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Crystallization and melting in the Lennard-Jones system: Equilibration,
relaxation, and long-time dynamics of the moving interface

H. L. Teppera) and W. J. Brielsb)

Computational Dispersion Rheology, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands

~Received 25 June 2001; accepted 6 September 2001!

Nonequilibrium molecular dynamics simulations have been carried out on the growth and melting
of the Lennard-Jones~100! interface at small undercoolings and superheatings. Two regimes of
linear growth rate were discovered: a short-time regime associated with interface relaxation and a
long-time regime associated with the macroscopic limit of growth and melting. It was shown that,
if system sizes or equilibration times are taken too small, one will find only the initial regime. On
the basis of our very accurate results on the macroscopic growth rates close to equilibrium, the
possibility of a discontinuity in the temperature dependence of growth and melting rates at the
melting point was ruled out. ©2001 American Institute of Physics.@DOI: 10.1063/1.1413972#
at
in
es
s
g

na
st
o
e

el

-

m
t

f
r

th
m
u

m

,
se

C
of
re-

he

nge

han
ion.
es a
the
or

ut
hey
int
the
ous

rst

nd
su

en
dis-
on

the
-
hl-
tic
I. INTRODUCTION

Understanding the microscopic processes associ
with crystal growth from the melt is of major importance
the prediction of the growth rates of various crystal plan
and, eventually, the growth morphology of the crystal a
whole. Except for very large deviations from the meltin
temperature, where homogeneous nucleation may domi
the dynamics, the process of melting and freezing of a cry
takes place at the interface. Since this interface, being a c
bination of two dense phases, is not easily accessible to
periment, computer simulations provide a good means to
cidate the microscopic restructuring processes involved
crystallization and melting. In this study, we will use Mo
lecular Dynamics~MD! simulations to look at the growth
and melting of the Lennard-Jones~100! interface at small
amounts of undercooling and superheating. In this regi
the interface is thermodynamically rough and defect grow
does not play a significant role.

One of the first accounts of the steady-state motion o
crystal-melt interface in MD simulations has been the wo
of Broughton, Gilmer, and Jackson.1 They combined a solid
and a liquid phase in one simulation box and calculated
steady-state velocity of the interface as a function of te
perature. A theoretical prediction for this dependence is s
plied by the Jackson–Chalmers theory,2 where the solid–
liquid transition is assumed to take place through so
intermediate or transition state. The ratesR are given by:

R~T!5C1 expS 2
Q

kBTD
3F12expS ~hl2hs!~T2Tm!

kBT3Tm
D G , ~1!

whereQ is the activation energy for diffusion in the liquid
and h is the enthalpy per particle of the respective pha

a!Electronic mail: h.l.tepper@ct.utwente.nl
b!Electronic mail: w.j.briels@tn.utwente.nl
9430021-9606/2001/115(20)/9434/10/$18.00

Downloaded 02 Apr 2009 to 130.89.112.87. Redistribution subject to AIP
ed

,
a

te
al
m-
x-
u-
in

e,
h

a
k

e
-

p-

e

.

Broughton et al. showed that for the Lennard-Jones FC
~100! surface, the incorporation of atoms on the surface
the crystal is not an activated process. This led them to
place the Arrhenius factor by a factor proportional to t
thermal velocity of the atoms:

R~T!5C2T1/2F12expS ~hl2hs!~T2Tm!

kBT3Tm
D G , ~2!

which was shown to reproduce their data over a wide ra
of temperatures~albeit all belowTm). Both Eqs. 1 and 2 lead
to the general observation that melting rates are larger t
crystallization rates, at equal amounts of supersaturat
This might be one of the reasons that over the past decad
large number of simulation studies have appeared on
freezing of crystals, but comparatively few on melting. F
instance, in a successive paper of the Broughton group,3 they
tried to complement their growth studies with melting, b
they failed to produce steady state melting. Instead t
quickly reached the mechanical melting point, i.e., the po
at which the whole crystal disintegrates at once. Note that
undercoolings and superheatings they used are enorm
compared to the ones we will look at.

The asymmetry of freezing and melting kinetics was fi
shown experimentally for crystalline silicon~c-Si! growing
from amorphous silicon~a-Si! by Tsaoet al.4 Their results
were later reproduced with MD simulations by Kluge a
Ray,5 using a Stillinger–Weber potential, and by Iwamat
and Horii6 with classical Density Functional Theory~DFT!.
Note that, although they all report an asymmetry betwe
melting and freezing in these systems, there is no slope
continuity of the growth rate versus temperature curve up
crossing the melting point. It was mentioned already in
1920s, in an Ansatz by Tammann,7 that such a slope discon
tinuity cannot occur. This was restated in the 1960s by U
mannet al.,8 who argued that an abrupt change in the kine
coefficient (C2 in Eq. 2! on going from freezing to melting
would imply a violation of microscopic reversibility.
4 © 2001 American Institute of Physics
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However, in their study of crystallization and melting
sodium, Tymczak and Ray9,10 found a clear slope disconti
nuity at the equilibrium temperature. Singularities at t
melting point were subsequently reported with dynamic D
calculations,11 a kinetic mean field theory,12 and lattice gas
simulations.13 The theory of Richards14 tried to explain the
asymmetry on the basis of the density change upon free
or melting, but the major role of this density change w
later contradicted by the work of Oxtoby and Harrowell15

Up till now, the question is still under debate.
Recently, we performed nonequilibrium simulations f

the FCC~100! interface with the Clarke16 potential. In that
paper17 we investigated the influence of system size effe
and carried out thorough thermodynamic averaging to ar
at very accurate statistics. This initially led to a clear asy
metry of growth and melting rates close to equilibrium
which was attributed to lattice imperfections in the growi
crystals. It was shown that if the melting simulations we
started with the initially grown crystals, the asymmetry w
made to disappear, thus showing it to be an artifact of
simulations. A comparable asymmetry was found in
growth and melting simulations of Huitemaet al.,18 but since
they were mainly interested in crystallization rates, they
not discuss it.

In an earlier study of ours, we presented a method
extract the temperature dependence of the interface veloc
from the fluctuations in an equilibrium simulation.19 Note
that, for the applicability of this efficient method, it is cruci
that no slope discontinuity exists at the equilibrium tempe
ture.

In the present study, we will carry out nonequilibriu
simulations for a pure Lennard-Jones substance and ex
our previous findings. We will demonstrate the crucial im
portance of good equilibration and we will report on t
discovery of two time-regimes of growing and melting rate
The initial regime is associated with interface relaxatio
while the second regime is associated with the macrosc
limit of growth. We will discuss the risk that when equilibra
tion is not carried out to full extent, or when too small sy
tem sizes are used, only the initial regime will be observ
which can easily lead to erroneous conclusions about
temperature dependence of growth and melting rates.
procedures described here will be of general interest to
study of crystal–liquid interfaces in simple systems, bo
dynamically and in equilibrium, which continues to be t
topic of many theoretical and simulation studies
present.20–23

This paper is organized as follows. In the next secti
we will describe our simulation system. First we menti
how we tuned our thermostat and barostat to carry out
nonequilibrium simulations. Second, we describe the in
particle interactions and pay particular attention to how lo
range corrections to the pressure should be carried ou
simulations where two phases are present. In Sec. III
describe our equilibration method and show that pro
equilibration is crucial to extract the correct rates. The s
ceeding section deals with the results of the nonequilibri
simulations and the discovery of the two regimes of line
growth rate. Finally, in Sec. V, the temperature depende
Downloaded 02 Apr 2009 to 130.89.112.87. Redistribution subject to AIP
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of the rates will be presented and it will be shown that,
our system, a slope discontinuity does not exist at the m
ing point.

II. SIMULATION DETAILS

A. Nosé –Hoover dynamics

In this study, we simulated two-phase crystal-melt s
tems at constant number of particles (N), pressure (P), and
temperature (T). In order to accomplish this, we employe
Nosé–Hoover dynamics.24,25This scheme is known to have
well-defined conserved quantity and to generate trajecto
with the correct distribution of pressures and temperatu
Although thermodynamic properties like pressure and te
perature are only rigorously defined as ensemble avera
we will use these terms also to refer to the instantane
values of their microscopic estimators:

T̂5
1

NfkB
(
i 51

N upi u2

mi
~3!

and

P̂5rkBT̂1
1

3V (
i 51

N

r i•f i , ~4!

with Nf the number of degrees of freedom.
In the Nose´–Hoover scheme both pressure and tempe

ture are constrained to produce the desired distributions
coupling to a bath by means of parameters that rescale
volume and the particles velocities, respectively. The al
rithm has been shown to be quite robust with respect to
speed at which momentum space and configuration spac
rescaled.26,27 However, since we are dealing with system
that are not in thermodynamic equilibrium in this study, w
do not only require that the scheme produces the cor
distributions on average, but also within reasonable tim
More specifically, in the case of a growth simulation, f
example, we do not wish the system to have crystallized b
substantial amount before it has sampled a representa
part of the temperature and pressure distributions. This a
tional requirement of fast thermostat and barostat equilib
tion makes the choice of both the timestep and the bath
laxation times much more delicate than in simulations
thermodynamic equilibrium.

In order to be on the safe side with respect to ene
drifts ~cf. Ref. 26, Table 2!, we used a timestep of 7.48
31024 Ams2/e ~reduced Lennard-Jones units! in all our
simulations. For tuning of the relaxation times, we stud
the distributions of temperature and pressure in both a b
liquid and a bulk solid of Lennard-Jones particles with
cutoff radius of 2.5s and long-range corrections to the pre
sure and the energy. The distributions were calculated o
short runs of 50 000 timesteps after equilibration. The te
perature distributions were measured at constantNVT, and
the pressure distributions at constantNPT ~bulk liquid! or

Ns̄̄T ~bulk solid!. Here constant pressure tensors̄̄ means
that both the box volume and shape were allowed to re
Results are shown in Fig. 1. From this figure it can be s
that when a relaxation time is given too small a value,
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Left side:Normalized distributions (NVT) of
the temperature estimator in a bulk liquid~512 atoms!
and a bulk solid~500! atoms atT50.694e/kB . Mea-
surements are taken over 50 000 timesteps fortT

50.007 48Ams2/e ~diamonds!, tT50.0748Ams2/e
~triangles!, andtT50.748Ams2/e ~circles!. The solid
lines represent a Gaussian distribution with varian
2T2/3(N21). Right side: Normalized distributions
(NPT) of the pressure estimator in a bulk liquid~512
atoms! and a bulk solid~500! atoms atT50.694e/kB .
Measurements are taken over 50 000 timesteps fortP

50.0748Ams2/e ~diamonds!, tP50.748Ams2/e ~tri-
angles!, andtP57.48Ams2/e ~circles!. The solid lines
represent fits to Gaussian distributions~variances
sP

liquid50.031 andsP
solid50.061).
ag
o
tw
ev
n
um
oe
he
w
e

illa

th
t

ta
ul
im

o-
at
o
le
se
he
iu

e

n

th
ty

den-
e at
ial

n-
-
s-

is
ess
ion
n a

en
en
the

as a
corresponding property remains too close to the aver
value. Also, one can see that there is a steady ‘‘oversho
i.e., the values basically bounce back and forth between
values just below and above the average. From the time
lution ~not shown here! it appeared that this process happe
at one distinct frequency. On the other side of the spectr
if relaxation times are chosen too large, the distribution d
not have the correct width either, at least not within t
50 000 timesteps displayed here. In the end, the system
sample the whole distribution, but it does so by long-tim
fluctuations superimposed on the chaotic short-time osc
tions ~which again was seen from the time evolutions!.

We also investigated the temperature distribution in
constant pressure simulations. They were nearly equal to
ones shown here~for NVT simulations!, from which we con-
clude that for our choice of relaxation times, the thermos
and the barostat variables do not interact. For all the sim
tions in this study, we chose as thermostat relaxation t
tT50.0748 Ams2/e and as barostat relaxation timetP

50.748Ams2/e.

B. The model system

In a previous paper,17 we used the Clarke 12-6
potential16 to model particle–particle interactions. This p
tential has the advantage that it goes smoothly to zero
predescribed cutoff distance. However, since much m
data exist both numerically and theoretically on the simp
Lennard-Jones potential, we chose the latter for the pre
study. All interparticle interactions were modeled with t
standard Lennard-Jones 12-6 potential with a cutoff rad
(r c) of 2.5s. Accordingly, all properties in this paper will b
presented in terms of the well-depthe, the radiuss and the
massm.

Because the potential is rigorously put to zero beyo
the cutoff radius, the long-range tail of the~infinite! potential
is missed, which must be corrected for in the energy and
pressure. Such corrections naturally depend on the densi
Downloaded 02 Apr 2009 to 130.89.112.87. Redistribution subject to AIP
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the system. Since in constant pressure simulations the
sity changes during the run, the corrections must be mad
run-time. This is usually done by assuming that the rad
distribution functiong(r ) is approximately equal to 1 forr
.r c and then analytically integrating the interaction pote
tial or the virial contribution~for energy and pressure, re
spectively! multiplied by the bulk density squared. In a sy
tem with two phases of different densities, however, there
no well-defined bulk density, which makes the procedure l
straightforward. In the Appendix of this paper, an express
is derived for the long-range correction to the pressure i
system with two phases separated by a flat interface~see Eq.
A4!. The resulting values for different fractions by volumea
of crystalline material are given in Fig. 2. As can be se
from the figure, there is surprisingly little difference betwe
our improved expression and the correction made with
overall density.

FIG. 2. Long-range corrections to the pressure in a two-phase system
function of the volume fractiona (5Vl /V). Shown are expressions A4
and A6.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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It has recently been pointed out by Baidakovet al.28 that
in simulations where an interface is present, it can be
tremely important to explicitly take into account enough
the long-range interactions. For example in their simulatio
of the Lennard-Jones liquid–vapor interface, they found
tensive changes of thermodynamic properties, the sur
tension and the thickness of the interface layer upon go
from a small~2.6 s) to a large~6.78s) cutoff radius. Thus,
the asymmetry that was felt by particles due to the prese
of the interface extended far into both phases. This wo
imply that a big difference is to be expected between us
our new expressions and rough estimates of long-range
rections, especially since our cutoff radius is not that lar
No such differences were observed however. The reason
this may be that liquid–vapor interfaces and crystal–liq
interfaces differ in the density change upon crossing the
terface. At least for monatomic systems, this change is q
small for the crystal–liquid interface and comparatively lar
for the liquid–vapor interface.~In our casers /r l51.135).

There is another, more pragmatic, problem with our n
expression. In order to use it at runtime in a simulation, o
has to be able, at every single timestep, to tell the amoun
solid and liquid material in the system. For this, we could u
our solid–particle recognition criterion~see Ref. 19! but that
slightly overestimates the amount of liquid material since
assigns most of the~diffuse! interface to the liquid phase
Another method, which connects more closely to the deri
tion we used in the Appendix, is to look at the total insta
taneous volume of the system. Since we know from our b
simulations the volumes per particle for each phase,
could at every instance calculate the proportion betw
solid and liquid phases. This, however, does not work eit
Since instantaneous volume fluctuations will also take pl
in the bulk parts of the two-phase system, our average
ticle volumes are not a good measure. As a consequenc
certain instances, our prediction fora could exceed 1 or drop
below 0. As can be seen from Fig. 2, the new express
diverges close to these values. Any other method that co
be suggested to distribute the material over the two pha
would suffer from comparable inaccuracies. Since the as
ciated errors are most probably larger than the differe
between the two expressions, we decided to keep using
overall average density in calculating instantaneous cor
tions to the pressure and the energy.

III. EQUILIBRATING THE TWO-PHASE SYSTEM

In our earlier paper,17 we showed that proper preparatio
of the two-phase system plays a crucial role in the resul
growth and melting rates. In that paper, we combined fu
equilibrated bulk phases of liquid and solid in one simulat
box. To release excessive potential energies due to par
overlap, 300 timesteps ofNVT simulations were performed
with rigid temperature scaling at every timestep. Thereaf
NPT runs were carried out at the appropriate temperatu
andP52.51231023 to study growth and melting. We foun
that the crystals that were grown in theNPT simulations
contained just a little more ‘‘imperfections’’~as defined by
our solid–liquid discriminator, see Ref. 19! than the crystals
that were molten directly after equilibration. This resulted
Downloaded 02 Apr 2009 to 130.89.112.87. Redistribution subject to AIP
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a clear asymmetry of growth and melting. It was also sho
that imperfections eventually appeared in the crystall
phase when the system was run for a long time at the e
librium temperature, which means that the crystals with i
perfections really represent the thermodynamically favo
state. It was argued that the crystals lacking imperfecti
melt more slowly than realistic crystals would do. Indee
when the crystals grown in the crystallization runs were u
for the melting runs, the asymmetry was shown to disapp
Thus, an extensive and careful equilibration of the system
the melting point will most probably also give a symmetr
behavior of growth and melting.

In the present study, we chose to perform such a car
equilibration. Like before, we carried out bulk simulations
liquid and solid phases at the appropriate densities, but
time only at the melting temperature. The densities w
found by doing severalNPT runs of the bulk phases at dif
ferent temperatures and fitting the average volumes a
function of temperature. For the average volumes per part
this led to~in Lennard-Jones units!:

v l51.031220.158 023T10.537 483T2 ~5!

and

vs51.051320.340 683T10.468 303T2, ~6!

for 0.640,T,0.747.
First, we needed an estimate of the equilibrium tempe

ture Tm . For this we used the most accurate collection
thermodynamic data for the Lennard-Jones system at
moment, the Johnson data for the liquid29 and the van der
Hoef data for the solid.30 From these data we calculated th
chemical potentials at the desired pressure and sought fo
temperature at which the chemical potentials of the solid
the liquid are equal. This gave an estimate ofTm50.687. At
this temperature, we performed a two-phaseNVT simulation
and measured the pressure. Next we slightly changed
temperature until the pressure reached the desired va
From this we foundTm50.696 59 and thus, with the abov
fits, v l

eq51.1819 andvs
eq51.0412. At this temperature an

pressure, the equations of Johnson and van der Hoef
v l51.1838 andvs51.0446, in quite good agreement wit
our calculations. The agreement of both the melting po
and the associated densities is almost perfect, given the
that for simple systems, the curves of free energies of the
phases versus temperature have very similar slope. Th
small error in the free energy of one phase with respect to
other leads to a large error in the predicted transition po

With the densities found above, we performedNVT
simulations of the bulk phases at the equilibrium tempe
ture. Here the liquid boxes were elongated along
z-direction and were given the same cross-sectional area
the x,y-plane as the solid boxes. The bulk simulations we
first run for 100 000 timesteps of equilibration, whereaf
coordinate files were written once every 1000 timesteps
50 000 more timesteps in total. To make two-phase box
one liquid configuration and one solid configuration we
taken, both copied four times in thez-direction, and subse
quently put on top of each other. The resulting systems c
tained two solid–liquid interfaces and consisted of 2000 i
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tially crystalline particles (535320 unit cells! and 2048
particles initially belonging to the liquid phase.

This is the point where the new procedure starts to
viate from the one in the previous study. We used to conti
with 300 timesteps of strict temperature scaling to release
particle–particle overlap caused by the combination of
two phases. Upon closer examination, however, it appea
that this had the side effect of removing any ‘‘imperfection
that were present in the bulk crystal phase. So the imper
tions, which belong to a well-equilibrated crystal, disa
peared just because of those~very short!! simulations with
strict temperature scaling. Therefore we decided to keep
solid phase atoms frozen at their positions and applied
timesteps of strict temperature scaling to the liquid only. T
proved to be enough to get rid of most of the overlap en
gies. Thereafter the liquid was equilibrated for 100 0
timesteps, while still constraining the crystal to its origin
configuration. This way, the liquid was equilibrated agains
crystal with the correct amount of imperfections, but with
temperature of essentially zero Kelvin. Therefore, the equ
bration should not be extended too long, in order to av
excessive ‘‘freezing’’ of the liquid on the crystalline surfac
After the liquid equilibration, the solid was finally relaxed a
well and the whole system was run another 300 0
timesteps of equilibration. During the whole procedure,
counted the number of solidlike particles using our recog
tion function.19 This was done for 50 runs of different star
ing configurations and subsequently averaged at each t
We found that this number of 50 runs gave a good trade
between accuracy and computational cost. We will also
cuss this in the next section~Fig. 5!.

Results for the averaged equilibration curves are sho
in Fig. 3. Apart from the results of the 4048 particle syste
curves are also shown for systems of double and quadr
size. In order to monitor processes at the interface, all th
curves were shifted downward by the number of solid p
ticles that corresponds to the sizes of the bulk systems

FIG. 3. Increase and decrease of the number of solidlike particles durin
equilibration process. Shown are the results for three different box s
4048 particles~thin solid line!, 8096 particles~thick solid line!, and 16 192
particles ~dotted line!. The dashed line denotes the point after which t
crystal is allowed to relax.
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were combined. In the bulk crystal simulations, on avera
94.18% of the particles were classified as solid particles
our discriminator. In the bulk liquid simulations, this wa
0.058 59%. Accordingly the curve of the small box w
shifted down by 0.94183200010.000 58593204851885
particles. The other curves were shifted by 3770 and 7
particles, respectively.

All curves start below zero, as a result of the 7
timesteps with strict temperature scaling~not included in the
figure! and the fact that particles that ‘‘see’’ a crystal on o
side and a liquid on the other, will no longer be classified
solidlike. ~If it had been only for the latter effect, one woul
have expected a value of2100, corresponding to 2 interface
of 50 atoms.! During the equilibration of the liquid agains
the constrained solid, the amount of crystalline material
creases. This happens because a crystal-like interface is
up in the contact region between both phases. After the
lease of the solid phase, the amount of crystalline mate
drops again, because of relaxation in the crystalline par
the interface. For the smallest box, equilibrium is on
reached after approximately 300 000 timesteps~correspond-
ing to a simulation time of 224.4Ams2/e), which is ex-
tremely much larger than most other studies so far have
sumed to be sufficient. The two larger boxes need less t
to reach equilibrium. Note also that the double and quadru
box seem to converge to approximately the same value oN.
We will come back to these observations later when we d
cuss the system size effects on our production runs.

IV. NONEQUILIBRIUM SIMULATIONS

To carry out production runs of crystallization and me
ing, the well-equilibrated two-phase systems were quenc
to the desired temperatures, by reassigning velocities fro
Gaussian distribution with the appropriate mean and wid
Then simulations were carried out in theNPT ensemble,
with a Nosé–Hoover thermostat and barostat, applying t
same parameters as in the bulk simulations~Sec. II A!. The
barostat was adopted such that the volume relaxation in
x-, y-, andz-directions took place independently. The produ
tion runs were again carried out over 50 independent star
configurations~the end configurations of the equilibratio
runs! at each temperature. During the runs, the number
crystalline particles was calculated once every 100 timest
Results of the 50 runs were subsequently averaged.

One example of an averaged melting run is shown
Fig. 4. To investigate the influence of equilibration time, w
started melting runs from three different stages in the equ
bration ~100, 200, and 300 thousand timesteps after the
lease of the crystal phase!. All three cases show an initia
rapid drop of the number of crystalline particles. This refle
the relaxation of the system to the new temperature. Sim
taneously, the volume of the box increased by a correspo
ing amount. After this short period, the~averaged! tempera-
ture and pressure had relaxed to their desired values.

Shortly after the initial box relaxation, the system start
to melt with a constant velocity in all three cases. The e
periment with the shortest equilibration time melted som
what slower than the two others. A remarkable feature, ho

he
s:
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



r
o
a
o
n
fo

ve
ls
a
is

w
th

e

d

a

as-
be

our
al
xes

e
we
ade
ses

of
r to
ox

the
uf-
al
er
s

96
ase
ulk
ec-

ture
of
me
as
s
We
ess,
nge
nd

ingly
his
ys-

s

pes
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ever, of all three cases, is that they displayed a second
gime, where the melting was again linear in time but to
place at a smaller rate than initially. This crossover from
initial to a second regime was clearly noticeable for most
the temperatures at which we performed our measureme
though less pronounced for the crystallization runs than
the melting runs and less pronounced for temperatures
close to equilibrium. Note, however, that the effect is a
quite subtle: in order for the effect to be seen, it is necess
to carry out averaging over many different runs. This
shown in Fig. 5, where a selection of single runs is dra
together with the curve averaged over all 50 boxes. On
temperature range that we study, the fluctuations ofNs in one
single run are of the same order as the differences betw
the averaged curves of different temperatures.

The discovery of two distinct regimes of growth an
melting raises two questions:‘‘Is this an artifact of the simu-
lation method (e.g., an effect of system size), or is it a re
physical effect?’’and ‘‘If it is not an artifact, which one of

FIG. 4. Melting curves atT50.714e/kB started from three different stage
in the equilibration process.

FIG. 5. Melting curves atT50.714e/kB showing a selection~5 runs! from
different starting configurations, as well as the average over 50 runs~broad
line!.
Downloaded 02 Apr 2009 to 130.89.112.87. Redistribution subject to AIP
e-
k
n
f
ts,
r
ry

o
ry

n
e

en

l,

the two regimes corresponds to the rates that are to be
sociated with macroscopic crystal growth such as would
seen in experiments?’’

In order to study system size effects, we repeated
simulations for systems of twice and four times the origin
sizes. We could have constructed the new two-phase bo
by taking 8 or 16 periodic images of the bulk phases~instead
of 4 for our smaller system!. However, we chose to do th
bulk (NVT) simulations anew at the actual sizes that
needed in the two-phase simulations. In this way, we m
sure that we combined two completely randomized pha
and did not introduce any undesired periodicity.~In a previ-
ous study of ours,31 where we studied density fluctuations
adsorbed species in nanopores, we learned that in orde
sample long-wavelength fluctuations of the order of the b
size, one has to completely randomize initial positions of
particles over the whole pore. There it proved not to be s
ficient, say, to divide the pores in four sections of equ
length and distribute a fourth of the particles randomly ov
each of the sections!. To summarize, the two-phase system
of 8096 particles were constructed from bulk liquids of 40
particles and bulk solids of 4000 particles, and the two-ph
systems of 16 192 particles were constructed from b
phases of 8192 and 8000 liquid and solid particles, resp
tively.

The resulting averaged curves for the same tempera
as in Fig. 5 are shown in Fig. 6. The most striking feature
this graph is that all three curves seem to start with the sa
initial slope and to end with approximately equal slopes
well. Only the time over which the initial regime extend
seems to shorten substantially with increasing box size.
suggest that both regimes belong to a physical proc
which is reflected by the fact that neither slope does cha
significantly upon enlarging the box size. Since the seco
regime seems to be persistent and becomes increas
dominant when the system is enlarged, we infer that t
regime is to be associated with the macroscopic limit of cr

FIG. 6. Averaged melting curves atT50.714e/k B for different box sizes
with a total number of particles of 4048~50 runs, thin solid line!, 8096~50
runs, thick solid line!, and 16 192~32 runs, dotted line!, respectively.
Clearly shown is the good agreement of both the initial and the final slo
of the different experiments.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



e
po
id
at

ce
tin
e
tic

re
la
ec
s
a-
h
s
ic
a
ox
ce
se
,
a
e

on
of
s
a
th

d

tr

T
c
r

to
ro-
th

on.
the
this
sen
era-

e-
and
av-
ra-
000
00
e-

with
xed.
as-

d in
this
not
ort
n
box
nts
are
of

stem
ear
vi-
-
be
g.

bo
op
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tal growth ~or melting!. As can be seen from the figure, th
slope of the second regime still changed somewhat u
enlarging the size, but for computational reasons we dec
the results of the intermediate boxes were converged s
factorily ~this was a generic trend for all temperatures!.

The initial regime may be a relaxation of the interfa
reflecting a change from the equilibrium shape at the mel
point to a steady-state shape belonging to the actual temp
ture of the experiment. This is in accordance with kine
mean field results of Williams, Moss, and Harrowell.12

One might argue that if local density fluctuations a
crucial and only the total number of particles in the simu
tion plays a role in the size of these fluctuations, the eff
should also be seen in a system that is built as two copie
the original box~thus containing four interfaces per simul
tion cell!. This we checked by comparing the results from t
small box with those from the intermediate box and tho
from a system that was made by copying the small box tw
in the z-direction. The results are shown in Fig. 7. One c
see that the larger fluctuations in the ‘‘doubled small’’ b
give ease to a better buildup of the equilibrium interfa
~reflected in the starting point of the melt run which is clo
to that of the large box!. In the nonequilibrium situation
however, the long-time behavior is close to that of the sm
box. Thus it is really the bulky behavior of the large phas
in the larger box that makes the interface relax to its n
equilibrium shape. Note again that our ‘‘small’’ system is
comparable size or larger than the maximum system size
most other studies. This means that those studies prob
have been investigating interface relaxation rates rather
macroscopic crystal growth rates.

A second concern that might be raised is that imme
ately after the initial quench, the crystal starts to grow~or
melt! thereby releasing~consuming! latent heat of fusion. If
the thermostat would not be able to remove all of the ex
heat, the interface may heat up~cool down! until balance is
reached between heat production and heat transport.
effect would slow down both growth and melting rates, sin
the final temperature at the interface would then be close

FIG. 7. Comparison of melting curves for the small and intermediate
sizes, where either both phases are doubled or the whole system is c
twice.
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the melting point than the overall temperature. In order
investigate this, we did a thorough study of temperature p
files by monitoring local averages of the kinetic energy, bo
averaged over the whole run and followed as time evoluti
In neither case did we find any noticeable deviation of
interface temperature from the overall temperature. From
we conclude that our thermostat relaxation time was cho
small enough so as to effectively produce constant temp
ture experiments.

V. TEMPERATURE DEPENDENCE OF GROWTH AND
MELTING RATES

We carried out simulations with the small and interm
diate boxes at several different temperatures below
above the equilibrium temperature. For all experiments,
erages were calculated over 50 different initial configu
tions. The small box systems were equilibrated over 100
timesteps with frozen crystal configurations and 300 0
timesteps with the whole system relaxed, while the interm
diate box systems were equilibrated over 100 000 steps
a frozen crystal and 200 000 steps with both phases rela
For the small systems, the initial slopes were calculated e
ily, but the second regime was only accurately measure
one growth and four melting experiments. The reason for
was that close to equilibrium, the second regime was
found, and far from equilibrium, there was only a very sh
time of second regime~if any! before the system had grow
one of the two phases so far that the two interfaces in the
started to interact. Most of the intermediate size experime
showed both regimes over a substantial time. The results
shown in Fig. 8. It can be seen that over the whole range
temperatures studied, the agreement between both sy
sizes is good. The long-time regime rates are perfectly lin
with respect to temperature. We think that this is clear e
dence of the Ansatz of Tammann7 and supplies an extra con
firmation of the fact that the long-time regime is indeed to
associated with the macroscopic limit of growth and meltin

x
iedFIG. 8. Dependence upon the supersaturation~deviation of the temperature
from equilibrium! of the initial ~pyramids! and long-time~circles! growth
and melting rates. Shown are the results for the small~open symbols! and
intermediate~closed symbols! box sizes.
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The initial rates are not linear in temperature. This i
plies that improper equilibration might be one of the reas
why earlier researchers~including ourselves! have found
nonlinearities or slope-discontinuities around equilibrium
the dependence of growth rates upon under- and super
ration, even for roughly growing surfaces.

Finally, we investigated the dependence of the crosso
time between the two regimes upon temperature. We sta
to make a linear fit through the second-regime growth ra
~denoted byR2). This resulted in:

R2
fit~T!599.0522142.07T. ~7!

Note that this leads to a definitive estimate of the equilibri
temperature for our system ofTm50.6972e/kB , in very
close agreement with our earlier estimate. Next we fitted
initial-regime growth rates with a third order polynomial
DT ~the deviation of the temperature from equilibrium!. This
resulted in

R1
fit~T!52184.19DT2739.39DT2238291DT3. ~8!

The accuracies of these fit can be appreciated from Fig.
Now, for each experiment, we did not only measure

slopes of the growth curves, but also the intercepts with
N-axis. We fitted the intercepts~denotedA) of the initial
regimes with a third-order polynomial inDT:

A1
fit5210.223850.4DT217694DT2

11.22363105 DT3. ~9!

Next we fitted the intercepts of the second regimes, wh
constraining the zeroth order term to the value of the ini
intercepts. This means forcing both curves to coincide
equilibrium (DT50):

A2
fit5210.226443.4DT239576DT2

21.87723105 DT3. ~10!

The results are shown in Fig. 9. The difference betweenA1
fit

and A2
fit can be interpreted as a measure for the differe

between the widths of the nonequilibrium interface and
equilibrium interface. The points at which both fitsAi

fit

1Ri
fit3t intersect are our estimates for the crossover tim

t cross5
2593.0121 882DT13.10083105 DT2

42.121739.39DT138 291DT2
. ~11!

In Fig. 10, we have drawn all growth and melting curves
the intermediate box size, including the fits to the linear
gimes as well as Eq. 11. As can be clearly seen, the cross
time grows large upon approaching equilibrium, while at t
same time the initial and the second-regime rates grow m
and more equal.

VI. CONCLUSIONS

We presented the most accurate simulations to dat
crystal growth and melting rates of the Lennard-Jones~100!
face at temperatures close to equilibrium. We propose
way to carefully equilibrate two-phase systems to carry
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subsequent nonequilibrium simulations and showed that
solid–liquid recognition function supplies a powerful tool
monitor the equilibration process.

We discovered two linear regimes. The initial regim
was associated with interface relaxation and was shown t
most dominant for small system sizes and close to equ
rium. The second regime was associated with the ma
scopic limit of growth and melting. The linear dependence
the macroscopic rates upon temperature provides clear
dence of the early observation of Tammann that roug
growing surfaces with one type of interaction sites can
have a slope discontinuity in the rate-temperature curve. T
contrasts some earlier simulation studies. We showed
improper equilibration of the two-phase systems can resu
the observation of only the initial~interface relaxation! re-
gimes. Since these were shown not to vary linearly w

FIG. 9. Temperature dependence of interceptsA1 ~diamonds! and A2

~circles! of the growth and melting curves. The dashed lines represent
fits of Eqs. 9 and 10.

FIG. 10. Growth and melting curves for all temperature at intermediate
size, showing both the measurement data and the fits to the initial and
slopes. The dashed line shows the calculated crossover times between
regimes.
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9442 J. Chem. Phys., Vol. 115, No. 20, 22 November 2001 H. L. Tepper and W. J. Briels
temperature, some~or all! of the earlier observations of
slope discontinuity may be explained by this.

Now that the necessary hardware requirements h
come into reach, it has become possible to study the effe
system size and simulation times upon dynamic meas
ments of two-phase systems. The present study proves
both of these have to be~much! larger than generally ac
cepted in order to arrive at the correct rates. This reflects
fact that the interface present in two-phase systems ha
effective interaction range that is apparently much lar
than any measure of the interface width would suggest.
think this study provides a good guideline to what dime
sions should be used in these systems and may be a su
starting point to study crystal-melt systems of more comp
molecules, where the molecular correlation lengths are
ready much larger.

APPENDIX A: LONG-RANGE CORRECTIONS TO THE
PRESSURE IN A TWO-PHASE LENNARD-JONES
SYSTEM

In this Appendix, we derive an expression for the lon
range correction to the pressure in a system where
phases are present. We restrict ourselves to the case of a
substance~the interactions between all particles are iden
cal!, the only difference between the two phases being th
respective densities. We write the pressure as21/6 V times
a double integral over space of the densities at two posit
r1 and r2 multiplied by the virial functionw, whose value
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depends on the distancer betweenr1 and r2 . In the case of
simple Lennard-Jones particles, this function reads:

w~r !5r
dfLJ

dr
52

48

r 12
1

24

r 6
. ~A1!

In the integral, positionr1 probes all material in the
simulation box, so this coordinate is restricted to the b
volumeV, while the second coordinate represents all of
surroundings of the first one and thus, in principle, exten
over infinite space:

P52
1

6VEV
dr1 È dr2r~r1!r~r2!w~ ur22r1u!. ~A2!

Note that in the calculation of the ‘‘uncorrected’’ pre
sure, the integral reduces to a double sum over nearest
ages, since all interactions beyond the cutoff radius are z
and box dimensions should be such that non-nearest im
are more thanr c apart.

For the construction of the long-range correction, w
apply the usual assumption32 that beyond the cutoff radius
the central particle only ‘‘sees’’ average surroundings@which
for a pure substance comes down to assumingg(r )51 for
r .r c]. Because of this assumption, we may substitute
average densities of the respective phases forr(r ), where
the choice for eitherr l or rs depends on the region of th
corresponding integral. Since there are two different pha
that can appear in four combinations, the long-range cor
tion to the pressure can be split into four distinct integral
t. The

the
P lrc52
1

6V
LxLyr lE

0

aLz
dz1H E

2`

1`

dx2E
2`

1`

dy2

3E
0

1`

dz2r lw~ ur22r1u!Q~ ur22r1u2r c!1E
2`

1`

dx2E
2`

1`

dy2E
2`

0

dz2rsw~ ur22r1u!Q~ ur22r1u2r c!J
2

1

6V
LxLyrsE

2(12a)Lz

0

dz1H E
2`

1`

dx2E
2`

1`

dy2E
0

1`

dz2r lw~ ur22r1u!Q~ ur22r1u2r c!

1E
2`

1`

dx2E
2`

1`

dy2E
2`

0

dz2rsw~ ur22r1u!Q~ ur22r1u2r c!J , ~A3!

where the unit step functionQ is used to denote that only the region outside the cutoff range is taken into accoun
integration space covered by the above expression is schematically drawn in Fig. 11.

If we take the further~legitimate! assumption thatr c is smaller than the length of either of the two phases along
z-direction, the above expression can be elaborated upon to give

P lrc52pr l
2H S 16

3
a22b1

b3

3a2D 1

r c
3

2S 32

9
a2b1

b9

45a8D 1

r c
9J 2pr lrsH S 4b2

b3

3a2
2

b3

3~12a!2D 1

r c
3

2S 2b2
b9

45a8
2

b9

45~12a!8D 1

r c
9J 2prs

2H S 16

3
~12a!22b1

b3

3~12a!2D 1

r c
3

2S 32

9
~12a!2b1

b9

45~12a!8D 1

r c
9J ,

~A4!
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where we have used the following substitutions:

a5Vl /V512Vs /V,
~A5!

b5r c /Lz .

The expression that has been found should be checke
give known results in limiting cases. The most obvious o
is to take the densities of the two phases equal (r l5rs). This
leads to

P lrc52pr2S 16

3

1

r c
3

2
32

9

1

r c
9D , ~A6!

which is equal to the well-known expression for the lon
range correction to the pressure in a pure Lennard-Jo
substance.32

Another limit that could be looked at is the limit of in
finite system size (Lz→`, and thusb→0). In that limit the
influence of the interface should become unimportant. T
resulting expression is

P lrc52@apr l
21~12a!prs

2#S 16

3

1

r c
3

2
32

9

1

r c
9D , ~A7!

which can be seen as the analogue of Eq.~A6!, but in this
case a squarely weighted average of the densities show
This is because the density appears as a square in the
sure expression.

It is instructive to see what would happen if one wou
just use the standard long-range corrections. This co
down to neglecting the situation of two different phases a
just taking the number average density of the system a
whole:

FIG. 11. Sketch of the integration space as meant in Eq.~A3!. Position 1
traverses the whole simulation box while position 2 traverses infinite sp
The drawn sphere denotes the volume within a radiusr c of position 1, which
is excluded from the integral by means of the unit step functionQ.
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V

5ar l1~12a!rs . ~A8!

This leads to

P lrc52p@ar l1~12a!rs#
2S 16

3

1

r c
3

2
32

9

1

r c
9D . ~A9!

Note the subtle difference with expression~A7!.
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