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Abstract. Motivated by recent traffic control models in ATM systems, we analyse three closely related
systems of fluid queues, each consisting of two consecutive reservoirs, in which the first reservoir is fed by
a two-state (on and off) Markov source. The first system is an ordinary two-node fluid tandem queue. Hence
the output of the first reservoir forms the input to the second one. The second system is dual to the first one,
in the sense that the second reservoir accumulates fluid when the first reseevojtisand releases fluid
otherwise. In these models both reservoirs have infinite capacities. The third model is similar to the second
one, however the second reservoir is now finite. Furthermore, a feedback mechanism is active, such that
the rates at which the first reservoir fills or depletes depend on the state (empty or nonempty) of the second
reservoir.

The models are analysed by means of Markov processes and regenerative processes in combination with
truncation, level crossing and other techniques. The extensive calculations were facilitated by the use of
computer algebra. This approach leads to closed-form solutions to the steady-state joint distribution of the
content of the two reservoirs in each of the models.
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1. Introduction

Fluid queues have been widely accepted as convenient and sound models for various
modern telecommunication and manufacturing systems. However, the analys of
works of fluid queues — which is the subject of this paper — has thus far obtained lit-
tle attention when compared to the vast amount of literature on networks of ordinary
gueueing systems. This may be explained by the difficulty in finding exact expressions.
In particular, these models generally do not have product-form solutions. Proofs of this
unfortunate fact may be found in [18,19] for fluid networks with deterministic linear in-
ternal flows and external nondecreasing Lévy input. Nonetheless, for some networks of
this type, progress has been made in determining the steady-state behaviour (apart from
structural results as they appear in [18,19] and references mentioned therein). In [21]
ann-node tandem fluid queue with nondecreasing Lévy input into the first reservoir has
been analyzed, while in [17] a generalization is studied where (Lévy) input into other
nodes of the tandem is allowed as well. Both models were analyzed using a convenient
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martingale, leading to explicit expressions for (the Laplace-transform of) the stationary
joint distribution of the contents of two reservoirs.

However, not much work has been done for networks with external fluid input(s).

It seems that determining the steady-state behaviour is more difficult in this case. To our
knowledge, explicit solutions have thus far been found only for a Markov-modulated
two-buffer model with priorities which was considered in [10,27]. The latter reference
contains an explicit solution for the steady-state distribution, Laplace-transformed in
one variable. Finally we mention the techniques presented in [20] for fluid reservoirs in
a random environment, which can be fruitfully applied to particular parts of fluid net-
works, typically leading to marginal distributions, see [2] and the marginal distribution
results in the current paper.

In this paper we consider three closely related fluid systems, each consisting of two
fluid reservoirs regulated by a two-state (on and off) continuous time Markov process,
(M) say. In all models the first buffer is filled up (depleted) whengwéy is in the on
state (off state), so that the differences between the systems are mainly in the different
behaviour of the second buffer.

In the first system the content of the second reservoir increases at times when the
first reservoir is nonempty, while it decreases otherwise (unless also the second reservoir
itself is empty). We will naturally refer to this fluid model as ttemdem model The
second model will be referred to as ttieal model It may be regarded as “dual” to the
tandem model, in the sense that the content of the second reservoir behaves opposite to
that in the tandem model. Specifically, it increases when the first reservoir is empty, and
decreases otherwise. Notice that both the tandem model and its dual fit into the context
of Markov-modulated fluid models: the second fluid reservoir is driven by a Markov
process(M;, D,), whereD; is the content of the first reservoir at time In the third
model, which we will call thefeedback modetkhis is no longer the case. The second
reservoir is regulated by the procesd;, D;) in the same way as in the dual system.
However, an additional “feedback” mechanism, as introduced in [25], is in force such
that the rates at which the first reservoir fills up or is depleted depend on whether the
second reservoir is empty or not. A second difference between this model and the other
two is that the second reservoir has a finite skze Thus, whenever this reservoir is
filling up (due to the first reservoir being empty, as in the dual model) it will do so at
most until the levelK is reached, after which it will remain at that level (until the first
reservoir starts filling up again).

For all three systems, we are interested in the joint steady-state distribution of the
content of the reservoirs and the state of the regulating Markov process. In each case, this
joint distribution can be viewed as the stationary distribution of some multi-dimensional
Markov process. For the derivation of the three distributions we use a variety of tech-
niques from Markov process theory, renewal theory, Laplace transformation, stochastic
integration and standard queueing theory. Due to the complicated nature of the genera-
tor equations of the multi-dimensional Markov processes mentioned above and the vast
amount of algebra involved, we found this approach to be convenient. However, various
(sub)results in the analysis can undoubtedly be obtained via other approaches as well,
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such as employing rate conservation principles, see [24], or applying martingale results,
see remark 2.5.

Our motivation for studying the various models developed historically as follows.
First, the tandem model was an obvious candidate for analysis since it is likely the most
simple non-trivial fluidsystenwith obvious applications. It was known that the analysis
of the tandem system was closely related to the analysis of the waiting time in an M/G/1
gueue. Drawing an analogy with the M/G/1 versus the G/M/1 queue, it was expected
that the dual system would have a much more simple solution than the tandem model.
Parallel investigations in [3] (see also [13]) supported this view. In addition, these in-
vestigations suggested that the dual model could be used to model sotealial/el
traffic shapersn ATM models, to control the burstiness of traffic that is presented to
an ATM communication network, see [3] and references mentioned there. However,
under typical circumstances the dual system would be unstable. For these traffic shap-
ing applications it is essential that the second reservoir be finite. The effort involved in
finding explicit solutions for finite buffer models led to a new set of techniques, which
eventually led to the feedback model. It was realized that the feedback mechanism could
be incorporated into the model without complicating the analysis too much. Moreover,
when the feedback mechanism is turned off, the model may be seen as a generalization
of both the tandem and dual model.

Since the present paper will remain on a theoretical level, we will not elaborate
on the relation between feedback models and traffic shaping. For more on this, we re-
fer to [3], where another feedback model was introduced, that may be considered as a
special case of the current one. Another valuable paper on more practical aspects is [5],
where the same model as our current feedback model is considered. The (discretization)
method employed there works fast and finds close approximations for various perfor-
mance measures.

The rest of the paper is organized as follows. In section 2 the tandem model is
analysed. First, we give some preliminary results for the behaviour of the first reser-
voir and we derive the stability conditions for the system. Then we present a stochastic
decomposition result for the second reservoir. In particular this leads to the limiting dis-
tribution of the content of this reservagiventhat the first reservoir is empty. We then
use this information to derive the stationary joint distribution of the pro€®ssD;, C,)
for the tandem model. The solution is found by solving a Laplace-transformed version
of the stationary forward equations, and is given in the form of several densities in terms
of integrals of modified Bessel functions of the first kind. We illustrate that, despite the
complexity of these expressions, it is not hard to employ them for numerical compu-
tations. For the dual model we follow a similar approach in section 3, leading to the
earlier mentioned simple solution. In section 4 the feedback model is analysed, using
the relation between the feedback model and the tandem model and various additional
arguments. Again we illustrate that numerical results can be obtained, although with
more computational effort. Finally, we sketch some special cases and generalizations of
the feedback model in section 5, most notably one that describes a fluid tandem queue
as in the first part of the paper, but with finite reservoirs.
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Notation and terminology

In the context of traffic shaping in ATM networks, the content of the first reservoir is
called data, while the second reservoir contains an entity called credit. In the feedback
model of section 4 we will therefore refer to the first reservoir agita bufferand to

the second one as theedit buffer This explains our convention, used throughout the
paper, to use the letters andc for quantities referring to the first and second buffer,
respectively. From now on we will use the wdbdffer rather than reservoir or (fluid)
queue.

2. Tandem model

Consider a fluid system consisting of two infinitely large buffers, with conténtand
C, at timer respectively, and a continuous-time Markov procgds), which is charac-
terized by its state spad6, 1} and itsQ-matrix,

—da a
Q_( b —b)' (2.1)

The first buffer is driven byM,) in the following manner. Whe,) is in state 1, the
content of the first buffer increases at constant dateotherwise it decreases at rate,
provided that it is not empty. The second buffer is driven by the first one, in such a way
that its content increases at ratewhen the first buffer is not empty, and else decreases
at ratec_, provided that the second buffer is not empty. We notedhat_, d, andd_
arepositivenumbers.

A schematic overview of the behaviour of the interaction between the processes
(M,), (D,) and(C;) is given in figure 1, while a realization of the proces$fs) and
(C,) is given in figure 2. The parameter values used here and in other figures pertaining
to the tandem model ate= 1, = 2,d, = 2,d_ = 6,c¢; = 3andc_ = 2.5.

For simplicity, we assume from now on thiy = 1 andDg = Co = 0. Observe
that the stochastic proce&¥,, D,, C,) is a Markov process with state spg€e1} x S,
where

S = {(x,y) eR|x >O,y>xc+/d+}.

+d+ if My =1 +cq if Dy >0

T T
©)— (@) | |
—d_ lfMtZO —C_ lthZO
1\/[t Dt Ct

Figure 1. Interaction between the subsystems of the tandem system.
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Figure 2. Realization of the buffer content processes for the tandem model.

The model may be used to describe a fluid version of the classical tandem model:
two fluid buffers with constant release rates are placed in series, the first buffer is fed by
an exponential on-off source while the second one is fed by the output of the first. In this
cased_ = c, + c_; notice however, that our model can handle slightly more general
scenarios.

As an aside we mention that this model is related to that of [26], see also [4] and
[14], where a fluid reservoir is driven by an/Ml/1 queue. In fact, when we létand
d, grow to infinity such that their quotient remains constant and identify parameters
appropriately, the second buffer here corresponds to the buffer in [26], while the content
of the first buffer is the amount of work in the M /1 queue.

Our aim is to derive the joint stationary distribution of the Markov process
(M;, D;, C,). In order to do this, we first give some preliminaries, namely some known
results on the stationary behaviour of the first buffer, a theorem regarding stability issues
and a stochastic decomposition result for the second buffer.

Behaviour of the first buffer

It is well known (see, e.qg., [6]) that when
bd_ —ad, >0, (2.2)
the stationary distribution of the proced3,) exists and is given by
PID<x]=1-p,€%, x>0 (2.3)
Herex is called thedecay rateand is given by

b a

a:Z_dT’

(2.4)
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while theutilization p, is given by

. a d, + d+
a+b d
Furthermore it is clear that the idle periods of the first buffer have an exponential

distribution with parametes. Also it is not difficult to derive, e.g., using example 3.1
in [1], that the Laplace transforthp of the generic busy periof, say, is given by

Pd : (2.5)

Lp(s) = 1435900 o (2.6)
a
where
_ns) — VEG)
)\1(5‘) = 72d,d+ s (27)
with

n(s)=bd_ —ad, +s(d- —d,),
£(s) = (bd_ — ad)* + 25(d_ + d)(bd_ + ad,) + s*(d_ + d;)*.
Notice thath,(s) < 0fors > 0. It follows that when (2.2) holds,

_d_+d,
 bd_ —ad,’

When (2.2) does not hold, the expected length of a busy cycle is infinite.

EB (2.8)

Stability

Clearly, the proceséM,, D,, C,) is regenerative. As regeneration epochs we may, and
henceforth will, choose the times whéM,, D,, C,) is in state(1, 0, 0), including time
0. LetT denote the first strictly positive regeneration epoch, see figure 2. For stability,
the point at issue is under which condition the expectatiofi i finite. This makes the
Markov processM,, D,, C,) positive recurrent. The limiting distribution of the regener-
ative processM;, D,, C,) is then the same as the stationary distributioiéf, D, C;).

The question whether a stationary distribution of the pro¢éss D;, C;) indeed
exists can be answered using the fact that the second buffer can be viewed as a fluid
gueue in a “two-state random environment”, as described in [20]. In such a model, the
buffer content is driven by an i.i.d. sequeng®;, U;)} of down- and up-times, such
that the content increases at down-times and decreases at up-times, see also [9]. In our
case, the second buffer is driven by the two-state environment with down- and up-times
{(B;, I)} of busy and idle periods of the first buffer. The proof of the following theorem
relates the behaviour of an embedded process to that of the waiting time in a G/G/1
queue, along the lines of [20].
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Theorem 2.1. The procesgM,, D,, C,) converges in distribution to a proper random
vector(M, D, C), ast — oo, if and only if

bd_
L) (2.9)
C+d7 + C,d+ + C+d+ C_

Proof. Let {(B;, I;)} denote the sequence of busy and idle periods of the first buffer,
forming the two-state random environment that drives the second buffer, as described
above. LetZ; be the content of the second buffer at the beginning oftthéusy period

of the first buffer; = 0,1, 2,.... Obviously, the proces&Z;} is regenerative. Analo-
gous to the proof of theorem 3 of [20] the expected regeneration time is finite if and only
if

c_EIl > c,EB, (2.10)

wherel andB are generic idle and busy periods of the first buffer, respectively. In view
of (2.8) this is equivalent with (2.9). Notice that (2.2) is implied by (2.9).

The proof is concluded by applying Wald’s lemma to show that the expected length
of a regeneration epoch of the regenerative pro¢&ssD;, C,) is finite as well. O

We will henceforth assume (2.9) to be satisfied and interpiét D, C) as
the state of the system in “steady-state”. Its distribution will be denotedF by
(Fo(dx, dy), F1(dx, dy)), where

Fi(dx,dy) =P[M =i, D € dx, C e dy]
=lim P[M, =i, D, e dx, C, edyl, ie{0,1}. (2.11)

t—00

Stochastic decomposition

Next, we describe another consequence of the fact that the second buffer may be viewed
as a fluid queue in a random environment, as described above.

Let Z;, as before, be the content of the second buffer at the beginning ofithe
busy period of the first buffer, = 0, 1, 2, .... From theorem 3 of [20F; converges in
distribution to a random variablg, asi — oo. This Z is distributed as the steady-state
waiting time in an M/G/1 queue with interarrival times which are distributecd_aimes
the idle period of the first buffer and service times which are distributed disnes the
busy period of the first buffer. In particular, we have, witland defined as before,

Z4(Z+c,B—c I, (2.12)

whereZ, B and/ are mutually independent, and whéxét denotes the maximum af
and 0.
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Thus, using the Pollaczek—Khintchine formula and (2.6) and (2.8), the Laplace
transform ofZ (L, say) is given by
bc_d_ —a(cyd_ +c_dy+cidy) s
bd_ —ad, (c— +cy)s +d_r(cys)’
where the function.; is given in (2.7).

By theorem 4 and theorem 5 of [20] the distribution®fhas the followingsto-
chastic decompositign

L(s) = (2.13)

— *1+ —
C i { [Z +C+B c1 ] ) Wp 1 Pd» (214)

Z+C+B*, W.p.pd,

whereB, B*, I'* andZ are mutually independent, arRf and I* are distributed as the
residual lifetimes ofB and I, respectively.

From (2.12) and the fact thdt £ | we conclude that the conditional distribution
of (C|D = 0) is the same as the distribution @f and hence given by (2.13). We will
use this information in the following section to reach our final goal. As an aside we
mention that the marginal distribution 6f can now be found, either by inversion of the
Laplace transforni of C, which is clearly given by

Le(s)= (1= pa)Lz(s) + paLz(s)[1— Ly(cys)]/[EBc,s]

bd_ —ad, —A
=Lz(s) ady ~Aalees) (2.15)
a+b LS
or by inversion of (2.13) and using
c_+c
PIC >yl = (11— py) ~PiZ >yl y=>0 (2.16)

C+
which follows from corollary 3 in [20]. The result is given in (2.34)—(2.35).

Joint stationary distribution

We are now ready to derive the joint distributiénof the random vecto(M, D, C).

The form of the distribution is easily established (see also figure 2). As a consequence
of theorem 2.1, the stat®, 0, 0) is a positive recurrent state of the Markov process
(M, D;, C;). This state is entered via the 4¢0, 0, y) | y > 0} and left via the set
{L,x,y) | x =20,y = xcy/d,}. Moreover, the sef0, 1} x {(x,y) | y < xc,/d,}is

never entered. These considerations suggestthatof the following form,

Fo({0,0}) =1— p, (2.17)
FO({O}vdy) :00())) dy’ y = 0, (218)
Fi(dx, ¢y /dydx) =o1(x)dx, x >0, (2.19)

F;(dx,dy) = fi(x,y)dxdy, x>0, y>xc,/d,, i=0,1 (2.20)

for some constant. and certain densitiegy, o1, fo and f3.
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Since Fy({0, 0}) = P[C = 0], it follows that p,. is the utilization of the second
buffer, and can be found from a flow balance equation,

(et +e)d=pg) =c_(1—pe).
Using (2.5) this immediately leads to

_a c_+cpd +d;
Ca+b c d.

pe (2.21)
The following theorem gives explicit expressions for the densities.

Theorem 2.2. For the tandem model, the stationary joint distributionf the process
(M,, D,, C,) is of the form (2.17)—(2.20), where

y
oo(y) = (1 - /oc)t=:’3y(ci - / e =P Ho(0, 1) du), (2.22)
- 0
01(x) = (1 — p) e e/, (2.23)
a
folx,y) =1 — p.)vbie_(b/d”x YO o—esam g ( y— Sy
) C d_ + d+ b ) d+

A ~Br—(er/di)x) I o
+ C—e 1+ xwy e Ho(x, u) du
- 0

y—(cq/d)x
_—C+2Uwe—ﬂ<y—<c+/d+>x> / o e‘(e‘ﬂ)”Hl(x,u)du), (2.24)
0

a _ _ S C+
1X,y) =L —0c)— * ol X,y — —
filx,y) =1 — po)—e (b/dy)x wyxe OG—(e+/dX) g [ 5 y x

dy dy

A Br—(er/di)n) I o
+ C—e 1+ xwy e Ho(x, u) du
- 0

y—(cy/dy)x
_—C+2Uwe—ﬂ<y—<c+/d+>x> / o e‘(e‘ﬂ)”Hl(x,u)du)- (2.25)
0

Here, the functiongly and H; are given by

Li(Vo (2 + 2xyy))

Ho(x,y) = 2.26
olx, y) 502 207) (2.26)
2
Yo 4 xyy
Hi(x,y) = [y - Ho(x, y)
Xyy I()(\/a)(y2 + nyy)) + 12(\/w(y2 + nyy)) (2.27)

y2 + 2xyy 2
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wherel; is the modified Bessel function of the first kind of order.e.,

2\ e (z/2%
L == — 2.28
@ (2) ;k!(k—i-i)! (2.28)
Furthermoreyp. is given in (2.21), and
bd_
B= _a (2.29)
C+d_ + C_d+ + C+d+ C_
0 — M, (2.30)
cy(d-+dy)
d_+d
b T dy , (2.31)
C+d_ + C_d+ + C+d+
dabd_d
w= 27+ (2.32)
2(d_+d;)?
d_+d
_cxld-tdy) (2.33)
2d_d,

Clearly, it is not difficult to obtain numerical results from theorem 2.2. In figures 3
and 4 the various densities are shown for the parameter values given at the beginning of
this section. Notice tha, the decay rate of the second buffer is rather small in this case,

B ~ 0.014.
For completeness we mention that the distribution of the pro€dsgiven by

P[C =0]=1- p,, (2.34)
c_ + Cy
P[C € dy]= oo(y)dy, y=>0. (2.35)
C+

Expression (2.35) can be found either by using (2.15) or (2.16) as indicated before, or
more easily from theorem 2.2 by using level crossing arguments.

For the proof of theorem 2.2 it remains to prove the actual form of the various
densities. We do so in three consecutive steps.

0.015 0.015

Figure 3. The densitiegy andoy as functions ofy andx, respectively.
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Figure 4. The densitiegy and f; as functions ofc andy.

Densityog

The conditional distribution ofC | D = 0) has Laplace—Stieltjes transforfr, given
in (2.13). Thus,

Ee*“1ip=g) = (1 — ps)Lz(s). (2.36)
Applying the shifts — s — 6, with 6 as in (2.30), yields after some algebra
—Vs2—wcyiv
Ee =01, o = (1—p)(1 a _S add
© =0 = p‘)< T G—0-p) s—@-p 2)

with 8, w andv given in (2.29), (2.32) and (2.31), respectively. We now finpdoy

inverting the above expression, using the fact that the inverse Laplace transform of the
functions > s — +/s2 — w is the function

L(yVo)
- 2.37
= o e (2.37)

see for example [15, (28) on p. 235].

Densityo,

The expected sojourn time of the procé#, C,) in the set{(x,y) | c;.x = d.J,

X < x} during the first regeneration peri¢@, 7] can be found by conditioning on the
time the process stays on the lif@, y) | x > 0, y = xc, /d,} afterr = 0. Since this

time is exponentially distributed with parametgiit follows after some calculations and
applying the theory of regenerative processes, that

1— efbx/d+
P[C+D = d+C, D < X] = W

Since we also have that

1—p =PB[C =0 = —=
Pe= =" Er 0
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we obtain

1- c
Plc,D=d,C, D <x]= %(1 — e b/, (2.38)

Finally, by differentiating with respect to, we find (2.24).

Densitiesfy and f1

This last step is the most difficult one. Our approach is to determine the denfsitiesd

f1 via a Laplace-transformed version of the stationary Kolmogorov forward equations
for the Markov processM;, D;, C;). Thereto, we define the joint Laplace transforgps

by
qi(pv S) = El{M=i}eipDiscv i € {07 1}7 p,s 2 0. (239)

We will write q(p, s) for the column vector with entrieg(p, s) andg:(p, s).

Lemma 2.3. The vectorq(p, s) satisfies:

_ qo(00, 5)
Ap.ap5) = B (1052, (2.40)
where
_(—a+d_p—cys b
A(p,s)_( a —d+p—c+s—b)’
and

B(p.s) = (dp _CSS —c_s cos) .

Proof. We only prove the first row of the matrix equation, the second row can be proved
in a similar manner.
Consider the stochastic process&s(r), ¢ > 0), i € {0, 1}, defined by

Xi(t) = e PPy .

Notice that both these processes are of bounded variation. We denote the continu-
ous part of(X;(¢)) by (X{(¢)). In particular, we have far > 0,

Xo(t) = Xo(0) + X§() + D [Xo(u) — Xo(u—)]. (2.41)

O<u<t

We now concentrate ofX(¢)). The derivative of X(¢)) is easily found,

d_
EXB(Z‘) = Xo(1)(d-plip,=0y — c+81ip, =0y + c—sLip,—0.c,>0)), t>0. (2.42)
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Moreover, the pure jump part 6Xo(z)) can be written in stochastic integral form,

> [t ~ o] = - [ Xowo)da,+ [ XwodB. (249

O<u<t

where(A;) and (B;) denote the counting processes that count the number of jumps of
(M,) from state 0 to 1 and from 1 to O, respectively. The stochastic intensities at time

of (A,;) and(B,) are given byaly,_o andbly,—1;, respectively. Becaus&o(u—)) is

a left-continuous adapted process, we have by the theory of stochastic integration, (see,
e.g., [23]) that

13 t
E/ Xo(u—)dA, = E/ Xo(u—)alyy,—oy du, (2.44)
0 0

and a similar result holds for the other integral in (2.43). If we now take expectations in
(2.41) and use (2.42)—(2.44), we arrive at

t

t
EXo(l) = EXo(O) + dp/ EXo(u)l{Du>o} du — CtS / EXo(u)l{Du >0} du
0 0

t t t
+c_s / EXo(u)1p,~0.c,~0ydu — a f EXo(u) du + b/ EX1(u) du.
0 0 0

Now differentiate both sides of the previous equation with respecttal lett — oc.
By the continuity of Laplace transforms, we obtain

0=d_p(qo(p, s) — qo(00, 5)) — c15(qo(p. s) — qo(c0, 5))
+ c_s(go(00, 5) — go(00, 00)) — aqo(p, s) + bqi(p, s).

The first row of (2.40) now follows. a

Notice that the quantities in the right-hand side of (2.40) are known. In particular,
using (2.36) and (2.13), we have

c_s —acysEB

go(00, s) = (1 — pa) (2.45)

c_s —a+aLg(cys)’
whereEB is given in (2.8) and_ in (2.6). Furthermore, we fingy(co, co) = P[M =
0,D=0,C=0]=P[C =0] =1-— p.with p. given in (2.21).

Solvingq(p, s) from equation (2.40) yields for app, s > 0,

(—d_p+c_s+cys)qo(00,5) —c_s(1— p.)
detA(p, s)

q1(p,s) =a (2.46)

and

b+dip+cys
qo(p,s) = %ql(p,s),
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which, after some algebra, reduces to

_ b+dip+tecys
qo(p,s) = d+(p+k2(c+s))qo(oo,S) (2.47)
and
a
= 2.48
q1(p, s) R xz(c+s))q°(°o’ s), (2.48)
where
_n(s) +/&(s)

with n(s) and&(s) asin (2.7), and whergy (oo, s) is given in (2.45).

It remains to be shown howyb(x, y) and f1(x, y) can be found frongq(p, s) and
q1(p, s). First, inverse transformation @f(p, s) andg1(p, s) with respect tgp yields
the functions
b—dira(cis) +cys

dy

e—)»g(curs)xqo(oo’ S) ,

go(s) = (50(X) + e““””)qo(oo, 5),

) a
§) = —
81 4,

wheredy denotes Dirac’s delta function at 0. Since the distributignonly has mass
on S, we know that for fixedx > 0, g; must be the Laplace transform of a (gen-
eralized) function on the intervdkc, /d,, co). Therefore, by multiplyingg,(s) with
exp(sxc, /d.) we obtain the Laplace transform (s) = exp(sxc. /d.)g1(s) of a func-
tion 41 on [0, co). After some calculations we find,

hi(s —0) = (1 — pc)ier(b/cu)xexy(sf s2—w)
d

a cLvs —A/s
x(l

n __——“’)
cs—O—-Pp) 2 s—0-p)

We can inverti (s — 6) straightforwardly (still for fixedr > 0) by using the following
two facts. First, the function

2

y = Ho(x, y)xwy,
is the inverse Laplace transform of
s > expxy (s — Vs —w)) — 1,
see, e.g., [15, p. 250, (41)]. Second, by differentiatifigwith respect toc we see that
y = wHi(x, y),

is the inverse Laplace transform of

s> (s —Vs2—ow)explxy(s — Vs —w)).



JOINT DISTRIBUTIONS FOR INTERACTING FLUID QUEUES 113

It follows thath1(y) = So(y)o1(x) + fi(x, y +xcy/dy), with g and f1 as in (2.24) and
(2.25). i
Similarly, for fixedx > 0, lethg(s) = exp(sxcy /dy)go(s). We find

h b
ho(s — 0) = (1 — p.)ve bldxgryis— 52—w) a
ols —0)=(1—pc)ve ((d F T
c,c+( VT a) - be_cyv s — /52— w)
20" "V T T ad v dys—0-p) )

Notice that the terndo(x)go(oo, s) in go(s) does not play a role, since we assum®
be strictly positive. Inversion okg finally yields ho(y) = fo(x,y + xci/dy). This
completes the proof of theorem 2.2.

Remark 2.4.1t is interesting to note thatg(oco,s) can be derived directly from
lemma 2.3 using a “boundedness” argument. For this, write

detA(p,s) = —d_d.(p + r1(cs8)) (p + Aa(cys)),

wherel1(s) andi(s) are given in (2.7) and (2.49); recall that(s) < 0 < Ax(s) fors >
0. Since for allp, s > 0,q(p, s) must remairboundedin particular forp = —11(c,s),
the numerator in (2.46) must be zero on the{get s)|s > 0, p = —A1(cys)}. This
gives a linear equation i (oo, s), from which (2.45) follows.

Remark 2.5.We mention that the main result for the tandem model can also be found
by first conditioning on the on-off source being off, so that we obtain a model with
two-dimensional Lévy input, after which we can proceed along the lines of [21]. Alter-
natively, we can find lemma 2.3 using a two-dimensional martingale as in [8].

3. Dual model

In this model we also consider a fluid system consisting of two infinitely large buffers.
The first buffer is regulated bg,) in the same way as in the tandem model; the transi-
tion intensities of(M,) are again given by (from 0 to 1) andb (from 1 to 0). The only
difference with the tandem model is that the content of the second buffer increases at
ratec, when the first buffer iempty and decreases at rate otherwise, provided that

it is not empty.

A schematic overview of the behaviour of the three subsystems is given in figure 5,
while a realization of the processép;) and (C;) is given in figure 6. This time we
assume thatMy, Do, Co) = (0, 0, 0).

As for the tandem model, the stochastic proagds D;, C;) is a Markov process.

Its state space is simply given B, 1} xR, xR, . Obviously itis a regenerative process.
As regeneration epochs we choose the times (including 0) at wiM&hD,, C,) =
(0,0, 0).
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Figure 5. Interaction between the subsystems of the dual system.
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Figure 6. Realization of the buffer content processes for the dual model.
Stability

Next, in analogy to theorem 2.1, we establish the conditions under which the limiting
distribution of the proces&V,, D;, C;) exists.

Consider the embedded procdss} describing the content of the second buffer
at the beginning of théle periods of the first buffer. While for the tandem case, the
embedded process is related to the actual waiting time in 48/4-queue (with inter-
arrival times distributed as_7 and service times distributed asB), we now have an
embedded process that is related to the waiting time inM &-queue (with interarrival
times distributed as_B and service times distributed as’).

Theorem 3.1. The procesgM,, D,, C,) converges in distribution to a proper random
vector(M, D, C), ast — oo, if and only if
b
2 _42 .o (3.1)
dy d_
and
a bd_

Cy C_d_ + C_d+ + C+d+ =

0. (3.2)
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Proof. The proof can be copied from the proof of theorem 2.1, apart from (2.10), which
is replaced by

¢c_EB > ¢, EI (3.3)

Note also that now (3.1) is not implied by (3.2), so that we need two conditions for
stability. 0

We will henceforth assume conditions (3.1) and (3.2) to be satisfied. The interpre-
tation of (M, D, C) and the definition of the limiting distributioR are the same as for
the tandem model case, see (2.11).

Stochastic decomposition

Repeating the arguments used in the tandem model, the embedded gG¢esmn-
verges in distribution to a proper random variaBlevhich is distributed as the waiting
time in a GM/1 queue. Specifically, by theorems 1X.1.2(b) and 1X.1.3 of [7], we have

P[Z <zl=1— (1 — Bcy/a)e P-.

Here g is the unique strictly positive solution of the equation=1Ee’Y, whereU is
distributed ag, I —c_ B andI andB are generic idle and busy periods of the first buffer
respectively. It follows thaB satisfies

. a b
" a— By Peo +b—r(Beo)dy
which is readily solved to give

a bd_
p=— — . (3.4)
Ct C_d_ + C_d+ + C+d+
Moreover, the distribution of has the followingstochastic decomposition
d | [Z+cel —c_B*1", w.p.pq,
= i Z+c I*, w.p. 1— pg, (3-5)

similar to (2.14). Herep, is the same as for the tandem model, see (2.5). Siricand
I have the same distribution, we have

—sC _ _ ﬂﬁ _IBC+ 13 a _ IB
E(e |D_O)_(a+(1 a)ﬂﬂ)ﬁm_ﬂﬂ. (3.6)

In other words, the conditional distribution & | D = 0) is exponential with intensity
B. Notice thatg > 0.

Joint stationary distribution

We now derive the limiting distributiof of the processM;, D;, C;).
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Theorem 3.2. For the dual model, the stationary joint distributiénof the process
(M;, D;, C,) is of the form

Fo({0}, dy) = oo(y) dy, y >0,
F,-(dx, {0}) = u; (%) dx, x>0,i €{0,1}, (3.7)
F:(d—x»d)’)zﬁ(x»)’)dXd)” x’y>07 iE{O,l},

where the densitiesy, 1; and f;, i € {0, 1}, are given by

oo(y) = (1 — pa) e, (3.8)
a _ bcy _
=(1- —e — e 3.9
po(x) = ( Pd)(d d Ted Tod ) (3.9)
a
uﬂx)=(1——aﬂar(€”*——e*XL (3.10)
+
be, B ey
=(1- gt h 3.11
fox. ) == pa)—- e d o : (3.11)
a :
file ) =1 - ppy L ety (3.12)
d.
and the constants,, « andg are given in (2.5), (2.4) and (3.4) respectively, and
_d_ d _ bc_
(mqptl Tl AC ¢ . (3.13)
d,d+ C+d+ C7d7 + C7d+ + C+d+

Proof. The proof is similar to that of the tandem model, except that in this case much

more (computer) algebra is involved. The basic structure of the proof is that we first

derive a set of algebraic equations for the Laplace transforf) a6 in lemma 2.3, and

then use (3.6) and a “boundedness” argument, as in remark 2.4, to solve these equations.
Letq(p, s) be the vector with componenig(p, s) andg1(p, s), given by

qi(p,s) = El{M=i}epr7SC, ie€{0,1}, p,s>=0. (3.14)
Similar to the proof of lemma 2.3 we can show th@p, s) satisfies:
qo(00, s)
A(p, $)d(p,s) = B(p,s) | qo(p,o0) |, (3.15)
q1(p, 00)
with
_(—a+d_p+c_s b
A(p,s) = ( a “b—d,p +C_S) , (3.16)
and

d_p+cis+cscs O ) . (3.17)

B(p,s):( 0 0 c_s

(Note thatgg(oco, co) = 0.) Consequently, for ap, s > 0,
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H , CIO(OO,S)
q(pv S) = & CIO(P» OO) ) (318)
detA(p, s) g1(p, 00)
where
_(—=b—dip+c_s —b
H<p’s)_( —a —a+dp+cs>B(p’s)'

Next, we use (3.6), by which we have

go(00, s) = (1 — pa) (3.19)

s+ B
It remains to determineg; (p, o©), i € {0, 1}, which we will do via an argument that is
similar to the argument in remark 2.4. Latp) ands,(p) denote the two roots of the
guadratic equation det(p, s) = 0, see figure 7. We note that both roots are real and
that for the smallest; say, we have;(—«) = s1(0) = 0, wherex is given in (2.4). By
writing out (3.18) we find thago(p, s) is of the form

do(p.s) = ca(p)s® + ca(p)s? + ca(p)s + co(p) ’ (3.20)
(s = s1(p)) (s — s2(p)) (s + B)

where thec; are unknown but analytic functions ¢f, at least forp > —a because
gi(p, o0) < Ee PP anda is the decay rate of the first buffer. We now fixsuch that
—a < p < 0. Because fos > 0 we have that(p,s) < Ee ?P we can conclude
thatgo(p, s) must be bounded far > 0. Moreover, since it is not difficult to show that
s1(p) > 0 ands,(p) > 0 (see figure 7), it follows that the numerator in (3.20) must be
zero fors = s1(p) and fors = s,(p). This provides us with two linearly independent
equations fogg(p, o) andgi(p, o). As an aside we note that takigg(p, s) instead
of go(p, s) in the reasoning above leads to an equivalent set of equations. After quite a
bit of algebra, the solution can be written as

bC+ +ac_ + C+d+p ; —
c_d_ 4+ cidy pP+a)p+0)
a {—«a

di (p+a)(p+7¢)’

go(p, 00) = (1 — pa) (3.21)

q1(p, 00) = (1 — pa) (3.22)

with ¢ given in (3.13).

s

\_//

Figure 7. The roots, ands, as functions ofp.
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The Laplace transformg andg; now follow from (3.18), (3.19), (3.21) and (3.22)
and take, after some strenuous rewriting, the form

(p+8)(p+b/d)+s(ac_ +bey +cydip)/(did-)
, ) =(1-— ,(3.23
qo(p,s) =1 — pa)p TR (3.23)

a p+¢+s(cpdy +c-d-)/(drd)
(p,s) =0 - pa)B— . 3.24
r T TGO+ (324
Equation (3.6) gives (3.8), and inverse Laplace transformation of (3.21) and (3.22)
yields (3.9) and (3.10). In order to obtain the densitfeswe first rewriteg; (p, s) to
a form in which we can recognize (the transforms of) the densities we just found. The
result is given by

o ac_ +bcy +cidip
qo(p.s)=(1 /’d)ﬂ{d+d_(p+a)(p+€)

b 1 1
e c ) } (3.25)
c.d_+cdi+cidip+¢)s+8

a [ - B }
) =1 — pg)— + . 3.26
AP )= pd)d+{<p+a>(p+¢) P +OG+h) (3:26)
By inversion of these expressions, we now easily find (3.11) and (3.12). O

Remark 3.3.The reason that the dual model has such a remarkably simple solution when
compared to the tandem model, is that there is only one state in the regulating process
(M;, D,) for which the content of the second buffer increases, namely (0,0). As a con-
sequence, the solution dependsyomia one exponential term, namely&. In [22]
another solution procedure is applied to solve the dual model, illustrating this phenom-
enon.

4. Feedback model

Our last model is related to both the tandem and the dual model but has two essentially
different characteristics: a finite (second) buffer and a feedback mechanism.

The system consists of two buffers: an infinitely laidgta bufferand a finite
credit bufferof size K. Again, the whole system is regulated by a continuous-time
Markov procesgM,), with state spac¢0, 1} and transition intensities (from 0 to 1)
andb (from 1 to 0). When the credit buffer isot emptythe content of the data buffer
increases at raté, when (M,) is in state 1 and decreases at rdtewhen (M,) is in
state 0, provided that the data buffer is not empty. However, when the credit uffer
empty, the up and down rates al%anddE, instead o, andd_, respectively.

Furthermore, the content of the credit buffer increases atcrat@hen the data
buffer is empty (provided that the credit buffer is not completely filled), and de-
creases at rate_ otherwise (provided that the credit buffer is not empty). Notice that
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+d+ lf ]\It = 1, Ct > 0
+d0 i My =1,C, =0 K ter if Dy =0

T T

(0) ——— (1) l l
—d_ My =0, >0 N e it D> 0
—d® i M, =0, C, =0

M, D, C,

Figure 8. Interaction between the procesgds), (D;) and(Cy).
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d} A\d°
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; data T T t
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Figure 9. Realization of the buffer content processes.

dy,d_, d?r, d°, ¢4 andc_ are positive numbers, as in the other models and that the mean-
ing of the symbols is again reflected in the notatidridr data,c for credit).

We let D, andC; denote the content of the data and credit buffer at tirmespec-
tively, and observe that the stochastic proa@gs D;, C;) is a Markov process, despite
the presence of feedback. A schematic overview of the interaction bet@gen(D,)
and(C,) is given in figure 8.

As for the dual model we assume th@ty, Dg, Co) = (0, 0, 0). A realization of
the procesgD;, C,) is given in figure 9. The parameter values used here and in other
figures pertaining to this model are= 1,6 = 2,d; = 2,d_ = 6,d% = 4,d° = 3,
¢y =25c.=3andk =3.

Inspection of the behaviour of the system, see figure 9, shows that the state space
of (M;, D,, C,) is given by{0, 1} x S with

S=5,US,, 4.1)
S1={(,»)10<y<K,0<x < (K —y)dy/c_}, (4.2)
S2={(x,y) | y=0,x >0} (4.3)

Stability

Itis clear that(M,, D,, C,) is a regenerative process; as regeneration epochs we choose
the timest when simultaneousiy;, = 0, D, = 0 andC, = 0. Hences = Ois a



120 D.P. KROESE, W.R.W. SCHEINHARDT

regeneration epoch and we denote the next ong,bye.,
T=min{t >0|M,=0,D, =0, C, =0} (4.4)
We also define
T, =min{r > 0| C, = 0}. (4.5)

(See figure 9 for a visualization.)
Establishing a sufficient and necessary condition for stability of the feedback model
(or the finiteness oET') is not much more difficult than for the tandem and dual model.

Theorem 4.1. The procesgM;, D;, C;) converges in distribution to a proper random
vector(M, D, C), ast — oo, if and only if
b a
o0=———=
d? d°

> 0. (4.6)

Proof. It can be shown by Wald’s lemma that

1 K
ET, <EN|—+— ) < o0,
K c_

whereN is the number of times that the proc€ss, C,) visits the positivey-axis during
[0, T1]. FurthermoreE[T — T;] is finite if and only if (4.6) holds. For details see [25].

We will henceforth assume condition (4.6) to be satisfied. As in the previous mod-
els we will interpret(M, D, C) as the state of the system in stationarity. Its distribution
F is given byF(dx, dy) = (Fp(dx, dy), F;(dx, dy)) with

Fi(dx,dy) =P[M =i, D € dx, C € dy]
= lim P[M, =i, D, edx,C, edy], i€{01}. 4.7)

Our primary interest is in finding this distribution.

Joint stationary distribution

In principle it should be possible to carry out the analysis of the Markov process
(M;, D,, C,) in a similar manner as for the tandem and dual system. That is, we derive
an algebraic expression for the Laplace transfaygip, s) andg1(p, s) of the stationary
distribution, and try to resolve any unknown function by finding an embedded process
related to the waiting time in a &/1 queue, or by using boundedness arguments as in
remark 2.4. However, due to the presence of feedback, we may no longer view the sec-
ond buffer as an ordinary fluid queue in a two-state random environment. In this section,
we take a completely different approach, using truncation and level crossing arguments.
The (known) stationary distribution for the tandem queue will be a starting point in the
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o z

Figure 10. The stationary distribution.

analysis. However, the methodology of sections 2 and 3 will not be completely use-
less for the present model. In fact, in section 5 we will derive an explicit expression

for the distribution of the marginal stationary distribution of the credit buffer, using this
methodology.

When we lets denote the interior of, we expeckF to be of the following form,

Fo({0}, {K}) = Pck. . (4.8)
Fi(dx,dy) = fi(x, y)dxdy, (x,y) eSS, i=0,1 (4.9)

Fo({0}, dy) = oo(y) dy, y € [0, K], (4.10)

Fi(dx, K —c_/d dx) =o1(x) dx, x €0, Kdy/c_], (4.11)
Fi(dx, {0}) = p; (x) dx, x €[0,00), i =0, 1 (4.12)

Observe that the notatioA- ¢ for the probability mass irf0, O, K) is an abbreviation
for P[C = K]. In figure 10 the distributiof is rendered graphically.

The following theorem states that the form above is correct and gives explicit ex-
pressions for the densities.

Theorem 4.2. For the feedback model, the stationary joint distributioaf the process
(M;, D;, C,) is of the form (4.8)—(4.12), where the various densities are given as follows.

_v K-y
oo(y) = PCKe“’(K‘»")(i - / e =P Hy(0, u) du), (4.13)
Cy 2 0
a
o1(x) = PCKd—e*b/d% (4.14)
+
o, y) = Peg 226 gwians ( BV ok —y—cpaompy (¢ g~y - Sy
’ d_+d. b ’ d
A BK—y—(c_[d)x) Koy x o g
+ —€ : I+ xwy e Ho(x, u) du
C+ 0

cC_Vw

K—y—(c_/dy)x
- g PE—y—(c-d)x) / e—<9—ﬂ>“H1(x,u)du>, (4.15)
0
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a X C_
fi(x,y) = Pox—e O/ (w)/xee(’(y(‘/d”x)Ho(X, K—y-— —X)
d+ d+

a K—y—(c-/dy)x
i _e—ﬂ(K—y—(C/d+)X){ 1+ xwy / e O=PuHy(x, u) du}
Ct 0

c_vw K—y—(c—/dy)x
_ > @ PK—y—(c-/d)x) / e 0=Pu Hi(x, u) du), (4.16)
0

—axX

Ho() = - { A AKdfe) + m(xAKd. fe ) JoenKd. feo) ). (4.17)

0

mi(x) = EMO(X) -

1X< Cc—
SR ) g (). (4.18)
dy

Here, the constan®-x may be obtained by normalization and the functiéfysand H,
are given by

(Vo (y?+ 2xyy))
Vo2 +2yy)

2
Yy +xyy
————" Ho(x, y)
ye+ 2xyy

xyy 10(\/60()’24-2)6)’)/)) +12(v a)(y2+2xyy))

y2 + 2xyy 2

Ho(x, y) = (4.19)

Hl(x7 y) =

, (4.20)

where; is the modified Bessel function of the first kind of ordess before. Further-
more,xAKd, /c_ = min(x, Kd, /c_),

a(e™ — 1)
no(u) = T (4.21)
n(u) =no(u) + €, (4.22)
20 =c- [ [ foa )+ 1au) (. 0) (4.23)
u=0
Kdy/c-
s =e [ w0+ i O] dukouKdfe)  (424)
and finally,
b a
o= E P (4.25)
bd_ a
ﬁ=c_d_+c_d++c+d+ o (4.26)
g_ bd +ad, .27

Cc_(d_+dy)’
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Figure 11. The densitiegy ando as functions ofy andx, respectively.

Figure 12. The densitief and f; as functions ofc andy.
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Figure 13. The densitigsg andu1 as functions of.

e dabd_d, , (4.28)
c?(d- +d;)?
d_+d
= s , (4.29)
C_d_ + C_d+ + C+d+
_ c_(d-+dy) (4.30)
2d_d, '

To illustrate that calculation of the densities in theorem 4.2 is numerically feasible,
some graphs are shown in figures 11-13, where the parameter values are the same as in
figure 9. The most difficult part of the numerical calculations is the normalization. For
figures 11-13 we used the explicit expressionfek in (5.15).
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It is interesting to note that the result in theorem 4.2 simplifies considerably when
we let K — oo. In fact it takes the form of that in theorem 3.2, the only difference
being the particular form of the constant coefficients of the exponential terms. Clearly,
this difference vanishes when we remove the feedback by taking ;. andd® = d_.

The proof of theorem 4.2 requires that we split the state spacg x § of the
Markov process in two parts, nam€gl, 1} x S; and{0, 1} x S,, whereS; and S, are
defined in (4.2) and (4.3), see also figure 14(a). The proof is presented in three steps. In
the first step we will find= on the sef0, 1} x S, for the case8 > 0 by relating it to the
stationary distribution of a tandem fluid queue. In the second step, wé& fimdthe set
{0, 1} x S,. Finally, in the third step we show that the results are also valid for parameter
values for whichg < 0.

Densitiesog, o1, foand f1
In this step we will establish a close relation between the model under consideration and
the tandem model. Hereto, le¥;, D;, 5,) be the stochastic process that corresponds to
the tandem model with the following parameters. We identify the parameteérsd.,
andd_ with the parameters of the same name in the current model. Furthermore we will
choose the parametars andc_ to be equal to the parametersandc, , respectively, of
the current model, in other words the symbols are interchanged. In this and the following
subsection we will assume that the stability condition for this tandem model holds; since
this does not cover all parameter values for which the current model is stable, we will lift
this restriction in the last step. The condition can be found from (2.9) by interchanging
the symbols:, andc_ and is given by

bd_ a

—— >0, (4.31)
C,d, + C,d+ + C+d+ Cy

or, equivalently,8 > 0, whereg is given in (4.26). Theorem 2.1 now tells us that a sta-
tiorpry dLstribution fgr the procesd;, D;, C;) exists. We will denote this distribution
by F = (Fo(dx, dy), F1(dx, dy)), where

Fi(dv,dy) =P[M =i,D e dx, C € dy]
= lim P[M, =i, D; € dx, Credy], i€{01). (4.32)

Clearlyﬁ can be found from theorem 2.2, again by interchangin@ndc_.

To find the announced relation between the procesd&sD;, C;) and (M;, D;,
C,) we consider yet another stochastic proc@sg, whereC, is the amount of free
space in the credit buffer at timeHence,C, = K — C;. In figure 14 the respective state
spaces of the process@;, C,), (D;, C;) and(D;, C,) are given.

We will now compare two processes. On the one hand we have the process
(M,, D,, C,), with state spac€D, 1} x (S1 U S»), whereS; = {(x, y) | (x, K —y) € S;}.
On the other hand we have the proceéss, D,, C,) with state spacg0, 1} x S where
S={(x.y |y >00<x < yd/c_}. Itis clear thaiS can be written a8 = 5; U Sy,
with S, = {(x,y) | y > K,0 < x < yd,/c_}. Moreover, the behaviour of the two
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Y Y Y

(a)S=51U52 (b)S=§1U§2
Figure 14. The sets, S ands.

processes of0, 1} x Sy is identical, and both processes enter this set in the same way
if « > 0 (namely via staté€0, 0, K) with probability one). It is therefore possible to
express the distribution af\/, D, C)on{0,1} x S; (and hence that ofM, D, C) on

{0, 1} x §;) in terms of F, the stationary distribution afM,, D,, C,). This is done in the
following proposition.

Proposition 4.3. If « > 0 andB > 0, the stationary joint distributioR of the process
(M,, D,, C,) on the sef0, 1} x Sy is given by

F(dx,dy) = kFi(dx, K —dy), (x,y) €Sy, i =01 (4.33)
The constant is given by
‘ P[C <K] ET

" PIC <K] ET’ (4.34)

whereT (T) is the length of a generic regeneration period of the procéssD;, C,)
(the processM;, D,, C,)) if we choose stat€0, 0, K) as regeneration state.

Proof. We assumex, 8 > 0 and consider figures 14(b) and 14(c). The choice of
(0, 0, K) as regeneration state for the proce®, D, C,) entails that during any regen-
eration period this process first sojourngn1} x Sy, for a time period that is distributed
asT; (which was defined in (4.5)), while during the remainder of such a regeneration
period it stays in{0, 1} x S,, with sojourn time distributed a6 — 7;. A similar ob-
servation can be made for the procéss, D,, C,): first it resides in{0, 1} x S, with
sojourn time distributed a’z;i say, after which it remains if0, 1} x 3}, for a time period
distributed as’ — 7;. Moreover, the pathwise behaviour of both processes in the time
interval (0, 71) on {0, 1} x S, is identical. Hence, we have for asyc {0, 1} x Si,

P[(M,D,C) e A|(D,C)eSi]=P[(M,D,C)eAl|(D,C)eSi],
or
_PU(D.C) € 8]

P[(M,D,C) e A]= PLD.2) e 5

P[(M,D,C) € A]
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ET,/ET ~ ~
- mp[w, D,C) e Al =kP[(M,D,C) € A].
Finally, since
Fi(dx,dy) =P[M =i,Dedx,Ce K —dy], i=0,1,
we easily find the stated results. O

It is now a matter of combining proposition 4.3 and theorem 2.2 (with the symbols
c+ andc_ interchanged), to find (4.8)—(4.11) and (4.13)—(4.16), when we kake=
Fo({0}, {K}) = kFo({0}, {O}).

Densitiesug and p1q

Having found the distribution ofM,, D,, C;) on{0, 1} x S; (apart from normalization)

in the previous subsection, we proceed to derive the dengiiesnd ., in (4.12). To do

so, we first need to prove two lemmas. The first one gives us the entrance distriGution
of the processM,, D,, C,) into the sef0, 1} x S, that is,

Gi(d.X)=P[MT1=i, DTlEd.X], O<X<Kd+/C,, l=o, 1,
with 71 as in (4.5).

Lemma 4.4. The joint distributionG of the stochastic variablgf7,, Dr,) is given by

Go(dx) = ETC_fo(x, O) dx, (435)
G1(dv) =ET{c_ fi(x, 0) + 8ga, /e (X)or(Kdy /c_)} dx, (4.36)

wheredgq, .. denotes the Dirac measure Ktl, /c_, andoy, fo and f; are given in
(4.14)—(4.16).

Proof. We consider the seti} x (0,x] x (0,¢). The sojourn timeV;(x, ¢) of
(M;, D;, C,) in this set during the intervdl, T'] is equal tos/c_ + o(e) if the event
{Mr, =i, Dy, < x} occurs, and is @) otherwise. In other words, we have

&
Vilx, e) = C—l{MTI:i,Drlgx} + 0o(e).
If we take expectations, divide BT and apply the Key Renewal theorem, we obtain
PM=i, D<x,0<C<g¢]= %P[Ma =i, Dy, < x]+0(e).
Cc_

We now find forx < Kd, /c_,

G;((0,x]) = c_ET lim }/E/xf,-(u,v) dudv = c_ET /xf,-(u,O) 78
¢e=0¢& Jo Jo 0

while an extra ternETo1(Kd, /c_) appears if = 1 andx = Kd,/c_. The result is
now immediate. U
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X u X "

Figure 15. The probabilitiegg(«, x) and p (u, x) for fixed x.

For the second lemma, we defing(x) as the number of times that the process
(M;, D,, C,) visits (i, x, 0) before it reache@), 0, 0) during the first regeneration period.
Also, foru > 0andj =0, 1, we let

Pju[-1=P[- | My, = j, D1y = u],
and

IE"j,u['] =[E[ | MTl =/ DTl = ul.

Lemma 4.5. The conditional expectatioris; , N; (x) are given by

E;uNi(x) =€*n;jm), u<x, j=01,
EjuNo(x) = | EjyNo(t) = € m(x), u>x, j=01,  (437)
E; Ni(x) = € no(x), u>x, j=0,1

where
a(e —1)
8 =7 4.38
no(u) a ( )
bd° e — ad? .
ni(u) = W = no(u) + €, (4.39)

ande = b/d°% — a/d°.

Proof. First, we define
pj(u,x) =P;,[D, = x for somer € (T, T1].

By conditioning on the first transition epoch of the procgs), we obtain the following
relations foru < x,

u/d®
po(u, x) = / p1(u —d®v, x)ae™ " dv,
0

(x—u)/d?
p1(u, x) = / po(u +d2v, x)be " dv + g be—wy/dl
0

while for u > x we havep;(u, x) = 1.



128 D.P. KROESE, W.R.W. SCHEINHARDT

Using the transformations +— u — d°v andv +— u + dﬁv, respectively, and
differentiating with respect ta gives the following differential equation for the vector

pu, x) = (po(u, x), p1(u, )" inu,

d _(—a/d® a/d®
B_Mp(u’x)_(—b/dg b/df: pu,x), 0<u<ux,

with boundary conditiongo(0, x) = 0 andp,(x, x) = 1. It follows that the probabili-
tiesp;(u, x) are given by

pj(u,x)=1, u>x,j=0,1, (4.40)
piu,x)=n;u)/nix), u<x, j=0,1, (4.41)
see figure 15. Since the conditional distributiom\@f(x) is given by
Pju[No(x) = 0] =1~ p;(u,x),
P;u[No(x) = k] = p;u, x)(1— po(x, x))(po(x, x))k_l, k=12 ...,
we have

pj(u, x)

Ei,uNO(x) = m-

Furthermore, we have

[ EjuNo(x), if x > u,
E; ., Ni(x) = :EI,MNO(X) -1, ifx<u.

The desired result now follows immediately using (4.40) and (4.41). O
We are now ready to specify the densitiesi = 0, 1.
Proposition 4.6. If « > 0 andp > 0, the stationary joint distributioR of the process
(M,, D,, C,) on the sef0, 1} x S, is given by
Fi(dx,{0}) = wi(x)dx, x>0,i=0,1, (4.42)
whereuo andp; are given in (4.17).

Proof. First we denote the sojourn time of the procéss, D;, C;) in the set{i} x
[x, x + €] x {0} by W;(x, &), that is,

T
Wi(x,e) = / 1{Mr=i,Dt€[x,x+e]} dr.
t=T1

Clearly, we have

Ei,uji\éo(x)g + o), (4.43)

EjuWo(x, &)=
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EjuN1(x)

Ej,qu(-xv 8) = d_?_

e+ 0(e). (4.44)

Combining

_ 1 1 Kdy/c_
wi(x) = !@031[437 ;/M:O E; Wi(x,e)G;(du), x>0,i=0,1,

with (4.43) and (4.44) and then using lemmas 4.4 and 4.5 leads to the result. [

It is not difficult to check that propositions 4.3 and 4.6 together lead to the conclu-
sion that the distributiofr given in theorem 4.2 indeed is the stationary distribution of
the processM;, D,, C,) whena > 0 andg > 0.

As a side result in this subsection, we find an expressiof£for namelyET =
1/J>(0). This can be found by normalization of the distributiérin lemma 4.4.

The case8 <0

In this last step it remains to be shown that the distribution in theorem 4.2 not only
represents the stationary distribution of the proc¢édss D,, C,) wheno > 0 andg > 0,

as we showed in the previous steps, but also when0 andg < 0.

We fix the parameters, d., d_, d%, d°, c;, c_ andK, and leta vary. Then we
havea > 0if and only ifa < a; = bd® /d?, while 8 > 0 is equivalent tar < ag =
(bd_cy)/(c_d_ +c_dy +cidy), see figure 16. We will assume that < a;, otherwise
a > 0 would imply8 > 0.

In what follows we will need the infinitesimal generatot of the process
(M,, D,, C,), which is an operator mapping a functibn R> — R? to another func-
tion Ah:R? — R2, with, forx,y > 0,

1 ( Elhy, (D:, Cr) — ho(x, y) | Mo =0, Dg=x, Co=y]
(AM. )y =l (E[hM,(D,, C) — ha(x.¥) | Mo =1, Do=x, Co= y]) '

It is not difficult to see that

(Ah)(x, y) = Oh(x, y) + (Aoh)(x,y), x>0,0<y <K, (4.45)
(Ah)(0, y) = 0h(0, y) + (A1h)(0,y), O0<y <K, (4.46)
(Ah)(x, 0) = Qh(x, 0) + (A>h)(x,0), x > 0, (4.47)
(Ah)(0, K) = Qh(0, K) + (A3h)(0, K), (4.48)
a>0 a>0 a<0
>0 <0 B <0
0 ag aj )

Figure 16. Behaviour aof andg as functions of:.
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whereQ is the generator of the proceg¥,),

o (—d%o— c-3; d+%?c_%), (4.49)
A= (c+oa% o SC_%) , (4.50)
Ay = <_d§% d;%) , (4.51)
and |
Uy = (C+Oa% o EC_%) , (4.52)

The operatord can be viewed as a generalization of the Q-matrix corresponding to a
continuous-time Markov process with a finite state space. In the latter context a proba-
bility measurer is stationary if and only if it satisfies Q = 0, i.e., if z Qv = 0 for all
vectorsv. Likewise, here a measukeis stationary if and only if it satisfieB.Ah = 0

for all (vector-valued) functionh, i.e.,

/oo /oo F7 (dx, dy)(Ah)(x,y) =0 (4.53)
0 0

(see, e.g., [16, p. 239]). According to theorem 4.1 a unique limiting distribution exists
foranya € (0, a1), regardless of the value gf Moreover, we know that far € (0, ag)

this distribution is given by the specific distribution we found in the first two steps. We
will designate this distribution here iy, to emphasize its dependence on the parameter
a. Because the limiting distribution is stationary, we can conclude that for any suitable
functionh and anya € (0, ag), equation (4.53) holds fdf = F,, that is,

K dh
0= Pcka(hy — ho)(0, K) + /O oo(y) (a(hl — ho)(0, y) + C+8_y0(0’ y)) dy
Kdy/c- ahl
+ / al(x)<—b(h1 —ho)(x, K —c_x/dy) + d+a—x(x, K —c_x/dy)
0
— c,%(x, K — cx/d+)> dx
dy
K p(K—y)dy/c— dho dho
+/ / [fO(X,y)(a(hl—ho)(x»)’)—da—(x»)’)—c—(xa)’)>
o Jo X dy
oh oh
+ filx, y)(—b(h1 —ho)(x,y) + d+a—xl(x, y) — c_a—yl(x, y))] dx dy

+ / [m(x)(a(hl—ho)(x,m—dEa—h‘)(x,O))
0 0x
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+u1(x)(—b(h1—ho)(x,0) +d$%—};1(x,0)>] dx. (4.54)
To show that the above is also true foe [ag, a1), we prove the following lemma,
in which we will show that for certain € C the right hand side of (4.54) is a complex
analytic function ofa. Because it is hard to check whether the normalization constant
Pc is an analytic function of:, we setP-x = 1 for a moment, thereby ignoring the
probabilistic interpretation df, (and of Pc itself).

Lemma 4.7. For any entire functiom : C> — C?, the function
a> / / F1 (dx, dy)(Ah)(x, y)
0 0
with Pcx = 1is complex analytic for € {z € C | R&z) < a1}.

Proof. First we note that the singularities of the functioAg and H; in (4.19) and
(4.20) can be removed by writing

I (/4"
i - ) 4.55
o(x, y) 22 kD ( )
0xXyY (/D
H = H, E 4.
1(%)’) O(X, )’) + 4 s k'(k—f—Z)" ( 56)
with
4bd_d
=w(y? + 2xyy) = ———(y% + 2xyy)a.
z=o(y*+ 2xyy) cE(d,+d+)2(y + 2xyy)a

Since the power series in (4.55) and (4.56) are uniformly converging feralC, they
are entire functions of. Furthermore, since

4bd_d,

9 H Y . T 5
(a, u) 2t d+)2au

is an entire function of for fixed u, but also ofu for fixeda (a, u € C), and since sums,
products and concatenations of entire functions are again entire functions, we conclude
that the integrand in (4.13) is also an entire functior ¢for fixed ) and ofu (for fixed

a). But then the integral in (4.13), and henge y) — oo(y) is an entire function of

for fixed y and ofy for fixed a, since the same holds in general for

(a,y) = /yg(a, u) du
0

whenyg is an entire function of for fixed u and ofu for fixed a. Similar statements can
be shown to hold fos, fo, f1, J1, J2, o anduy.



132 D.P. KROESE, W.R.W. SCHEINHARDT

The lemma now follows readily because the partial derivativésart entire func-
tions of x for fixed y and ofy for fixed x. The restriction to R@) < a; is due to the
divergence of the last integral in (4.54) for other values.of O

By analytic continuation we can now conclude that equation (4.54) holds, for any
a € Cwith Re(a) < ay, even for generaPck. In particular, fora real,a € [ag, a1), Wwe
find F, to be a stationary distribution, when we chod%g: such that the total probability
is 1, as before. The fact th&, is theonly stationary distribution is immediate, since
we know that the process has a unique limiting distribution, regardless of the initial
distribution.

This concludes the proof of theorem 4.2.

5. Special cases and generalizations

In this section we elaborate on the feedback model, and discuss some special cases and
generalizations.

5.1. The normalizing constafic ¢ and the distribution oC

Although itis in principle possible to derive the normalizing constst in theorem 4.2
by a laborious process of integration and summation, this is practically not a desirable
option. Fortunately, it is possible, using the techniques of sections 2 and 3 to find the
distribution of C, and hence als®@-x = P[C = K]. We remark that functions and
parameters that are not introduced in this section are the same as in theorem 4.2, e.g.,
Hy, B, w, etcetera.

Recall our assumption thatfy = 0, Dy = 0 andCy = 0, and letl, I, ... and
By, B, ... denote respectively the lengths of tite periods and théusyperiods of
(D,). Note that{/;} is an i.i.d. sequence with generic idle peribthat is exponentially
distributed with parameter, whereas the sequen{®;} is noti.i.d. LetZ, be the content
of the credit buffer at the end of thih idle period,k = 0,1,.... Finally, letY be
distributed as a busy period 6b,) when we forget the effect of an empty credit buffer.
Specifically, the Laplace—Stieltjes transfoiip of Y is given by the right hand side of
(2.6), i.e.,

b

L = ,
r(s) s+ b — A(s)dy

with 1 asin (2.7).
The behaviour of the proce$Z,} is given byZy = ¢, Iy and

Zk+l =K — [K - C+Ik+1 - [Zk - C,Bk]+]+, k = O, 1, ey (51)

where[x]" denotes the maximum af and 0. Direct analysis of (5.1) is problematic,
because the variablg®, are not independent, and their distributions are unknown. For-
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tunately, the distribution of; is the same as that &, when we defineZ, = c, I
and

Zin=K—[K—-cilip1—1Z, —c-Yd*]", k=0,1,..., (5.2)

where{I,} and{Y,} are independent i.i.d. sequences distributedl asdY respectively.
This identifiesZ; as the virtual waiting time immediately after arrival of a customer in
a G/M/1-queue with uniformly bounded virtual waiting time.Specifically, the capacity
of the waiting room isK, the interarrival times are_Yg, c_Y1, ... and the service times
cily, ey 1q, ... The distribution of the stationary content immediately after an arrival,
Z say, is given byU (z) in (5.104) of [12, Part lll] or in (6.10) of [11]. In our case,

G(K —y)
Pz<y={1""G6m = YLK (5.3)
1, y € [K, 00),
where the functiorG is the inverse Laplace transform of the function
1
Lg(s) = (5.4)

1—scy/a— Ly(sc)
Laplace inversion oL ; shows that the distribution & is given by

P[Z = K] = Pz,
P[Z edy]= fz(y)dy, y e (0,K),

where
_ a -pKy , -V : _B(K —u) —Ou -
PZK =1+ —ﬂ(l—e )+7 (e —1)6 HO(O, l/t) du , (55)
C+ 0
and
K—y
fz(y) = e_ﬂ(K_y)<i — C_va / e =P Hy(0, u) du). (5.6)
Ctr 0

It follows that the Laplace transforth; of Z is given by

1 _ K
Lz(S) = PZK {e_SK + —ﬂ {e_'BK <i - v / e_(e_'B)MHO(O, I/l) du)
s —_—

Cy 2 0

K
_ ek (Cﬁ _ c,;a) / e“ =" Ho(0, u) du) } } (5.7)
+ 0

The second step in the methodology of sections 2 and 3 was the derivation of an
algebraic expression for

qi(p,s) =EBly_ye ¢ i=01
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For the feedback model it can be shown, using arguments analogous to the ones leading
to lemma 2.3, that

H(p,s) f(p,s)
WP = Getaco sl (qo<p, o) |, (5.8)
P q1(p, 00)
whereA(p, s) is the same as in (3.16),
_(—b—dip+c_s —b
H(p,S)—( _a _a+dp+cs>3(p,S),
with
_ 1d.p—d°p+c_s 0
B(p’s)_(o 0 —d+p+d9rp+c_s>’
and

F(p.s) = (d_p + cys + c_5)qo(00, s) — cyse™*K Peg.

We recall that for fixedp > 0 the zeros of ded(p, s) satisfysi(p) < 0 < s2(p) (see
figure 7). As in remark 2.4 we can now use the fact tiiat, s) must remain bounded
for all p > 0. Notice in particular that this must also be true wheg 0, since then
gi(p,s) < Ee~¢ < e*K_Thus, we are able to expregs p, oo) andg:(p, co) in terms

of fi(p) = f(p,s1(p)) and f2(p) = f(p, s2(p)), and find
_ (hp) + fa(p) (b + dYp)g(p) +c-(fi(p) = f2(p))go(p)

go(p, 00) 2p(bd® — ad® +d°d% p)g(p) ’
(5. 00) — o LAY+ Fo(P)E(P) + - (/u(p) = fo(P)gs(p)
q1(p, 00) = 2p(bd® — ad® +d°d% p)g(p) ’
where

g(p)=c_v(—a—b+d_p—d.p)?>—4p(—bd_ +ad, —d_d,p),
go(p)=ab +b(d_+d)p+dpb —a) +d2p*d- +d,),

and
gi(p)=a+b+d p—2d°p+dp.
Evaluating (5.8) forp = 0 and summingo andg; now gives,

SC=C,+C

C
Ee * go(c0, 5) — C—*PCKe*“(

a(c_d_+c_dy +cidy) —beid-
c_(bd® — ad?)

QO(OO’ 0)

cy Pck

+ m(ae‘(f&bm/o, (d_ 04 A, — d_?_) b — ad+)
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a(c- +cy)d-—d +d; —d?)
c_(bd°® — adfﬂ)

qo(o0, (a +b)/c_).

Copying the arguments following (2.14) we observe that the conditional distribution of
(C|D = 0), is the same as the distribution Bf Consequently,

qo(00, s) = P[D = O]Lz(s), (5.9)
and in particular

P[C = K] = PzxP[D = 0]. (5.10)
Combining these results, gives the following proposition.
Proposition 5.1. The Laplace—Stieltjes transform 6fis given by

c_ +ct

Lc(s) = Ee*¢ = P[D = 0]{ Ly(s) — C—+PZKe_SK + L}, (511)
C_ C

where L;(s), the Laplace—Stieltjes transform df, is given in (5.7),Pzx is given in
(5.5) and
X = {G(C,df + C,d+ + C+d+) — bC+d7 + C+(bd7 — Cld+)PZK
+acy(d-—d° +d, —d?) Pyge @K/
—a(c-+c)(d-—d° +dy —d2)Lz((a+b)/c_)}/(bd° — ad?). (5.12)
Inversion of (5.11) is not difficult, since we know the distributiornzofin particular

we find the following by taking = 0 ands — oo respectively in equation (5.11), and
using (5.10).

Corollary 5.2. The following equalities hold,

Cc_

P[D = 0] = : (5.13)
e+ (—Prg)+ x
X
P[C = 0] = , 5.14
[ ] c_+ci (11— Pzx) + x ( )
P
Pex c-Tzk (5.15)

:C7+C+(1_PZK)+X’

wherePzx andy are given in (5.5) and (5.12) respectively.

5.2. Application 1: Two-level traffic shaper

In this section we will indicate how a two-level traffic shaper may be analyzed using
the general feedback model. Instead of six parametergd_, d%, d°, c., c_ for the
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behaviour of both buffers, we take three parametgr®, andv, such thatyg > v, >
v2 > 0 and choose

d+ = Vg — V1, d* = V1,

0 0
di = vo — v, d- = vy, (5.16)
Cy = VU, C_ = V1 — Vo.

The interpretation is the following. The data buffer only receives data when the on-off
source is in the on-state, at rate The output rate is, if credit is available and,(< v1)
otherwise. We can think af, as the long term average rate at which the data buffer is
allowed to send. The rate, is a higher rate that may be used for a limited period of
time, namely as long as credit is available. The particular values @ndc_ can be
explained by arguing that whenever the data buffer is not sending (i.e., when it is empty),
the “unused capacityi), is saved up for later use in the form of credit, while this credit is
consumed when the data buffer is sending at high rate; the “extra capagcity’, that is
used by the data buffer is taken from the credit buffer. Note that the above is equivalent
to saying that the credit buffer is constantly filled at radewhile it it is drained at the
same rate as the data buffer (9 or v,) at any time. For further information on two-level
traffic shapers and their relation to leaky bucket traffic shapers we refer to [3] and the
references mentioned there.

Simple expressions for the probabilities in corollary 5.2 are easily obtained for this
case in an alternative way. Balancing the long term input and output of the credit buffer
yields

v2(1 — Pcg) = v1P[D > 0,C > 0] + v,P[D > 0, C = 0], (5.17)
while a similar balance for the data buffer gives
ibwzvmm>>QC>0L+WMD>oxh=m. (5.18)

It follows immediately that
a Vo

Pcx =1— —. 5.19
CK R (5.19)
Using (5.10) we now also find a simple expressionfpp = 0],
_ a v
PID=0]=P,i(1- — ). 5.20
0 =0=r(1- ) (5.20

while from (5.17) or (5.18) we find

U1 a Vg 1 a g
P[C =0] = 1- —|)-P 1- — ). 5.21
[ ] vl—vz{( a+bv1> ZK( a+bv2>} ( )
The constani?, ¢ in these expressions can clearly be expressed in the parameters of the
model by combining (5.5) with (5.16).

The fact thatPc ¢ is independent ok andwv;, may be surprising at first sight, but
this can easily be understood by considering the pra@gdssD; — C; + K). This process
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describes an elementary Markov-modulated fluid system in which an infinitely large
fluid buffer receives fluid at rate, at times whenf; = 1, while there is a constant output
ratev,, as long a®d, — C; + K > 0. Since the credit buffer can be completely filled only

at times when the data buffer is empty, we have jat = K] = P[D — C + K = Q].

This leads to an alternative derivation of (5.19) in which the paramé&tensdv, clearly

do not play any role. Also, this viewpoint gives us a means to find the expected data
buffer occupancy, since we can derive that

avp Vo — VU2

ED—C K = l
[ + K] a—+ bbvy — a(vg — vy)

while EC follows from (5.11).

5.3. Application 2: Tandem queue with finite buffer(s)

A second way in which the general model may be applied is given by the following
choice of parameters. Again we have three parameters for the flow vgtes,andv,,
such thaty > v; > v > 0, but now we take

di=d’ =vo—v1, d_=d°=ny,

Cy = UV, C_ = V1 — V. (522)

Notice that the feedback has disappeared now, gince dfﬂ andd_ = d°. Furthermore
we define the procesg,) by C, = K —C,. We can interpre€, as the content of a buffer
which receives fluid from the data buffer at ratewheneverD, > 0 andC, < K, while
it releases fluid at rate; whenC, > 0. Hence the procesa/,, D,, C,) describes a fluid
tandem queue as in section 2, but with finite second buffer.

Since the procesgM,, D,) is not influenced byC,), it follows from (2.5) or di-
rectly from the balance equation for the data buffer, that

]P’[D:O]:l—aibz—i. (5.23)
As a consequence, we immediately find from (5.10),
P[C = 0] = Pcx = P,xP[D = 0], (5.24)
and, from the balance equation for the second buffer,
P[C=K|]=P[C=0=1—P[D = 0]( o PZK>, (5.25)
V1 — V2 VU] — U2

where Pz can be found from (5.5) and (5.22).

In the following section we extend the (general) model to the case where the data
buffer is also finite, although it must in some sense be larger than the credit buffer.
This provides us with the stationary distribution for a tandem fluid queue in which both
buffers are finite, provided that the fluid rates are such that during long on-periods of the
fluid source, the second buffer will be completely filleeforethe first buffer is.
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5.4. Extension: Finite data buffer

We shortly discuss the extension of the general feedback model in which both the credit
buffer and the data buffer have finite sizeX and L respectively, while the rest of

the system remains unchanged, as in section 4. The process of interest is denoted as
Mm®P, D", ™). We will only consider the case for which > Kd. /c_, since then

the analysis carries through almost identically. The main result is stated in the following
theorem, where all quantities without supersctip} are the same as in section 4.

Theorem 5.3. If the size of the data buffer is > Kd, /c_ anda > 0, the stationary
joint distribution F“) of the processM ™, D", ™) satisfies

FP(dr,dy) =y Fi(dr,dy), 0<x<L,y>0i=01 (526
d°
FP((L), {0)) = Y- to(L), (5.27)
with

b -1
v = (1— %m@)) .

The proof is omitted for brevity; an outline can be found in [25]. Obviously, the
stationary distribution can also be shown to exist whed 0. If we setP-x = 1, the
expressions for the various densities remain valid for some normalization cotsfgint
we replacejo(u) in (4.21) byau /d° for @ = 0). Since theorem 4.2 does not hold for this
case, it is more difficult to find an explicit expression for this normalization constant.
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