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Abstract. Motivated by recent traffic control models in ATM systems, we analyse three closely related
systems of fluid queues, each consisting of two consecutive reservoirs, in which the first reservoir is fed by
a two-state (on and off) Markov source. The first system is an ordinary two-node fluid tandem queue. Hence
the output of the first reservoir forms the input to the second one. The second system is dual to the first one,
in the sense that the second reservoir accumulates fluid when the first reservoir isempty, and releases fluid
otherwise. In these models both reservoirs have infinite capacities. The third model is similar to the second
one, however the second reservoir is now finite. Furthermore, a feedback mechanism is active, such that
the rates at which the first reservoir fills or depletes depend on the state (empty or nonempty) of the second
reservoir.

The models are analysed by means of Markov processes and regenerative processes in combination with
truncation, level crossing and other techniques. The extensive calculations were facilitated by the use of
computer algebra. This approach leads to closed-form solutions to the steady-state joint distribution of the
content of the two reservoirs in each of the models.
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1. Introduction

Fluid queues have been widely accepted as convenient and sound models for various
modern telecommunication and manufacturing systems. However, the analysis ofnet-
worksof fluid queues – which is the subject of this paper – has thus far obtained lit-
tle attention when compared to the vast amount of literature on networks of ordinary
queueing systems. This may be explained by the difficulty in finding exact expressions.
In particular, these models generally do not have product-form solutions. Proofs of this
unfortunate fact may be found in [18,19] for fluid networks with deterministic linear in-
ternal flows and external nondecreasing Lévy input. Nonetheless, for some networks of
this type, progress has been made in determining the steady-state behaviour (apart from
structural results as they appear in [18,19] and references mentioned therein). In [21]
ann-node tandem fluid queue with nondecreasing Lévy input into the first reservoir has
been analyzed, while in [17] a generalization is studied where (Lévy) input into other
nodes of the tandem is allowed as well. Both models were analyzed using a convenient
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martingale, leading to explicit expressions for (the Laplace-transform of) the stationary
joint distribution of the contents of two reservoirs.

However, not much work has been done for networks with external fluid input(s).
It seems that determining the steady-state behaviour is more difficult in this case. To our
knowledge, explicit solutions have thus far been found only for a Markov-modulated
two-buffer model with priorities which was considered in [10,27]. The latter reference
contains an explicit solution for the steady-state distribution, Laplace-transformed in
one variable. Finally we mention the techniques presented in [20] for fluid reservoirs in
a random environment, which can be fruitfully applied to particular parts of fluid net-
works, typically leading to marginal distributions, see [2] and the marginal distribution
results in the current paper.

In this paper we consider three closely related fluid systems, each consisting of two
fluid reservoirs regulated by a two-state (on and off) continuous time Markov process,
(Mt) say. In all models the first buffer is filled up (depleted) whenever(Mt) is in the on
state (off state), so that the differences between the systems are mainly in the different
behaviour of the second buffer.

In the first system the content of the second reservoir increases at times when the
first reservoir is nonempty, while it decreases otherwise (unless also the second reservoir
itself is empty). We will naturally refer to this fluid model as thetandem model. The
second model will be referred to as thedual model. It may be regarded as “dual” to the
tandem model, in the sense that the content of the second reservoir behaves opposite to
that in the tandem model. Specifically, it increases when the first reservoir is empty, and
decreases otherwise. Notice that both the tandem model and its dual fit into the context
of Markov-modulated fluid models: the second fluid reservoir is driven by a Markov
process,(Mt,Dt ), whereDt is the content of the first reservoir at timet . In the third
model, which we will call thefeedback model, this is no longer the case. The second
reservoir is regulated by the process(Mt ,Dt) in the same way as in the dual system.
However, an additional “feedback” mechanism, as introduced in [25], is in force such
that the rates at which the first reservoir fills up or is depleted depend on whether the
second reservoir is empty or not. A second difference between this model and the other
two is that the second reservoir has a finite sizeK. Thus, whenever this reservoir is
filling up (due to the first reservoir being empty, as in the dual model) it will do so at
most until the levelK is reached, after which it will remain at that level (until the first
reservoir starts filling up again).

For all three systems, we are interested in the joint steady-state distribution of the
content of the reservoirs and the state of the regulating Markov process. In each case, this
joint distribution can be viewed as the stationary distribution of some multi-dimensional
Markov process. For the derivation of the three distributions we use a variety of tech-
niques from Markov process theory, renewal theory, Laplace transformation, stochastic
integration and standard queueing theory. Due to the complicated nature of the genera-
tor equations of the multi-dimensional Markov processes mentioned above and the vast
amount of algebra involved, we found this approach to be convenient. However, various
(sub)results in the analysis can undoubtedly be obtained via other approaches as well,
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such as employing rate conservation principles, see [24], or applying martingale results,
see remark 2.5.

Our motivation for studying the various models developed historically as follows.
First, the tandem model was an obvious candidate for analysis since it is likely the most
simple non-trivial fluidsystemwith obvious applications. It was known that the analysis
of the tandem system was closely related to the analysis of the waiting time in an M/G/1
queue. Drawing an analogy with the M/G/1 versus the G/M/1 queue, it was expected
that the dual system would have a much more simple solution than the tandem model.
Parallel investigations in [3] (see also [13]) supported this view. In addition, these in-
vestigations suggested that the dual model could be used to model so-calledtwo-level
traffic shapersin ATM models, to control the burstiness of traffic that is presented to
an ATM communication network, see [3] and references mentioned there. However,
under typical circumstances the dual system would be unstable. For these traffic shap-
ing applications it is essential that the second reservoir be finite. The effort involved in
finding explicit solutions for finite buffer models led to a new set of techniques, which
eventually led to the feedback model. It was realized that the feedback mechanism could
be incorporated into the model without complicating the analysis too much. Moreover,
when the feedback mechanism is turned off, the model may be seen as a generalization
of both the tandem and dual model.

Since the present paper will remain on a theoretical level, we will not elaborate
on the relation between feedback models and traffic shaping. For more on this, we re-
fer to [3], where another feedback model was introduced, that may be considered as a
special case of the current one. Another valuable paper on more practical aspects is [5],
where the same model as our current feedback model is considered. The (discretization)
method employed there works fast and finds close approximations for various perfor-
mance measures.

The rest of the paper is organized as follows. In section 2 the tandem model is
analysed. First, we give some preliminary results for the behaviour of the first reser-
voir and we derive the stability conditions for the system. Then we present a stochastic
decomposition result for the second reservoir. In particular this leads to the limiting dis-
tribution of the content of this reservoirgiven that the first reservoir is empty. We then
use this information to derive the stationary joint distribution of the process(Mt ,Dt, Ct)

for the tandem model. The solution is found by solving a Laplace-transformed version
of the stationary forward equations, and is given in the form of several densities in terms
of integrals of modified Bessel functions of the first kind. We illustrate that, despite the
complexity of these expressions, it is not hard to employ them for numerical compu-
tations. For the dual model we follow a similar approach in section 3, leading to the
earlier mentioned simple solution. In section 4 the feedback model is analysed, using
the relation between the feedback model and the tandem model and various additional
arguments. Again we illustrate that numerical results can be obtained, although with
more computational effort. Finally, we sketch some special cases and generalizations of
the feedback model in section 5, most notably one that describes a fluid tandem queue
as in the first part of the paper, but with finite reservoirs.
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Notation and terminology

In the context of traffic shaping in ATM networks, the content of the first reservoir is
called data, while the second reservoir contains an entity called credit. In the feedback
model of section 4 we will therefore refer to the first reservoir as thedata bufferand to
the second one as thecredit buffer. This explains our convention, used throughout the
paper, to use the lettersd andc for quantities referring to the first and second buffer,
respectively. From now on we will use the wordbuffer rather than reservoir or (fluid)
queue.

2. Tandem model

Consider a fluid system consisting of two infinitely large buffers, with contentsDt and
Ct at timet respectively, and a continuous-time Markov process(Mt), which is charac-
terized by its state space{0,1} and itsQ-matrix,

Q =
(−a a

b −b
)
. (2.1)

The first buffer is driven by(Mt) in the following manner. When(Mt) is in state 1, the
content of the first buffer increases at constant rated+, otherwise it decreases at rated−,
provided that it is not empty. The second buffer is driven by the first one, in such a way
that its content increases at ratec+ when the first buffer is not empty, and else decreases
at ratec−, provided that the second buffer is not empty. We note thatc+, c−, d+ andd−
arepositivenumbers.

A schematic overview of the behaviour of the interaction between the processes
(Mt), (Dt) and(Ct) is given in figure 1, while a realization of the processes(Dt) and
(Ct) is given in figure 2. The parameter values used here and in other figures pertaining
to the tandem model area = 1, b = 2, d+ = 2, d− = 6, c+ = 3 andc− = 2.5.

For simplicity, we assume from now on thatM0 = 1 andD0 = C0 = 0. Observe
that the stochastic process(Mt ,Dt, Ct) is a Markov process with state space{0,1} × S,
where

S = {(x, y) ∈ R | x > 0, y > xc+/d+
}
.

Figure 1. Interaction between the subsystems of the tandem system.
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Figure 2. Realization of the buffer content processes for the tandem model.

The model may be used to describe a fluid version of the classical tandem model:
two fluid buffers with constant release rates are placed in series, the first buffer is fed by
an exponential on-off source while the second one is fed by the output of the first. In this
cased− = c+ + c−; notice however, that our model can handle slightly more general
scenarios.

As an aside we mention that this model is related to that of [26], see also [4] and
[14], where a fluid reservoir is driven by an M/M/1 queue. In fact, when we letb and
d+ grow to infinity such that their quotient remains constant and identify parameters
appropriately, the second buffer here corresponds to the buffer in [26], while the content
of the first buffer is the amount of work in the M/M/1 queue.

Our aim is to derive the joint stationary distribution of the Markov process
(Mt ,Dt, Ct ). In order to do this, we first give some preliminaries, namely some known
results on the stationary behaviour of the first buffer, a theorem regarding stability issues
and a stochastic decomposition result for the second buffer.

Behaviour of the first buffer

It is well known (see, e.g., [6]) that when

bd− − ad+ > 0, (2.2)

the stationary distribution of the process(Dt) exists and is given by

P[D 6 x] = 1− ρd e−αx, x > 0. (2.3)

Hereα is called thedecay rateand is given by

α = b

d+
− a

d−
, (2.4)
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while theutilization ρd is given by

ρd = a

a + b
d− + d+
d−

. (2.5)

Furthermore it is clear that the idle periods of the first buffer have an exponential
distribution with parametera. Also it is not difficult to derive, e.g., using example 3.1
in [1], that the Laplace transformLB of the generic busy periodB, say, is given by

LB(s) = 1+ s + d−λ1(s)

a
, s > 0, (2.6)

where

λ1(s) = η(s)−√ξ(s)
2d−d+

, (2.7)

with

η(s)= bd− − ad+ + s(d− − d+),
ξ(s)= (bd− − ad+)2+ 2s(d− + d+)(bd− + ad+)+ s2(d− + d+)2.

Notice thatλ1(s) 6 0 for s > 0. It follows that when (2.2) holds,

EB = d− + d+
bd− − ad+ . (2.8)

When (2.2) does not hold, the expected length of a busy cycle is infinite.

Stability

Clearly, the process(Mt ,Dt, Ct ) is regenerative. As regeneration epochs we may, and
henceforth will, choose the times when(Mt ,Dt, Ct) is in state(1,0,0), including time
0. LetT denote the first strictly positive regeneration epoch, see figure 2. For stability,
the point at issue is under which condition the expectation ofT is finite. This makes the
Markov process(Mt,Dt , Ct) positive recurrent. The limiting distribution of the regener-
ative process(Mt,Dt , Ct) is then the same as the stationary distribution of(Mt ,Dt, Ct ).

The question whether a stationary distribution of the process(Mt,Dt , Ct) indeed
exists can be answered using the fact that the second buffer can be viewed as a fluid
queue in a “two-state random environment”, as described in [20]. In such a model, the
buffer content is driven by an i.i.d. sequence{(Di, Ui)} of down- and up-times, such
that the content increases at down-times and decreases at up-times, see also [9]. In our
case, the second buffer is driven by the two-state environment with down- and up-times
{(Bi, Ii)} of busy and idle periods of the first buffer. The proof of the following theorem
relates the behaviour of an embedded process to that of the waiting time in a G/G/1
queue, along the lines of [20].
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Theorem 2.1. The process(Mt,Dt , Ct) converges in distribution to a proper random
vector(M,D,C), ast →∞, if and only if

bd−
c+d− + c−d+ + c+d+ −

a

c−
> 0. (2.9)

Proof. Let {(Bi, Ii)} denote the sequence of busy and idle periods of the first buffer,
forming the two-state random environment that drives the second buffer, as described
above. LetZi be the content of the second buffer at the beginning of theith busy period
of the first buffer,i = 0,1,2, . . . . Obviously, the process{Zi} is regenerative. Analo-
gous to the proof of theorem 3 of [20] the expected regeneration time is finite if and only
if

c−EI > c+EB, (2.10)

whereI andB are generic idle and busy periods of the first buffer, respectively. In view
of (2.8) this is equivalent with (2.9). Notice that (2.2) is implied by (2.9).

The proof is concluded by applying Wald’s lemma to show that the expected length
of a regeneration epoch of the regenerative process(Mt ,Dt, Ct) is finite as well. �

We will henceforth assume (2.9) to be satisfied and interpret(M,D,C) as
the state of the system in “steady-state”. Its distribution will be denoted byF =
(F0(dx,dy), F1(dx,dy)), where

Fi(dx,dy)=P[M = i,D ∈ dx, C ∈ dy]
= lim
t→∞P[Mt = i,Dt ∈ dx, Ct ∈ dy], i ∈ {0,1}. (2.11)

Stochastic decomposition

Next, we describe another consequence of the fact that the second buffer may be viewed
as a fluid queue in a random environment, as described above.

Let Zi, as before, be the content of the second buffer at the beginning of theith
busy period of the first buffer,i = 0,1,2, . . . . From theorem 3 of [20]Zi converges in
distribution to a random variableZ, asi →∞. ThisZ is distributed as the steady-state
waiting time in an M/G/1 queue with interarrival times which are distributed asc− times
the idle period of the first buffer and service times which are distributed asc+ times the
busy period of the first buffer. In particular, we have, withB andI defined as before,

Z
d= [Z + c+B − c−I ]+, (2.12)

whereZ,B andI are mutually independent, and where[x]+ denotes the maximum ofx
and 0.
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Thus, using the Pollaczek–Khintchine formula and (2.6) and (2.8), the Laplace
transform ofZ (LZ say) is given by

LZ(s) = bc−d− − a(c+d− + c−d+ + c+d+)
bd− − ad+

s

(c− + c+)s + d−λ1(c+s)
, (2.13)

where the functionλ1 is given in (2.7).
By theorem 4 and theorem 5 of [20] the distribution ofC has the followingsto-

chastic decomposition,

C
d=
{ [Z + c+B − c−I ∗]+, w.p. 1− ρd ,
Z + c+B∗, w.p.ρd ,

(2.14)

whereB, B∗, I ∗ andZ are mutually independent, andB∗ andI ∗ are distributed as the
residual lifetimes ofB andI , respectively.

From (2.12) and the fact thatI ∗ d= I we conclude that the conditional distribution
of (C|D = 0) is the same as the distribution ofZ, and hence given by (2.13). We will
use this information in the following section to reach our final goal. As an aside we
mention that the marginal distribution ofC can now be found, either by inversion of the
Laplace transformLC of C, which is clearly given by

LC(s)= (1− ρd)LZ(s)+ ρdLZ(s)
[
1− LB(c+s)

]
/[EBc+s]

=LZ(s)bd− − ad+
a + b

−λ1(c+s)
c+s

, (2.15)

or by inversion of (2.13) and using

Pr[C > y] = (1− ρd)c− + c+
c+

Pr[Z > y], y > 0, (2.16)

which follows from corollary 3 in [20]. The result is given in (2.34)–(2.35).

Joint stationary distribution

We are now ready to derive the joint distributionF of the random vector(M,D,C).
The form of the distribution is easily established (see also figure 2). As a consequence
of theorem 2.1, the state(0,0,0) is a positive recurrent state of the Markov process
(Mt ,Dt, Ct ). This state is entered via the set{(0,0, y) | y > 0} and left via the set
{(1, x, y) | x > 0, y = xc+/d+}. Moreover, the set{0,1} × {(x, y) | y < xc+/d+} is
never entered. These considerations suggest thatF be of the following form,

F0
({0,0})= 1− ρc, (2.17)

F0
({0},dy)= σ0(y)dy, y > 0, (2.18)

F1(dx, c+/d+dx)= σ1(x)dx, x > 0, (2.19)

Fi(dx,dy)= fi(x, y)dx dy, x > 0, y > xc+/d+, i = 0,1, (2.20)

for some constantρc and certain densitiesσ0, σ1, f0 andf1.
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SinceF0({0,0}) = P[C = 0], it follows that ρc is the utilization of the second
buffer, and can be found from a flow balance equation,

(c+ + c−)(1− ρd) = c−(1− ρc).
Using (2.5) this immediately leads to

ρc = a

a + b
c− + c+
c−

d− + d+
d−

. (2.21)

The following theorem gives explicit expressions for the densities.

Theorem 2.2. For the tandem model, the stationary joint distributionF of the process
(Mt ,Dt, Ct ) is of the form (2.17)–(2.20), where

σ0(y)= (1− ρc)e−βy
(
a

c−
− c+νω

2

∫ y

0
e−(θ−β)uH0(0, u)du

)
, (2.22)

σ1(x)= (1− ρc) a
d+

e−bx/d+, (2.23)

f0(x, y)= (1− ρc) νbc−
d− + d+e−(b/d+)x

(
d+γω
b

e−θ(y−(c+/d+)x)H1

(
x, y − c+

d+
x

)
+ a

c−
e−β(y−(c+/d+)x)

{
1+ xωγ

∫ y−(c+/d+)x

0
e−(θ−β)uH0(x, u)du

}
− c+νω

2
e−β(y−(c+/d+)x)

∫ y−(c+/d+)x

0
e−(θ−β)uH1(x, u)du

)
, (2.24)

f1(x, y)= (1− ρc) a
d+

e−(b/d+)x
(
ωγ xe−θ(y−(c+/d+)x)H0

(
x, y − c+

d+
x

)
+ a

c−
e−β(y−(c+/d+)x)

{
1+ xωγ

∫ y−(c+/d+)x

0
e−(θ−β)uH0(x, u)du

}
− c+νω

2
e−β(y−(c+/d+)x)

∫ y−(c+/d+)x

0
e−(θ−β)uH1(x, u)du

)
. (2.25)

Here, the functionsH0 andH1 are given by

H0(x, y)= I1
(√
ω(y2+ 2xyγ )

)√
ω(y2+ 2xyγ )

, (2.26)

H1(x, y)= y2 + xyγ
y2 + 2xyγ

H0(x, y)

+ xyγ

y2 + 2xyγ

I0
(√
ω(y2 + 2xyγ )

)+ I2
(√
ω(y2+ 2xyγ )

)
2

, (2.27)
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whereIi is the modified Bessel function of the first kind of orderi, i.e.,

Ii(z) =
(
z

2

)i ∞∑
k=0

(z/2)2k

k!(k + i)! . (2.28)

Furthermore,ρc is given in (2.21), and

β = bd−
c+d− + c−d+ + c+d+ −

a

c−
, (2.29)

θ = bd− + ad+
c+(d− + d+) , (2.30)

ν = d− + d+
c+d− + c−d+ + c+d+ , (2.31)

ω= 4abd−d+
c2+(d− + d+)2

, (2.32)

γ = c+(d− + d+)
2d−d+

. (2.33)

Clearly, it is not difficult to obtain numerical results from theorem 2.2. In figures 3
and 4 the various densities are shown for the parameter values given at the beginning of
this section. Notice thatβ, the decay rate of the second buffer is rather small in this case,
β ≈ 0.014.

For completeness we mention that the distribution of the processC is given by

P[C = 0] = 1− ρc, (2.34)

P[C ∈ dy] = c− + c+
c+

σ0(y)dy, y > 0. (2.35)

Expression (2.35) can be found either by using (2.15) or (2.16) as indicated before, or
more easily from theorem 2.2 by using level crossing arguments.

For the proof of theorem 2.2 it remains to prove the actual form of the various
densities. We do so in three consecutive steps.

Figure 3. The densitiesσ0 andσ1 as functions ofy andx, respectively.
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Figure 4. The densitiesf0 andf1 as functions ofx andy.

Densityσ0

The conditional distribution of(C | D = 0) has Laplace–Stieltjes transformLZ given
in (2.13). Thus,

Ee−sC1{D=0} = (1− ρd)LZ(s). (2.36)

Applying the shifts 7→ s − θ , with θ as in (2.30), yields after some algebra

Ee−(s−θ)C1{D=0} = (1− ρc)
(

1+ a

c−(s − (θ − β)) −
s −√s2− ω
s − (θ − β)

c+ν
2

)
,

with β, ω and ν given in (2.29), (2.32) and (2.31), respectively. We now findσ0 by
inverting the above expression, using the fact that the inverse Laplace transform of the
functions 7→ s −√s2 − ω is the function

y 7→ ω
I1(y
√
ω )

y
√
ω

, (2.37)

see for example [15, (28) on p. 235].

Densityσ1

The expected sojourn time of the process(Dt, Ct) in the set{( x̂, ŷ ) | c+x̂ = d+ŷ,
x̂ 6 x} during the first regeneration period[0, T ] can be found by conditioning on the
time the process stays on the line{(x, y) | x > 0, y = xc+/d+} after t = 0. Since this
time is exponentially distributed with parameterb, it follows after some calculations and
applying the theory of regenerative processes, that

P[c+D = d+C,D 6 x] = 1− e−bx/d+

bET
.

Since we also have that

1− ρc = P[C = 0] = 1

ET
1

a
,
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we obtain

P[c+D = d+C, D 6 x] = a(1− ρc)
b

(
1− e−bx/d+

)
. (2.38)

Finally, by differentiating with respect tox, we find (2.24).

Densitiesf0 andf1

This last step is the most difficult one. Our approach is to determine the densitiesf0 and
f1 via a Laplace-transformed version of the stationary Kolmogorov forward equations
for the Markov process(Mt,Dt , Ct). Thereto, we define the joint Laplace transformsqi
by

qi(p, s) = E1{M=i}e−pD−sC, i ∈ {0,1}, p, s > 0. (2.39)

We will write q(p, s) for the column vector with entriesq0(p, s) andq1(p, s).

Lemma 2.3. The vectorq(p, s) satisfies:

A(p, s)q(p, s) = B(p, s)
(
q0(∞, s)
q0(∞,∞)

)
, (2.40)

where

A(p, s) =
(−a + d−p − c+s b

a −d+p − c+s − b
)
,

and

B(p, s) =
(
d−p − c+s − c−s c−s

0 0

)
.

Proof. We only prove the first row of the matrix equation, the second row can be proved
in a similar manner.

Consider the stochastic processes(Xi(t), t > 0), i ∈ {0,1}, defined by

Xi(t) = e−pDt−sCt1{Mt=i}.

Notice that both these processes are of bounded variation. We denote the continu-
ous part of(Xi(t)) by (Xc

i (t)). In particular, we have fort > 0,

X0(t) = X0(0)+Xc
0(t)+

∑
0<u6t

[
X0(u)− X0(u−)

]
. (2.41)

We now concentrate on(X0(t)). The derivative of(Xc
0(t)) is easily found,

d

dt
Xc

0(t) = X0(t)
(
d−p1{Dt>0} − c+s1{Dt>0} + c−s1{Dt=0,Ct>0}

)
, t > 0. (2.42)
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Moreover, the pure jump part of(X0(t)) can be written in stochastic integral form,∑
0<u6t

[
X0(u)−X0(u−)

] = − ∫ t

0
X0(u−)dAu +

∫ t

0
X1(u−)dBu, (2.43)

where(At) and(Bt) denote the counting processes that count the number of jumps of
(Mt) from state 0 to 1 and from 1 to 0, respectively. The stochastic intensities at timet

of (At ) and(Bt) are given bya1{Mt=0} andb1{Mt=1}, respectively. Because(X0(u−)) is
a left-continuous adapted process, we have by the theory of stochastic integration, (see,
e.g., [23]) that

E
∫ t

0
X0(u−)dAu = E

∫ t

0
X0(u−)a1{Mu=0} du, (2.44)

and a similar result holds for the other integral in (2.43). If we now take expectations in
(2.41) and use (2.42)–(2.44), we arrive at

EX0(t)=EX0(0)+ d−p
∫ t

0
EX0(u)1{Du>0} du− c+s

∫ t

0
EX0(u)1{Du>0} du

+ c−s
∫ t

0
EX0(u)1{Du=0,Cu>0} du− a

∫ t

0
EX0(u)du+ b

∫ t

0
EX1(u)du.

Now differentiate both sides of the previous equation with respect tot and lett → ∞.
By the continuity of Laplace transforms, we obtain

0= d−p
(
q0(p, s)− q0(∞, s)

) − c+s(q0(p, s)− q0(∞, s)
)

+ c−s
(
q0(∞, s)− q0(∞,∞)

)− aq0(p, s)+ bq1(p, s).

The first row of (2.40) now follows. �

Notice that the quantities in the right-hand side of (2.40) are known. In particular,
using (2.36) and (2.13), we have

q0(∞, s) = (1− ρd) c−s − ac+sEB
c−s − a + aLB(c+s) , (2.45)

whereEB is given in (2.8) andLB in (2.6). Furthermore, we findq0(∞,∞) = P[M =
0,D = 0, C = 0] = P[C = 0] = 1− ρc with ρc given in (2.21).

Solvingq(p, s) from equation (2.40) yields for allp, s > 0,

q1(p, s) = a (−d−p + c−s + c+s)q0(∞, s)− c−s(1− ρc)
detA(p, s)

(2.46)

and

q0(p, s) = b + d+p + c+s
a

q1(p, s),
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which, after some algebra, reduces to

q0(p, s) = b + d+p + c+s
d+(p + λ2(c+s))

q0(∞, s) (2.47)

and

q1(p, s) = a

d+(p + λ2(c+s))
q0(∞, s), (2.48)

where

λ2(s) = η(s)+√ξ(s)
2d−d+

, (2.49)

with η(s) andξ(s) as in (2.7), and whereq0(∞, s) is given in (2.45).
It remains to be shown howf0(x, y) andf1(x, y) can be found fromq0(p, s) and

q1(p, s). First, inverse transformation ofq0(p, s) andq1(p, s) with respect top yields
the functions

g0(s)=
(
δ0(x)+ b − d+λ2(c+s)+ c+s

d+
e−λ2(c+s)x

)
q0(∞, s),

g1(s)= a

d+
e−λ2(c+s)xq0(∞, s),

whereδ0 denotes Dirac’s delta function at 0. Since the distributionF1 only has mass
on S, we know that for fixedx > 0, g1 must be the Laplace transform of a (gen-
eralized) function on the interval[xc+/d+,∞). Therefore, by multiplyingg1(s) with
exp(sxc+/d+) we obtain the Laplace transform̃h1(s) = exp(sxc+/d+)g1(s) of a func-
tion h1 on [0,∞). After some calculations we find,

h̃1(s − θ)= (1− ρc) a
d+

e−(b/d+)xexγ (s−
√
s2−ω)

×
(

1+ a

c−(s − (θ − β)) −
c+ν
2

s −√s2 − ω
s − (θ − β)

)
.

We can inverth̃1(s − θ) straightforwardly (still for fixedx > 0) by using the following
two facts. First, the function

y 7→ H0(x, y)xωγ,

is the inverse Laplace transform of

s 7→ exp
(
xγ
(
s −

√
s2 − ω))− 1,

see, e.g., [15, p. 250, (41)]. Second, by differentiatingH0 with respect tox we see that

y 7→ ωH1(x, y),

is the inverse Laplace transform of

s 7→ (
s −

√
s2− ω ) exp

(
xγ
(
s −

√
s2− ω )).
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It follows thath1(y) = δ0(y)σ1(x)+ f1(x, y + xc+/d+), with σ1 andf1 as in (2.24) and
(2.25).

Similarly, for fixedx > 0, let h̃0(s) = exp(sxc+/d+)g0(s). We find

h̃0(s − θ)= (1− ρc)νe−(b/d+)xexγ (s−
√
s2−ω)

(
ab

(d− + d+)(s − (θ − β))
+ c−c+

2d−

(
s −

√
s2 − ω)− bc−c+ν

2(d− + d+)
s −√s2 − ω
s − (θ − β)

)
.

Notice that the termδ0(x)q0(∞, s) in g0(s) does not play a role, since we assumex to
be strictly positive. Inversion of̃h0 finally yields h0(y) = f0(x, y + xc+/d+). This
completes the proof of theorem 2.2.

Remark 2.4.It is interesting to note thatq0(∞, s) can be derived directly from
lemma 2.3 using a “boundedness” argument. For this, write

detA(p, s) = −d−d+
(
p + λ1(c+s)

)(
p + λ2(c+s)

)
,

whereλ1(s) andλ2(s) are given in (2.7) and (2.49); recall thatλ1(s) 6 06 λ2(s) for s >
0. Since for allp, s > 0, q(p, s) must remainbounded, in particular forp = −λ1(c+s),
the numerator in (2.46) must be zero on the set{(p, s)|s > 0, p = −λ1(c+s)}. This
gives a linear equation inq0(∞, s), from which (2.45) follows.

Remark 2.5.We mention that the main result for the tandem model can also be found
by first conditioning on the on-off source being off, so that we obtain a model with
two-dimensional Lévy input, after which we can proceed along the lines of [21]. Alter-
natively, we can find lemma 2.3 using a two-dimensional martingale as in [8].

3. Dual model

In this model we also consider a fluid system consisting of two infinitely large buffers.
The first buffer is regulated by(Mt) in the same way as in the tandem model; the transi-
tion intensities of(Mt) are again given bya (from 0 to 1) andb (from 1 to 0). The only
difference with the tandem model is that the content of the second buffer increases at
ratec+ when the first buffer isempty, and decreases at ratec− otherwise, provided that
it is not empty.

A schematic overview of the behaviour of the three subsystems is given in figure 5,
while a realization of the processes(Dt) and (Ct) is given in figure 6. This time we
assume that(M0,D0, C0) = (0,0,0).

As for the tandem model, the stochastic process(Mt ,Dt, Ct) is a Markov process.
Its state space is simply given by{0,1}×R+×R+. Obviously it is a regenerative process.
As regeneration epochs we choose the times (including 0) at which(Mt ,Dt, Ct) =
(0,0,0).
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Figure 5. Interaction between the subsystems of the dual system.

Figure 6. Realization of the buffer content processes for the dual model.

Stability

Next, in analogy to theorem 2.1, we establish the conditions under which the limiting
distribution of the process(Mt ,Dt, Ct) exists.

Consider the embedded process{Zi} describing the content of the second buffer
at the beginning of theidle periods of the first buffer. While for the tandem case, the
embedded process is related to the actual waiting time in an M/G/1-queue (with inter-
arrival times distributed asc−I and service times distributed asc+B), we now have an
embedded process that is related to the waiting time in a G/M/1-queue (with interarrival
times distributed asc−B and service times distributed asc+I ).

Theorem 3.1. The process(Mt,Dt , Ct) converges in distribution to a proper random
vector(M,D,C), ast →∞, if and only if

b

d+
− a

d−
> 0, (3.1)

and

a

c+
− bd−
c−d− + c−d+ + c+d+ > 0. (3.2)
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Proof. The proof can be copied from the proof of theorem 2.1, apart from (2.10), which
is replaced by

c−EB > c+EI. (3.3)

Note also that now (3.1) is not implied by (3.2), so that we need two conditions for
stability. �

We will henceforth assume conditions (3.1) and (3.2) to be satisfied. The interpre-
tation of (M,D,C) and the definition of the limiting distributionF are the same as for
the tandem model case, see (2.11).

Stochastic decomposition

Repeating the arguments used in the tandem model, the embedded process{Zi} con-
verges in distribution to a proper random variableZ which is distributed as the waiting
time in a G/M/1 queue. Specifically, by theorems IX.1.2(b) and IX.1.3 of [7], we have

P[Z 6 z] = 1− (1− βc+/a)e−βz.
Hereβ is the unique strictly positive solution of the equation 1= EeβU , whereU is
distributed asc+I−c−B andI andB are generic idle and busy periods of the first buffer
respectively. It follows thatβ satisfies

1= a

a − βc+
b

βc− + b − λ1(βc−)d+
,

which is readily solved to give

β = a

c+
− bd−
c−d− + c−d+ + c+d+ . (3.4)

Moreover, the distribution ofC has the followingstochastic decomposition

C
d=
{ [Z + c+I − c−B∗]+, w.p.ρd ,
Z + c+I ∗, w.p. 1− ρd , (3.5)

similar to (2.14). Here,ρd is the same as for the tandem model, see (2.5). Since,I ∗ and
I have the same distribution, we have

E
(
e−sC | D = 0

) = (βc+
a
+
(

1− βc+
a

)
β

β + s
)

a

a + c+s =
β

β + s . (3.6)

In other words, the conditional distribution of(C | D = 0) is exponential with intensity
β. Notice thatβ > 0.

Joint stationary distribution

We now derive the limiting distributionF of the process(Mt,Dt , Ct).
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Theorem 3.2. For the dual model, the stationary joint distributionF of the process
(Mt ,Dt, Ct ) is of the form

F0
({0},dy) = σ0(y)dy, y > 0,

Fi
(
dx, {0}) = µi(x)dx, x > 0, i ∈ {0,1},

Fi(dx,dy) = fi(x, y)dx dy, x, y > 0, i ∈ {0,1},
(3.7)

where the densitiesσ0, µi andfi, i ∈ {0,1}, are given by

σ0(y)= (1− ρd)βe−βy, (3.8)

µ0(x)= (1− ρd)
(
a

d−
e−αx − bc+

c−d− + c−d+ + c+d+e−ζx
)
, (3.9)

µ1(x)= (1− ρd) a
d+
(e−αx − e−ζx), (3.10)

f0(x, y)= (1− ρd) bc+β
c−d− + c−d+ + c+d+e−ζx−βy, (3.11)

f1(x, y)= (1− ρd)aβ
d+

e−ζx−βy, (3.12)

and the constantsρd, α andβ are given in (2.5), (2.4) and (3.4) respectively, and

ζ = α + β c−d− + c+d+
d−d+

= ac−
c+d+

+ bc−
c−d− + c−d+ + c+d+ . (3.13)

Proof. The proof is similar to that of the tandem model, except that in this case much
more (computer) algebra is involved. The basic structure of the proof is that we first
derive a set of algebraic equations for the Laplace transform ofF, as in lemma 2.3, and
then use (3.6) and a “boundedness” argument, as in remark 2.4, to solve these equations.

Let q(p, s) be the vector with componentsq0(p, s) andq1(p, s), given by

qi(p, s) = E1{M=i}e−pD−sC, i ∈ {0,1}, p, s > 0. (3.14)

Similar to the proof of lemma 2.3 we can show thatq(p, s) satisfies:

A(p, s)q(p, s) = B(p, s)
(
q0(∞, s)
q0(p,∞)
q1(p,∞)

)
, (3.15)

with

A(p, s) =
(−a + d−p + c−s b

a −b − d+p + c−s
)
, (3.16)

and

B(p, s) =
(
d−p + c+s + c−s c−s 0

0 0 c−s

)
. (3.17)

(Note thatq0(∞,∞) = 0.) Consequently, for allp, s > 0,
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q(p, s) = H(p, s)

detA(p, s)

(
q0(∞, s)
q0(p,∞)
q1(p,∞)

)
, (3.18)

where

H(p, s) =
(−b − d+p + c−s −b

−a −a + d−p + c−s
)
B(p, s).

Next, we use (3.6), by which we have

q0(∞, s) = (1− ρd) β

s + β . (3.19)

It remains to determineqi(p,∞), i ∈ {0,1}, which we will do via an argument that is
similar to the argument in remark 2.4. Lets1(p) ands2(p) denote the two roots of the
quadratic equation detA(p, s) = 0, see figure 7. We note that both roots are real and
that for the smallest,s1 say, we haves1(−α) = s1(0) = 0, whereα is given in (2.4). By
writing out (3.18) we find thatq0(p, s) is of the form

q0(p, s) = c3(p)s
3+ c2(p)s

2 + c1(p)s + c0(p)

(s − s1(p))(s − s2(p))(s + β) , (3.20)

where theci are unknown but analytic functions ofp, at least forp > −α because
qi(p,∞) < Ee−pD andα is the decay rate of the first buffer. We now fixp such that
−α < p < 0. Because fors > 0 we have thatq0(p, s) < Ee−pD we can conclude
thatq0(p, s) must be bounded fors > 0. Moreover, since it is not difficult to show that
s1(p) > 0 ands2(p) > 0 (see figure 7), it follows that the numerator in (3.20) must be
zero fors = s1(p) and fors = s2(p). This provides us with two linearly independent
equations forq0(p,∞) andq1(p,∞). As an aside we note that takingq1(p, s) instead
of q0(p, s) in the reasoning above leads to an equivalent set of equations. After quite a
bit of algebra, the solution can be written as

q0(p,∞)= (1− ρd)bc+ + ac− + c+d+p
c−d− + c+d+

ζ − α
(p + α)(p + ζ ) , (3.21)

q1(p,∞)= (1− ρd) a
d+

ζ − α
(p + α)(p + ζ ) , (3.22)

with ζ given in (3.13).

Figure 7. The rootss1 ands2 as functions ofp.



118 D.P. KROESE, W.R.W. SCHEINHARDT

The Laplace transformsq0 andq1 now follow from (3.18), (3.19), (3.21) and (3.22)
and take, after some strenuous rewriting, the form

q0(p, s)= (1− ρd)β (p + ζ )(p + b/d+)+ s(ac− + bc+ + c+d+p)/(d+d−)
(p + α)(p + ζ )(s + β) , (3.23)

q1(p, s)= (1− ρd)β a
d+
p + ζ + s(c+d+ + c−d−)/(d+d−)

(p + α)(p + ζ )(s + β) . (3.24)

Equation (3.6) gives (3.8), and inverse Laplace transformation of (3.21) and (3.22)
yields (3.9) and (3.10). In order to obtain the densitiesfi, we first rewriteqi(p, s) to
a form in which we can recognize (the transforms of) the densities we just found. The
result is given by

q0(p, s)= (1− ρd)β
{
ac− + bc+ + c+d+p
d+d−(p + α)(p + ζ )

+
(

1+ bc+
c−d− + c−d+ + c+d+

1

p + ζ
)

1

s + β
}
, (3.25)

q1(p, s)= (1− ρd) a
d+

{
ζ − α

(p + α)(p + ζ ) +
β

(p + ζ )(s + β)
}
. (3.26)

By inversion of these expressions, we now easily find (3.11) and (3.12). �

Remark 3.3.The reason that the dual model has such a remarkably simple solution when
compared to the tandem model, is that there is only one state in the regulating process
(Mt ,Dt) for which the content of the second buffer increases, namely (0,0). As a con-
sequence, the solution depends ony via one exponential term, namely e−βy. In [22]
another solution procedure is applied to solve the dual model, illustrating this phenom-
enon.

4. Feedback model

Our last model is related to both the tandem and the dual model but has two essentially
different characteristics: a finite (second) buffer and a feedback mechanism.

The system consists of two buffers: an infinitely largedata bufferand a finite
credit bufferof sizeK. Again, the whole system is regulated by a continuous-time
Markov process(Mt), with state space{0,1} and transition intensitiesa (from 0 to 1)
andb (from 1 to 0). When the credit buffer isnot empty, the content of the data buffer
increases at rated+ when (Mt) is in state 1 and decreases at rated− when(Mt) is in
state 0, provided that the data buffer is not empty. However, when the credit bufferis
empty, the up and down rates ared0+ andd0−, instead ofd+ andd−, respectively.

Furthermore, the content of the credit buffer increases at ratec+ when the data
buffer is empty (provided that the credit buffer is not completely filled), and de-
creases at ratec− otherwise (provided that the credit buffer is not empty). Notice that
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Figure 8. Interaction between the processes(Mt), (Dt ) and(Ct ).

Figure 9. Realization of the buffer content processes.

d+, d−, d0+, d0−, c+ andc− are positive numbers, as in the other models and that the mean-
ing of the symbols is again reflected in the notation (d for data,c for credit).

We letDt andCt denote the content of the data and credit buffer at timet , respec-
tively, and observe that the stochastic process(Mt,Dt, Ct ) is a Markov process, despite
the presence of feedback. A schematic overview of the interaction between(Mt), (Dt)

and(Ct) is given in figure 8.
As for the dual model we assume that(M0,D0, C0) = (0,0,0). A realization of

the process(Dt, Ct) is given in figure 9. The parameter values used here and in other
figures pertaining to this model area = 1, b = 2, d+ = 2, d− = 6, d0+ = 4, d0− = 3,
c+ = 2.5, c− = 3 andK = 3.

Inspection of the behaviour of the system, see figure 9, shows that the state space
of (Mt,Dt , Ct) is given by{0,1} × S with

S = S1 ∪ S2, (4.1)

S1=
{
(x, y) | 0< y 6 K,06 x 6 (K − y)d+/c−

}
, (4.2)

S2= {(x, y) | y = 0, x > 0}. (4.3)

Stability

It is clear that(Mt ,Dt, Ct) is a regenerative process; as regeneration epochs we choose
the timest when simultaneouslyMt = 0, Dt = 0 andCt = 0. Hence,t = 0 is a
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regeneration epoch and we denote the next one byT , i.e.,

T = min{t > 0 | Mt = 0,Dt = 0, Ct = 0}. (4.4)

We also define

T1 = min{t > 0 | Ct = 0}. (4.5)

(See figure 9 for a visualization.)
Establishing a sufficient and necessary condition for stability of the feedback model

(or the finiteness ofET ) is not much more difficult than for the tandem and dual model.

Theorem 4.1. The process(Mt,Dt , Ct) converges in distribution to a proper random
vector(M,D,C), ast →∞, if and only if

α = b

d0+
− a

d0−
> 0. (4.6)

Proof. It can be shown by Wald’s lemma that

ET1 6 EN
(

1

K
+ K

c−

)
<∞,

whereN is the number of times that the process(Dt, Ct) visits the positivey-axis during
[0, T1]. FurthermoreE[T − T1] is finite if and only if (4.6) holds. For details see [25].�

We will henceforth assume condition (4.6) to be satisfied. As in the previous mod-
els we will interpret(M,D,C) as the state of the system in stationarity. Its distribution
F is given byF(dx,dy) = (F0(dx,dy), F1(dx,dy)) with

Fi(dx,dy)=P
[
M = i,D ∈ dx,C ∈ dy

]
= lim
t→∞P

[
Mt = i,Dt ∈ dx,Ct ∈ dy

]
, i ∈ {0,1}. (4.7)

Our primary interest is in finding this distribution.

Joint stationary distribution

In principle it should be possible to carry out the analysis of the Markov process
(Mt ,Dt, Ct ) in a similar manner as for the tandem and dual system. That is, we derive
an algebraic expression for the Laplace transformsq0(p, s) andq1(p, s) of the stationary
distribution, and try to resolve any unknown function by finding an embedded process
related to the waiting time in a G/G/1 queue, or by using boundedness arguments as in
remark 2.4. However, due to the presence of feedback, we may no longer view the sec-
ond buffer as an ordinary fluid queue in a two-state random environment. In this section,
we take a completely different approach, using truncation and level crossing arguments.
The (known) stationary distribution for the tandem queue will be a starting point in the
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Figure 10. The stationary distribution.

analysis. However, the methodology of sections 2 and 3 will not be completely use-
less for the present model. In fact, in section 5 we will derive an explicit expression
for the distribution of the marginal stationary distribution of the credit buffer, using this
methodology.

When we let
◦
S denote the interior ofS, we expectF to be of the following form,

F0
({0}, {K})=PCK, (4.8)
Fi(dx,dy)= fi(x, y)dxdy, (x, y) ∈ ◦S, i = 0,1, (4.9)

F0
({0},dy)= σ0(y)dy, y ∈ [0,K], (4.10)

F1(dx,K − c−/d+dx)= σ1(x)dx, x ∈ [0,Kd+/c−], (4.11)

Fi
(
dx, {0})=µi(x)dx, x ∈ [0,∞), i = 0,1. (4.12)

Observe that the notationPCK for the probability mass in(0,0,K) is an abbreviation
for P[C = K]. In figure 10 the distributionF is rendered graphically.

The following theorem states that the form above is correct and gives explicit ex-
pressions for the densities.

Theorem 4.2. For the feedback model, the stationary joint distributionF of the process
(Mt ,Dt, Ct ) is of the form (4.8)–(4.12), where the various densities are given as follows.

σ0(y)=PCKe−β(K−y)
(
a

c+
− c−νω

2

∫ K−y

0
e−(θ−β)uH0(0, u)du

)
, (4.13)

σ1(x)=PCK a

d+
e−(b/d+)x, (4.14)

f0(x, y)=PCK νbc+
d− + d+e−(b/d+)x

(
d+γω
b

e−θ(K−y−(c−/d+)x)H1

(
x,K − y − c−

d+
x

)
+ a

c+
e−β(K−y−(c−/d+)x)

{
1+ xωγ

∫ K−y−(c−/d+)x

0
e−(θ−β)uH0(x, u)du

}
− c−νω

2
e−β(K−y−(c−.d+)x)

∫ K−y−(c−/d+)x

0
e−(θ−β)uH1(x, u)du

)
, (4.15)
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f1(x, y)=PCK a

d+
e−(b/d+)x

(
ωγ xe−θ(K−y−(c−/d+)x)H0

(
x,K − y − c−

d+
x

)
+ a

c+
e−β(K−y−(c−/d+)x)

{
1+ xωγ

∫ K−y−(c−/d+)x

0
e−(θ−β)uH0(x, u)du

}
− c−νω

2
e−β(K−y−(c−/d+)x)

∫ K−y−(c−/d+)x

0
e−(θ−β)uH1(x, u)du

)
, (4.16)

µ0(x)= e−αx

d0−

{
J1(x∧Kd+/c−)+ η1(x∧Kd+/c−)J2(x∧Kd+/c−)

}
, (4.17)

µ1(x)= d
0−
d0+
µ0(x)− 1{x<Kd+/c−}

d0+
J2(x). (4.18)

Here, the constantPCK may be obtained by normalization and the functionsH0 andH1

are given by

H0(x, y)= I1
(√
ω(y2+ 2xyγ )

)√
ω(y2+ 2xyγ )

, (4.19)

H1(x, y)= y2 + xyγ
y2 + 2xyγ

H0(x, y)

+ xyγ

y2 + 2xyγ

I0
(√
ω(y2 + 2xyγ )

)+ I2
(√
ω(y2+ 2xyγ )

)
2

, (4.20)

whereIi is the modified Bessel function of the first kind of orderi as before. Further-
more,x∧Kd+/c− ≡ min(x,Kd+/c−),

η0(u)= a(e
αu − 1)

d0−α
, (4.21)

η1(u)= η0(u)+ eαu, (4.22)

J1(x)= c−
∫ x

u=0

{
η0(u)f0(u,0)+ η1(u)f1(u,0)

}
du, (4.23)

J2(x)= c−
∫ Kd+/c−

u=x

{
f0(u,0)+ f1(u,0)

}
du+ σ1(Kd+/c−), (4.24)

and finally,

α= b

d0+
− a

d0−
, (4.25)

β = bd−
c−d− + c−d+ + c+d+ −

a

c+
, (4.26)

θ = bd− + ad+
c−(d− + d+) , (4.27)
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Figure 11. The densitiesσ0 andσ1 as functions ofy andx, respectively.

Figure 12. The densitiesf0 andf1 as functions ofx andy.

Figure 13. The densitiesµ0 andµ1 as functions ofx.

ω= 4abd−d+
c2−(d− + d+)2

, (4.28)

ν = d− + d+
c−d− + c−d+ + c+d+ , (4.29)

γ = c−(d− + d+)
2d−d+

. (4.30)

To illustrate that calculation of the densities in theorem 4.2 is numerically feasible,
some graphs are shown in figures 11–13, where the parameter values are the same as in
figure 9. The most difficult part of the numerical calculations is the normalization. For
figures 11–13 we used the explicit expression forPCK in (5.15).



124 D.P. KROESE, W.R.W. SCHEINHARDT

It is interesting to note that the result in theorem 4.2 simplifies considerably when
we letK → ∞. In fact it takes the form of that in theorem 3.2, the only difference
being the particular form of the constant coefficients of the exponential terms. Clearly,
this difference vanishes when we remove the feedback by takingd0+ = d+ andd0− = d−.

The proof of theorem 4.2 requires that we split the state space{0,1} × S of the
Markov process in two parts, namely{0,1} × S1 and{0,1} × S2, whereS1 andS2 are
defined in (4.2) and (4.3), see also figure 14(a). The proof is presented in three steps. In
the first step we will findF on the set{0,1} × S1 for the caseβ > 0 by relating it to the
stationary distribution of a tandem fluid queue. In the second step, we findF on the set
{0,1}×S2. Finally, in the third step we show that the results are also valid for parameter
values for whichβ 6 0.

Densitiesσ0, σ1, f0 andf1

In this step we will establish a close relation between the model under consideration and
the tandem model. Hereto, let(Mt ,Dt, Ĉt ) be the stochastic process that corresponds to
the tandem model with the following parameters. We identify the parametersa, b, d+
andd− with the parameters of the same name in the current model. Furthermore we will
choose the parametersc+ andc− to be equal to the parametersc− andc+, respectively, of
the current model, in other words the symbols are interchanged. In this and the following
subsection we will assume that the stability condition for this tandem model holds; since
this does not cover all parameter values for which the current model is stable, we will lift
this restriction in the last step. The condition can be found from (2.9) by interchanging
the symbolsc+ andc− and is given by

bd−
c−d− + c−d+ + c+d+ −

a

c+
> 0, (4.31)

or, equivalently,β > 0, whereβ is given in (4.26). Theorem 2.1 now tells us that a sta-
tionary distribution for the process(Mt ,Dt, Ĉt ) exists. We will denote this distribution
by F̂ = (F̂0(dx,dy), F̂1(dx,dy)), where

F̂i(dx,dy)= P
[
M = i,D ∈ dx, Ĉ ∈ dy

]
= lim
t→∞P

[
Mt = i,Dt ∈ dx, Ĉt ∈ dy

]
, i ∈ {0,1}. (4.32)

Clearly,F̂ can be found from theorem 2.2, again by interchangingc+ andc−.
To find the announced relation between the processes(Mt,Dt , Ct) and(Mt ,Dt,

Ĉt ), we consider yet another stochastic process(SCt), whereSCt is the amount of free
space in the credit buffer at timet . Hence,SCt = K−Ct . In figure 14 the respective state
spaces of the processes(Dt, Ct), (Dt, SCt) and(Dt, Ĉt ) are given.

We will now compare two processes. On the one hand we have the process
(Mt ,Dt, SCt), with state space{0,1} × (SS1∪SS2), whereSSi ≡ {(x, y) | (x,K − y) ∈ Si}.
On the other hand we have the process(Mt ,Dt, Ĉt ) with state space{0,1} × Ŝ where
Ŝ ≡ {(x, y) | y > 0,0 6 x 6 yd+/c−}. It is clear that̂S can be written aŝS = SS1 ∪ Ŝ2,
with Ŝ2 = {(x, y) | y > K,0 6 x 6 yd+/c−}. Moreover, the behaviour of the two



JOINT DISTRIBUTIONS FOR INTERACTING FLUID QUEUES 125

Figure 14. The setsS,SS andŜ.

processes on{0,1} × SS1 is identical, and both processes enter this set in the same way
if α > 0 (namely via state(0,0,K) with probability one). It is therefore possible to
express the distribution of(M,D, SC) on {0,1} × SS1 (and hence that of(M,D,C) on
{0,1}× S1) in terms ofF̂ , the stationary distribution of(Mt ,Dt, Ĉt ). This is done in the
following proposition.

Proposition 4.3. If α > 0 andβ > 0, the stationary joint distributionF of the process
(Mt ,Dt, Ct ) on the set{0,1} × S1 is given by

Fi(dx,dy) = kF̂i(dx,K − dy), (x, y) ∈ S1, i = 0,1. (4.33)

The constantk is given by

k = P[SC < K]
P[Ĉ < K] =

ET̂
ET

, (4.34)

whereT (T̂ ) is the length of a generic regeneration period of the process(Mt ,Dt, SCt)
(the process(Mt,Dt , Ĉt )) if we choose state(0,0,K) as regeneration state.

Proof. We assumeα, β > 0 and consider figures 14(b) and 14(c). The choice of
(0,0,K) as regeneration state for the process(Mt ,Dt, SCt) entails that during any regen-
eration period this process first sojourns in{0,1}×SS1, for a time period that is distributed
asT1 (which was defined in (4.5)), while during the remainder of such a regeneration
period it stays in{0,1} × SS2, with sojourn time distributed asT − T1. A similar ob-
servation can be made for the process(Mt ,Dt, Ĉt ): first it resides in{0,1} × SS1, with
sojourn time distributed aŝT1, say, after which it remains in{0,1}× Ŝ2, for a time period
distributed aŝT − T̂1. Moreover, the pathwise behaviour of both processes in the time
interval(0, T1) on {0,1} × SS1 is identical. Hence, we have for anyA ⊂ {0,1} × SS1,

P
[(
M,D, SC ) ∈ A | (D, SC ) ∈ SS1

] = P[(M,D, Ĉ ) ∈ A | (D, Ĉ ) ∈ SS1
]
,

or

P
[(
M,D, SC ) ∈ A]= P[(D, SC) ∈ SS1]

P[(D, Ĉ) ∈ SS1]
P
[(
M,D, Ĉ

) ∈ A]
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= ET1/ET
ET̂1/ET̂

P
[(
M,D, Ĉ

) ∈ A] = kP[(M,D, Ĉ ) ∈ A].
Finally, since

Fi(dx,dy) = P
[
M = i,D ∈ dx, SC ∈ K − dy

]
, i = 0,1,

we easily find the stated results. �

It is now a matter of combining proposition 4.3 and theorem 2.2 (with the symbols
c+ andc− interchanged), to find (4.8)–(4.11) and (4.13)–(4.16), when we takePCK ≡
F0({0}, {K}) = kF̂0({0}, {0}).

Densitiesµ0 andµ1

Having found the distribution of(Mt,Dt , Ct) on {0,1} × S1 (apart from normalization)
in the previous subsection, we proceed to derive the densitiesµ0 andµ1 in (4.12). To do
so, we first need to prove two lemmas. The first one gives us the entrance distributionG

of the process(Mt,Dt , Ct) into the set{0,1} × S2, that is,

Gi(dx) = P[MT1 = i,DT1 ∈ dx], 06 x 6 Kd+/c−, i = 0,1,

with T1 as in (4.5).

Lemma 4.4. The joint distributionG of the stochastic variable(MT1,DT1) is given by

G0(dx)=ET c−f0(x,0)dx, (4.35)

G1(dx)=ET
{
c−f1(x,0) + δKd+/c−(x)σ1(Kd+/c−)

}
dx, (4.36)

whereδKd+/c− denotes the Dirac measure atKd+/c−, andσ1, f0 andf1 are given in
(4.14)–(4.16).

Proof. We consider the set{i} × (0, x] × (0, ε). The sojourn timeVi(x, ε) of
(Mt ,Dt, Ct ) in this set during the interval[0, T ] is equal toε/c− + o(ε) if the event
{MT1 = i,DT1 6 x} occurs, and is o(ε) otherwise. In other words, we have

Vi(x, ε) = ε

c−
1{MT1=i,DT16x} + o(ε).

If we take expectations, divide byET and apply the Key Renewal theorem, we obtain

P[M = i, D 6 x, 0< C < ε] = ε

c−ET
P[MT1 = i, DT1 6 x] + o(ε).

We now find forx < Kd+/c−,

Gi

(
(0, x]) = c−ET lim

ε→0

1

ε

∫ ε

0

∫ x

0
fi(u, v)dudv = c−ET

∫ x

0
fi(u,0)du,

while an extra termET σ1(Kd+/c−) appears ifi = 1 andx = Kd+/c−. The result is
now immediate. �
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Figure 15. The probabilitiesp0(u, x) andp1(u, x) for fixedx.

For the second lemma, we defineNi(x) as the number of times that the process
(Mt ,Dt, Ct ) visits (i, x,0) before it reaches(0,0,0) during the first regeneration period.
Also, for u > 0 andj = 0,1, we let

Pj,u[·] ≡ P[· | MT1 = j,DT1 = u],
and

Ej,u[·] ≡ E[· | MT1 = j,DT1 = u].

Lemma 4.5. The conditional expectationsEj,uNi(x) are given by

Ej,uN0(x) =
Ej,uN1(x) = e−αxηj (u), u 6 x, j = 0,1,
Ej,uN0(x) = e−αxη1(x), u > x, j = 0,1,
Ej,uN1(x) = e−αxη0(x), u > x, j = 0,1,

(4.37)

where

η0(u)= a(e
αu − 1)

d0−α
, (4.38)

η1(u)= bd
0−eαu − ad0+
d0−d0+α

= η0(u)+ eαu, (4.39)

andα = b/d0+ − a/d0−.

Proof. First, we define

pj(u, x) = Pj,u
[
Dt = x for somet ∈ (T1, T ]

]
.

By conditioning on the first transition epoch of the process(Mt), we obtain the following
relations foru 6 x,

p0(u, x)=
∫ u/d0−

0
p1(u− d0

−v, x)ae−av dv,

p1(u, x)=
∫ (x−u)/d0+

0
p0(u+ d0

+v, x)be
−bv dv + e−b(x−u)/d

0+,

while for u > x we havepj(u, x) = 1.
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Using the transformationsv 7→ u − d0−v andv 7→ u + d0+v, respectively, and
differentiating with respect tou gives the following differential equation for the vector
p(u, x) = (p0(u, x), p1(u, x))

T in u,

∂

∂u
p(u, x) =

(−a/d0− a/d0−−b/d0+ b/d0+

)
p(u, x), 06 u < x,

with boundary conditionsp0(0, x) = 0 andp1(x, x) = 1. It follows that the probabili-
tiespj (u, x) are given by

pj (u, x)= 1, u > x, j = 0,1, (4.40)

pj (u, x)= ηj (u)/η1(x), u 6 x, j = 0,1, (4.41)

see figure 15. Since the conditional distribution ofN0(x) is given by

Pj,u
[
N0(x) = 0

]= 1− pj (u, x),
Pj,u

[
N0(x) = k

]= pj(u, x)(1− p0(x, x)
)(
p0(x, x)

)k−1
, k = 1,2, . . . ,

we have

Ej,uN0(x) = pj(u, x)

1− p0(x, x)
.

Furthermore, we have

Ej,uN1(x) =
{
Ej,uN0(x), if x > u,
Ej,uN0(x)− 1, if x < u.

The desired result now follows immediately using (4.40) and (4.41). �

We are now ready to specify the densitiesµi , i = 0,1.

Proposition 4.6. If α > 0 andβ > 0, the stationary joint distributionF of the process
(Mt ,Dt, Ct ) on the set{0,1} × S2 is given by

Fi
(
dx, {0}) = µi(x)dx, x > 0, i = 0,1, (4.42)

whereµ0 andµ1 are given in (4.17).

Proof. First we denote the sojourn time of the process(Mt ,Dt, Ct ) in the set{i} ×
[x, x + ε] × {0} byWi(x, ε), that is,

Wi(x, ε) =
∫ T

t=T1

1{Mt=i,Dt∈[x,x+ε]} dt.

Clearly, we have

Ej,uW0(x, ε)= Ej,uN0(x)

d0−
ε + o(ε), (4.43)



JOINT DISTRIBUTIONS FOR INTERACTING FLUID QUEUES 129

Ej,uW1(x, ε)= Ej,uN1(x)

d0+
ε + o(ε). (4.44)

Combining

µi(x) = lim
ε→0

1

εET

1∑
j=0

∫ Kd+/c−

u=0
Ej,uWi(x, ε)Gj (du), x > 0, i = 0,1,

with (4.43) and (4.44) and then using lemmas 4.4 and 4.5 leads to the result. �

It is not difficult to check that propositions 4.3 and 4.6 together lead to the conclu-
sion that the distributionF given in theorem 4.2 indeed is the stationary distribution of
the process(Mt ,Dt, Ct ) whenα > 0 andβ > 0.

As a side result in this subsection, we find an expression forET , namelyET =
1/J2(0). This can be found by normalization of the distributionG in lemma 4.4.

The caseβ 6 0
In this last step it remains to be shown that the distribution in theorem 4.2 not only
represents the stationary distribution of the process(Mt ,Dt, Ct )whenα > 0 andβ > 0,
as we showed in the previous steps, but also whenα > 0 andβ 6 0.

We fix the parametersb, d+, d−, d0+, d0−, c+, c− andK, and leta vary. Then we
haveα > 0 if and only if a < a1 = bd0−/d0+, while β > 0 is equivalent toa < a0 =
(bd−c+)/(c−d− + c−d+ + c+d+), see figure 16. We will assume thata0 < a1, otherwise
α > 0 would implyβ > 0.

In what follows we will need the infinitesimal generatorA of the process
(Mt ,Dt, Ct ), which is an operator mapping a functionh :R2 → R2 to another func-
tionAh :R2→ R2, with, for x, y > 0,

(Ah)(x, y) = lim
t↓0
t−1

(
E[hMt

(Dt, Ct)− h0(x, y) | M0 = 0, D0 = x, C0 = y]
E[hMt

(Dt, Ct)− h1(x, y) | M0 = 1, D0 = x, C0 = y]
)
.

It is not difficult to see that

(Ah)(x, y)=Qh(x, y) + (A0h)(x, y), x > 0,0< y < K, (4.45)

(Ah)(0, y)=Qh(0, y)+ (A1h)(0, y), 0< y < K, (4.46)

(Ah)(x,0)=Qh(x,0)+ (A2h)(x,0), x > 0, (4.47)

(Ah)(0,K)=Qh(0,K)+ (A3h)(0,K), (4.48)

Figure 16. Behaviour ofα andβ as functions ofa.
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whereQ is the generator of the process(Mt),

A0 =
(−d− ∂

∂x
− c− ∂

∂y
0

0 d+ ∂
∂x
− c− ∂

∂y

)
, (4.49)

A1 =
(
c+ ∂

∂y
0

0 d+ ∂
∂x
− c− ∂

∂y

)
, (4.50)

A2 =
(−d0−

∂
∂x

0
0 d0+

∂
∂x

)
, (4.51)

and

A3 =
(
c+ ∂

∂y
0

0 d+ ∂
∂x
− c− ∂

∂y

)
. (4.52)

The operatorA can be viewed as a generalization of the Q-matrix corresponding to a
continuous-time Markov process with a finite state space. In the latter context a proba-
bility measureπ is stationary if and only if it satisfiesπQ = 0, i.e., if πQv = 0 for all
vectorsv. Likewise, here a measureF is stationary if and only if it satisfiesFAh = 0
for all (vector-valued) functionsh, i.e.,∫ ∞

0

∫ ∞
0

FT (dx,dy)(Ah)(x, y) = 0 (4.53)

(see, e.g., [16, p. 239]). According to theorem 4.1 a unique limiting distribution exists
for anya ∈ (0, a1), regardless of the value ofβ. Moreover, we know that fora ∈ (0, a0)

this distribution is given by the specific distribution we found in the first two steps. We
will designate this distribution here byFa to emphasize its dependence on the parameter
a. Because the limiting distribution is stationary, we can conclude that for any suitable
functionh and anya ∈ (0, a0), equation (4.53) holds forF = Fa, that is,

0=PCKa(h1− h0)(0,K)+
∫ K

0
σ0(y)

(
a(h1− h0)(0, y)+ c+ ∂h0

∂y
(0, y)

)
dy

+
∫ Kd+/c−

0
σ1(x)

(
−b(h1− h0)(x,K − c−x/d+)+ d+ ∂h1

∂x
(x,K − c−x/d+)

− c− ∂h1

∂y
(x,K − c−x/d+)

)
dx

+
∫ K

0

∫ (K−y)d+/c−

0

[
f0(x, y)

(
a(h1− h0)(x, y) − d− ∂h0

∂x
(x, y) − c− ∂h0

∂y
(x, y)

)
+ f1(x, y)

(
−b(h1− h0)(x, y) + d+ ∂h1

∂x
(x, y) − c− ∂h1

∂y
(x, y)

)]
dx dy

+
∫ ∞

0

[
µ0(x)

(
a(h1− h0)(x,0)− d0

−
∂h0

∂x
(x,0)

)
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+µ1(x)

(
− b(h1− h0)(x,0)+ d0

+
∂h1

∂x
(x,0)

)]
dx. (4.54)

To show that the above is also true fora ∈ [a0, a1), we prove the following lemma,
in which we will show that for certaina ∈ C the right hand side of (4.54) is a complex
analytic function ofa. Because it is hard to check whether the normalization constant
PCK is an analytic function ofa, we setPCK = 1 for a moment, thereby ignoring the
probabilistic interpretation ofFa (and ofPCK itself).

Lemma 4.7. For any entire functionh :C2→ C2, the function

a 7→
∫ ∞

0

∫ ∞
0

FTa (dx,dy)(Ah)(x, y)

with PCK = 1 is complex analytic fora ∈ {z ∈ C | Re(z) < a1}.

Proof. First we note that the singularities of the functionsH0 andH1 in (4.19) and
(4.20) can be removed by writing

H0(x, y)= 1

2

∞∑
k=0

(z/4)k

k!(k + 1)! , (4.55)

H1(x, y)=H0(x, y) + ωxyγ4

∞∑
k=0

(z/4)k

k!(k + 2)! , (4.56)

with

z = ω(y2 + 2xyγ
) = 4bd−d+

c2−(d− + d+)2
(
y2+ 2xyγ

)
a.

Since the power series in (4.55) and (4.56) are uniformly converging for allz ∈ C, they
are entire functions ofz. Furthermore, since

(a, u) 7→ 4bd−d+
c2−(d− + d+)2

au2,

is an entire function ofa for fixedu, but also ofu for fixeda (a, u ∈ C), and since sums,
products and concatenations of entire functions are again entire functions, we conclude
that the integrand in (4.13) is also an entire function ofa (for fixedu) and ofu (for fixed
a). But then the integral in (4.13), and hence(a, y) 7→ σ0(y) is an entire function ofa
for fixedy and ofy for fixeda, since the same holds in general for

(a, y) 7→
∫ y

0
g(a, u)du

wheng is an entire function ofa for fixedu and ofu for fixeda. Similar statements can
be shown to hold forσ1, f0, f1, J1, J2, µ0 andµ1.
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The lemma now follows readily because the partial derivatives ofh are entire func-
tions ofx for fixed y and ofy for fixed x. The restriction to Re(a) < a1 is due to the
divergence of the last integral in (4.54) for other values ofa. �

By analytic continuation we can now conclude that equation (4.54) holds, for any
a ∈ C with Re(a) < a1, even for generalPCK . In particular, fora real,a ∈ [a0, a1), we
findFa to be a stationary distribution, when we choosePCK such that the total probability
is 1, as before. The fact thatFa is theonly stationary distribution is immediate, since
we know that the process has a unique limiting distribution, regardless of the initial
distribution.

This concludes the proof of theorem 4.2.

5. Special cases and generalizations

In this section we elaborate on the feedback model, and discuss some special cases and
generalizations.

5.1. The normalizing constantPCK and the distribution ofC

Although it is in principle possible to derive the normalizing constantPCK in theorem 4.2
by a laborious process of integration and summation, this is practically not a desirable
option. Fortunately, it is possible, using the techniques of sections 2 and 3 to find the
distribution ofC, and hence alsoPCK = P[C = K]. We remark that functions and
parameters that are not introduced in this section are the same as in theorem 4.2, e.g.,
H0, β, ω, etcetera.

Recall our assumption thatM0 = 0, D0 = 0 andC0 = 0, and letI0, I1, . . . and
B0, B1, . . . denote respectively the lengths of theidle periods and thebusyperiods of
(Dt). Note that{Ii} is an i.i.d. sequence with generic idle periodI that is exponentially
distributed with parametera, whereas the sequence{Bi} is not i.i.d. LetZk be the content
of the credit buffer at the end of thekth idle period,k = 0,1, . . . . Finally, let Y be
distributed as a busy period of(Dt) when we forget the effect of an empty credit buffer.
Specifically, the Laplace–Stieltjes transformLY of Y is given by the right hand side of
(2.6), i.e.,

LY (s) = b

s + b − λ1(s)d+
,

with λ1 as in (2.7).
The behaviour of the process{Zk} is given byZ0 = c+I0 and

Zk+1 = K −
[
K − c+Ik+1− [Zk − c−Bk]+

]+
, k = 0,1, . . . , (5.1)

where[x]+ denotes the maximum ofx and 0. Direct analysis of (5.1) is problematic,
because the variablesBk are not independent, and their distributions are unknown. For-
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tunately, the distribution ofZk is the same as that ofZ′k when we defineZ′0 = c+I0

and

Z′k+1 = K −
[
K − c+Ik+1− [Z′k − c−Yk]+

]+
, k = 0,1, . . . , (5.2)

where{Ik} and{Yk} are independent i.i.d. sequences distributed asI andY respectively.
This identifiesZ′k as the virtual waiting time immediately after arrival of a customer in
aG/M/1-queue with uniformly bounded virtual waiting time.Specifically, the capacity
of the waiting room isK, the interarrival times arec−Y0, c−Y1, . . . and the service times
c+I0, c+I1, . . . . The distribution of the stationary content immediately after an arrival,
Z say, is given byU(z) in (5.104) of [12, Part III] or in (6.10) of [11]. In our case,

P[Z 6 y] =
{

1− G(K − y)
G(K)

, y ∈ [0,K),
1, y ∈ [K,∞),

(5.3)

where the functionG is the inverse Laplace transform of the function

LG(s) = 1

1− sc+/a − LY(sc−) . (5.4)

Laplace inversion ofLG shows that the distribution ofZ is given by

P[Z = K] =PZK,
P[Z ∈ dy] = fZ(y)dy, y ∈ (0,K),

where

PZK =
(

1+ a

c+β
(
1− e−βK

)+ c−νω
2β

∫ K

0

(
e−β(K−u) − 1

)
e−θuH0(0, u)du

)−1

, (5.5)

and

fZ(y) = e−β(K−y)
(
a

c+
− c−νω

2

∫ K−y

0
e−(θ−β)uH0(0, u)du

)
. (5.6)

It follows that the Laplace transformLZ of Z is given by

LZ(s)=PZK
{

e−sK + 1

s − β
{

e−βK
(
a

c+
− c−νω

2

∫ K

0
e−(θ−β)uH0(0, u)du

)
−e−sK

(
a

c+
− c−νω

2

∫ K

0
e(s−θ)uH0(0, u)du

)}}
. (5.7)

The second step in the methodology of sections 2 and 3 was the derivation of an
algebraic expression for

qi(p, s) = E1{M=i}e−pD−sC, i = 0,1.
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For the feedback model it can be shown, using arguments analogous to the ones leading
to lemma 2.3, that

q(p, s) = H(p, s)

detA(p, s)

 f (p, s)

q0(p,∞)
q1(p,∞)

 , (5.8)

whereA(p, s) is the same as in (3.16),

H(p, s) =
(−b − d+p + c−s −b

−a −a + d−p + c−s
)
B(p, s),

with

B(p, s) =
(

1 d−p − d0−p + c−s 0
0 0 −d+p + d0+p + c−s

)
,

and

f (p, s) = (d−p + c+s + c−s)q0(∞, s)− c+se−sKPCK.
We recall that for fixedp > 0 the zeros of detA(p, s) satisfys1(p) 6 0 6 s2(p) (see
figure 7). As in remark 2.4 we can now use the fact thatq(p, s) must remain bounded
for all p > 0. Notice in particular that this must also be true whens 6 0, since then
qi(p, s) < Ee−sC < e−sK . Thus, we are able to expressq0(p,∞) andq1(p,∞) in terms
of f1(p) = f (p, s1(p)) andf2(p) = f (p, s2(p)), and find

q0(p,∞)= (f1(p)+ f2(p))(b + d0+p)g(p)+ c−(f1(p)− f2(p))g0(p)

2p(bd0− − ad0+ + d0−d0+p)g(p)
,

q1(p,∞)= a (f1(p)+ f2(p))g(p)+ c−(f1(p)− f2(p))g1(p)

2p(bd0− − ad0+ + d0−d0+p)g(p)
,

where

g(p)= c−
√
(−a − b + d−p − d+p)2− 4p(−bd− + ad+ − d−d+p),

g0(p)= ab + b(d− + d+)p + d0
+p(b − a)+ d0

+p
2(d− + d+),

and

g1(p) = a + b + d−p − 2d0
−p + d+p.

Evaluating (5.8) forp = 0 and summingq0 andq1 now gives,

Ee−sC = c− + c+
c−

q0(∞, s)− c+
c−
PCKe−sK

+ a(c−d− + c−d+ + c+d+)− bc+d−
c−(bd0− − ad0+)

q0(∞,0)

+ c+PCK
c−(bd0− − ad0+)

(
ae−(a+b)K/c−

(
d− − d0

− + d+ − d0
+
)+ bd− − ad+)
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− a(c− + c+)(d− − d
0− + d+ − d0+)

c−(bd0− − ad0+)
q0(∞, (a + b)/c−).

Copying the arguments following (2.14) we observe that the conditional distribution of
(C|D = 0), is the same as the distribution ofZ. Consequently,

q0(∞, s) = P[D = 0]LZ(s), (5.9)

and in particular

P[C = K] = PZKP[D = 0]. (5.10)

Combining these results, gives the following proposition.

Proposition 5.1. The Laplace–Stieltjes transform ofC is given by

LC(s) = Ee−sC = P[D = 0]
{
c− + c+
c−

LZ(s)− c+
c−
PZKe−sK + χ

c−

}
, (5.11)

whereLZ(s), the Laplace–Stieltjes transform ofZ, is given in (5.7),PZK is given in
(5.5) and

χ = {a(c−d− + c−d+ + c+d+)− bc+d− + c+(bd− − ad+)PZK
+ ac+

(
d− − d0

− + d+ − d0
+
)
PZKe−(a+b)K/c−

− a(c− + c+)
(
d− − d0

− + d+ − d0
+
)
LZ
(
(a + b)/c−

)}
/
(
bd0
− − ad0

+
)
. (5.12)

Inversion of (5.11) is not difficult, since we know the distribution ofZ. In particular
we find the following by takings = 0 ands → ∞ respectively in equation (5.11), and
using (5.10).

Corollary 5.2. The following equalities hold,

P[D = 0] = c−
c− + c+(1− PZK)+ χ , (5.13)

P[C = 0] = χ

c− + c+(1− PZK)+ χ , (5.14)

PCK = c−PZK
c− + c+(1− PZK)+ χ , (5.15)

wherePZK andχ are given in (5.5) and (5.12) respectively.

5.2. Application 1: Two-level traffic shaper

In this section we will indicate how a two-level traffic shaper may be analyzed using
the general feedback model. Instead of six parametersd+, d−, d0+, d0−, c+, c− for the
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behaviour of both buffers, we take three parametersv0, v1 andv2 such thatv0 > v1 >

v2 > 0 and choose

d+ = v0− v1, d− = v1,

d0+ = v0− v2, d0− = v2,

c+ = v2, c− = v1− v2.

(5.16)

The interpretation is the following. The data buffer only receives data when the on-off
source is in the on-state, at ratev0. The output rate isv1 if credit is available andv2(< v1)

otherwise. We can think ofv2 as the long term average rate at which the data buffer is
allowed to send. The ratev1 is a higher rate that may be used for a limited period of
time, namely as long as credit is available. The particular values ofc+ andc− can be
explained by arguing that whenever the data buffer is not sending (i.e., when it is empty),
the “unused capacity”v2 is saved up for later use in the form of credit, while this credit is
consumed when the data buffer is sending at high rate; the “extra capacity”v1−v2 that is
used by the data buffer is taken from the credit buffer. Note that the above is equivalent
to saying that the credit buffer is constantly filled at ratev2, while it it is drained at the
same rate as the data buffer (0,v1 or v2) at any time. For further information on two-level
traffic shapers and their relation to leaky bucket traffic shapers we refer to [3] and the
references mentioned there.

Simple expressions for the probabilities in corollary 5.2 are easily obtained for this
case in an alternative way. Balancing the long term input and output of the credit buffer
yields

v2(1− PCK) = v1P[D > 0, C > 0] + v2P[D > 0, C = 0], (5.17)

while a similar balance for the data buffer gives

a

a + bv0 = v1P[D > 0, C > 0] + v2P[D > 0, C = 0]. (5.18)

It follows immediately that

PCK = 1− a

a + b
v0

v2
. (5.19)

Using (5.10) we now also find a simple expression forP[D = 0],

P[D = 0] = P−1
ZK

(
1− a

a + b
v0

v2

)
, (5.20)

while from (5.17) or (5.18) we find

P[C = 0] = v1

v1− v2

{(
1− a

a + b
v0

v1

)
− P−1

ZK

(
1− a

a + b
v0

v2

)}
. (5.21)

The constantPZK in these expressions can clearly be expressed in the parameters of the
model by combining (5.5) with (5.16).

The fact thatPCK is independent ofK andv1, may be surprising at first sight, but
this can easily be understood by considering the process(Mt ,Dt−Ct+K). This process
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describes an elementary Markov-modulated fluid system in which an infinitely large
fluid buffer receives fluid at ratev0 at times whenMt = 1, while there is a constant output
ratev2, as long asDt−Ct+K > 0. Since the credit buffer can be completely filled only
at times when the data buffer is empty, we have thatP[C = K] = P[D − C +K = 0].
This leads to an alternative derivation of (5.19) in which the parametersK andv1 clearly
do not play any role. Also, this viewpoint gives us a means to find the expected data
buffer occupancy, since we can derive that

E[D − C +K] = av0

a + b
v0− v2

bv2− a(v0 − v2)
,

while EC follows from (5.11).

5.3. Application 2: Tandem queue with finite buffer(s)

A second way in which the general model may be applied is given by the following
choice of parameters. Again we have three parameters for the flow rates,v0, v1 andv2,
such thatv0 > v1 > v2 > 0, but now we take

d+ = d0+ = v0 − v1, d− = d0− = v1,

c+ = v2, c− = v1− v2.
(5.22)

Notice that the feedback has disappeared now, sinced+ = d0+ andd− = d0−. Furthermore
we define the process(SCt) by SCt ≡ K−Ct . We can interpretSCt as the content of a buffer
which receives fluid from the data buffer at ratev1 wheneverDt > 0 andSCt < K, while
it releases fluid at ratev2 whenSCt > 0. Hence the process(Mt,Dt , SCt) describes a fluid
tandem queue as in section 2, but with finite second buffer.

Since the process(Mt,Dt ) is not influenced by(SCt), it follows from (2.5) or di-
rectly from the balance equation for the data buffer, that

P[D = 0] = 1− a

a + b
v0

v1
. (5.23)

As a consequence, we immediately find from (5.10),

P[SC = 0] = PCK = PZKP[D = 0], (5.24)

and, from the balance equation for the second buffer,

P[SC = K] = P[C = 0] = 1− P[D = 0]
(

v1

v1− v2
− v2

v1− v2
PZK

)
, (5.25)

wherePZK can be found from (5.5) and (5.22).
In the following section we extend the (general) model to the case where the data

buffer is also finite, although it must in some sense be larger than the credit buffer.
This provides us with the stationary distribution for a tandem fluid queue in which both
buffers are finite, provided that the fluid rates are such that during long on-periods of the
fluid source, the second buffer will be completely filledbeforethe first buffer is.
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5.4. Extension: Finite data buffer

We shortly discuss the extension of the general feedback model in which both the credit
buffer and the data buffer have finite sizes,K andL respectively, while the rest of
the system remains unchanged, as in section 4. The process of interest is denoted as
(M

(L)
t ,D

(L)
t , C

(L)
t ). We will only consider the case for whichL > Kd+/c−, since then

the analysis carries through almost identically. The main result is stated in the following
theorem, where all quantities without superscript(L) are the same as in section 4.

Theorem 5.3. If the size of the data buffer isL > Kd+/c− andα > 0, the stationary
joint distributionF(L) of the process(M(L)

t ,D
(L)
t , C

(L)
t ) satisfies

F
(L)
i (dx,dy)=ψFi(dx,dy), 06 x < L, y > 0, i = 0,1, (5.26)

F
(L)
1

({L}, {0})=ψ d0−
b
µ0(L), (5.27)

with

ψ =
(

1− a + b
αb

µ0(L)

)−1

.

The proof is omitted for brevity; an outline can be found in [25]. Obviously, the
stationary distribution can also be shown to exist whenα 6 0. If we setPCK = 1, the
expressions for the various densities remain valid for some normalization constantψ (if
we replaceη0(u) in (4.21) byau/d0− for α = 0). Since theorem 4.2 does not hold for this
case, it is more difficult to find an explicit expression for this normalization constant.
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