t # O(nlog n) # DP Nodes Optimal Optimal Tight
10 0.1 66 20 12 72 77 86
10 0.2 69 20 22 72 58 89
10 0.3 68 23 22 68 59 93
10 0.4 82 1 40 85 62 85
20 0.1 81 12 94 84 51 94
20 0.2 94 5 167 94 43 99
20 0.3 99 0 320 100 42 99
20 04 99 1 0 99 35 100
30 0.1 100 0 0 100 50 100
30 0.2 98 2 0 98 51 100
30 0.3 100 0 0 100 57 100
30 0.4 100 0 0 100 68 100
40 0.1 100 0 0 100 63 100
40 0.2 100 0 0 100 64 100
40 0.3 100 0 0 100 63 100
40 0.4 100 0 0 100 54 100
50 0.1 100 0 0 100 72 100
50 0.2 100 0 0 100 63 100
50 0.3 100 0 0 100 69 100
50 0.4 100 0 0 100 75 100
100 0.1 100 0 0 100 81 100
100 0.2 100 0 0 100 86 100
100 0.3 100 0 0 100 78 100
100 0.4 100 0 0 100 78 100
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optimality by dynamic programming applied to sub-
setsum. The fifth column, maximum # nodes, shows
the maximum number of nodes needed by the branch-
and-bound algorithm. The sixth column, # even-odd
optimal, shows the number of times that the Even-
Odd Heuristic found an optimal schedule. The
seventh column, # SA optimal, gives the same infor-
mation for the approximation algorithm presented by
Sundararaghavan and Ahmed. The last column, # LB
tight, shows the number of times that the lower bound
(strengthened or not) was equal to the optimal solution
value. All these instances, including those with 1,000
jobs, were solved in less than 1 second, if the jobs
were already sorted in order of nondecreasing pro-
cessing times.

Instances with a large number of different process-
ing times can be expected to possess the divisibility
property. In this sense, the success of the algorithm
for instances generated from a uniform distribution
may be due mainly to the divisibility property. We
therefore applied our algorithm to instances for which
the divisibility property was expected to play a less
prominent role. We generated these instances in the
following way. We partitioned the jobs into subsets,
whereafter all jobs in the same subset got the same
processing time, drawn from the uniform distribution
1, 100]. The results exhibited essentially the same
pattern as for the first type of instances, albeit the
number of jobs to reach a 100% score went up a little.

7. EXTENSIONS

The lower bound approach can be extended to the
restricted variant of each problem that is solvable by
Emmons’s matching algorithm. The most important
problem in this context is | | d; = d| Y (aE; + BT)).
Without loss of generality, we assume that « and 8
are integral and relatively prime. A similar analysis
shows that the optimal value \* is the value \* €
{1, ..., nB) for which W% = d > W%". Further-
more, Theorem 5 still holds. It is straightforward to
develop a heuristic for the common due date problem
with o # 8 by applying Johnson’s Algorithm and

Algorithm Transform; its worst-case performance,
however, is still an open question.
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