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Crystallization and melting in the Lennard-Jones system: Equilibration,
relaxation, and long-time dynamics of the moving interface
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Nonequilibrium molecular dynamics simulations have been carried out on the growth and melting
of the Lennard-Jone&l00) interface at small undercoolings and superheatings. Two regimes of
linear growth rate were discovered: a short-time regime associated with interface relaxation and a
long-time regime associated with the macroscopic limit of growth and melting. It was shown that,
if system sizes or equilibration times are taken too small, one will find only the initial regime. On
the basis of our very accurate results on the macroscopic growth rates close to equilibrium, the
possibility of a discontinuity in the temperature dependence of growth and melting rates at the
melting point was ruled out. @001 American Institute of Physic§DOI: 10.1063/1.1413972

I. INTRODUCTION Broughton et al. showed that for the Lennard-Jones FCC
. , , _ (100 surface, the incorporation of atoms on the surface of
Understanding the microscopic processes associatefle crystal is not an activated process. This led them to re-

with crystal growth from the melt is of major importance in hce “the Arrhenius factor by a factor proportional to the
the prediction of the growth rates of various crystal planesiyarmal velocity of the atoms:

and, eventually, the growth morphology of the crystal as a

whole. Except for very large deviations from the melting

temperature, where homogeneous nucleation may dominate R(T)=CZT1/2{1—exy{(hl_hS)(T_Tm)” )
the dynamics, the process of melting and freezing of a crystal KgTXTh, ’

takes place at the interface. Since this interface, being a com-

bination of two dense phases, is not easily accessible to eXghich was shown to reproduce their data over a wide range
periment, computer simulations provide a good means to elyys temperaturegalbeit all belowT,). Both Egs. 1 and 2 lead
cidate the microscopic restructuring processes involved ifg the general observation that melting rates are larger than
crystallization and melting. In this study, we will use Mo- ¢rystallization rates, at equal amounts of supersaturation.
lecular Dynamics(MD) simulations to look at the growth Thjs might be one of the reasons that over the past decades a
and melting of the Lennard-Jon¢s00) interface at small  |arge number of simulation studies have appeared on the
amounts of undercooling and superheating. In this regim&yeezing of crystals, but comparatively few on melting. For
the interface is thermodynamically rough and defect growthpstance, in a successive paper of the Broughton gidhey
does not play a significant role. tried to complement their growth studies with melting, but
One of the first accounts of the steady-state motion of dhey failed to produce steady state melting. Instead they
crystal-melt interface in MD simulations has been the Workquickly reached the mechanical melting point, i.e., the point
of Broughton, Gilmer, and Jacksorthey combined a solid 4t which the whole crystal disintegrates at once. Note that the
and a liquid phase in one simulation box and calculated th%ndercoolings and superheatings they used are enormous
steady-state velocity of the interface as a function of temtompared to the ones we will look at.
perature. A theoretical prediction for this dependence is sup- The asymmetry of freezing and melting kinetics was first
plied by the Jackson—Chalmers thebryhere the solid—  shown experimentally for crystalline silicofe-Si) growing
liquid transition is assumed to take place through someom amorphous silicorta-Si) by Tsaoet al® Their results

intermediate or transition state. The raRsre given by: were later reproduced with MD simulations by Kluge and
Q Ray? using a Stillinger—Weber potential, and by Iwamatsu
R(T)=C, exr{ - ﬁ) and Horif with classical Density Functional TheofpFT).
B Note that, although they all report an asymmetry between
(hj—ho)(T—Tp) melting and freezing in these systems, there is no slope dis-
X 1—exp( W” (1) continuity of the growth rate versus temperature curve upon

crossing the melting point. It was mentioned already in the
whereQ is the activation energy for diffusion in the liquid, 1920s, in an Ansatz by Tammantthat such a slope discon-
and h is the enthalpy per particle of the respective phasetinuity cannot occur. This was restated in the 1960s by Uhl-
mannet al,® who argued that an abrupt change in the kinetic

¥Electronic mail: h.l.tepper@ct.utwente.nl CoefﬁCi_ent C. in EQ_- 2 on gping from freezm_g .t_O melting
YElectronic mail: w.j.briels@tn.utwente.nl would imply a violation of microscopic reversibility.
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However, in their study of crystallization and melting of of the rates will be presented and it will be shown that, for
sodium, Tymczak and Ray° found a clear slope disconti- our system, a slope discontinuity does not exist at the melt-
nuity at the equilibrium temperature. Singularities at theing point.
melting point were subsequently reported with dynamic DFT
cfalcuIaFions“L,l a kinetic mean field theo&, and lattice 9as || gVULATION DETAILS
simulations'® The theory of Richard$ tried to explain the ]
asymmetry on the basis of the density change upon freeziny- Nose —Hoover dynamics

or melting, but the major role of this density change was | this study, we simulated two-phase crystal-melt sys-
later contradicted by the work of Oxtoby and Harrowéll. tems at constant number of particldd)( pressure ), and
Up till now, the question is still under debate. temperature T). In order to accomplish this, we employed
Recently, we performed nonequilibrium simulations for Nose-Hoover dynamic%‘."25This scheme is known to have a
the FCC(100) interface with the Clarke potential. In that \yell-defined conserved quantity and to generate trajectories
papet’ we investigated the influence of system size effectsyith the correct distribution of pressures and temperatures.
and carried out thorough thermodynamic averaging to arrive\|though thermodynamic properties like pressure and tem-
at very accurate statistics. This initially led to a clear asyMperature are only rigorously defined as ensemble averages,

metry of growth and melting rates close to equilibrium, we will use these terms also to refer to the instantaneous
which was attributed to lattice imperfections in the growingyalues of their microscopic estimators:

crystals. It was shown that if the melting simulations were

started with the initially grown crystals, the asymmetry was T 1 EN: w 3)
made to disappear, thus showing it to be an artifact of the Nikg i1 m;

simulations. A comparable asymmetry was found in the

growth and melting simulations of Huitenea al, '8 but since and

they were mainly interested in crystallization rates, they did  _ 1 N

not discuss it. P=pkeT+ 3y 2 Ti-fi, 4

In an earlier study of ours, we presented a method to
extract the temperature dependence of the interface velocitig¥th N; the number of degrees of freedom.
from the fluctuations in an equilibrium simulatiéh.Note In the Nose-Hoover scheme both pressure and tempera-
that, for the applicability of this efficient method, it is crucial ture are constrained to produce the desired distributions by
that no slope discontinuity exists at the equilibrium temperacoupling to a bath by means of parameters that rescale the
ture. volume and the particles velocities, respectively. The algo-

In the present study, we will carry out nonequilibrium rithm has been shown to be quite robust with respect to the
simulations for a pure Lennard-Jones substance and exters@€ed at which momentum space and configuration space are
our previous findings. We will demonstrate the crucial im-rescaled®?” However, since we are dealing with systems
portance of good equilibration and we will report on the that are not in thermodynamic equilibrium in this study, we
discovery of two time-regimes of growing and melting rates.do not only require that the scheme produces the correct
The initial regime is associated with interface relaxation,distributions on average, but also within reasonable time.
while the second regime is associated with the macroscopitore specifically, in the case of a growth simulation, for
limit of growth. We will discuss the risk that when equilibra- €xample, we do not wish the system to have crystallized by a
tion is not carried out to full extent, or when too small sys-Substantial amount before it has sampled a representative
tem sizes are used, only the initial regime will be observedpart of the temperature and pressure distributions. This addi-
which can easily lead to erroneous conclusions about thHonal requirement of fast thermostat and barostat equilibra-
temperature dependence of growth and melting rates. Thiéon makes the choice of both the timestep and the bath re-
procedures described here will be of general interest to thExation times much more delicate than in simulations at
study of crystal—liquid interfaces in simple systems, boththermodynamic equilibrium. _ .
dynamically and in equilibrium, which continues to be the I order to be on the safe side with respect to energy
topic of many theoretical and simulation studies atdrifts (cf. Ref. 26, Table 2 we used a timestep of 7.480
presenf?-23 %10 * Jmo?/e (reduced Lennard-Jones unit® all our

This paper is organized as follows. In the next sectionsSimulations. For tuning of the relaxation times, we studied
we will describe our simulation system. First we mentionthe distributions of temperature and pressure in both a bulk
how we tuned our thermostat and barostat to carry out th#Auid and a bulk solid of Lennard-Jones particles with a
nonequilibrium simulations. Second, we describe the intercUtoff radius of 2.5 and long-range corrections to the pres-
particle interactions and pay particular attention to how long-Suré and the energy. The distributions were calculated over
range corrections to the pressure should be carried out i"ort runs of 50 000 timesteps after equilibration. The tem-
simulations where two phases are present. In Sec. Ill w@erature distributions were measured at conskéviff, and
describe our equilibration method and show that propefhe pressure distributions at constaPT (bulk liquid) or
equilibration is crucial to extract the correct rates. The sucNoT (bulk solid. Here constant pressure tensermeans
ceeding section deals with the results of the nonequilibriunthat both the box volume and shape were allowed to relax.
simulations and the discovery of the two regimes of linearResults are shown in Fig. 1. From this figure it can be seen
growth rate. Finally, in Sec. V, the temperature dependencthat when a relaxation time is given too small a value, the
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corresponding property remains too close to the averagthe system. Since in constant pressure simulations the den-
value. Also, one can see that there is a steady “overshoot,8ity changes during the run, the corrections must be made at
i.e., the values basically bounce back and forth between twoun-time. This is usually done by assuming that the radial
values just below and above the average. From the time evdaistribution functiong(r) is approximately equal to 1 far
lution (not shown hergit appeared that this process happens>r. and then analytically integrating the interaction poten-
at one distinct frequency. On the other side of the spectruntjal or the virial contribution(for energy and pressure, re-

if relaxation times are chosen too large, the distribution doespectively multiplied by the bulk density squared. In a sys-
not have the correct width either, at least not within thetem with two phases of different densities, however, there is
50 000 timesteps displayed here. In the end, the system witlio well-defined bulk density, which makes the procedure less
sample the whole distribution, but it does so by long-timestraightforward. In the Appendix of this paper, an expression
fluctuations superimposed on the chaotic short-time oscillais derived for the long-range correction to the pressure in a
tions (which again was seen from the time evolutipns system with two phases separated by a flat interfaee Eq.

We also investigated the temperature distribution in theA4). The resulting values for different fractions by volume
constant pressure simulations. They were nearly equal to thef crystalline material are given in Fig. 2. As can be seen
ones shown herdor NV T simulation$, from which we con-  from the figure, there is surprisingly little difference between
clude that for our choice of relaxation times, the thermostabur improved expression and the correction made with the
and the barostat variables do not interact. For all the simulasverall density.
tions in this study, we chose as thermostat relaxation time
r1=0.0748 ymo?/e and as barostat relaxation times

=0.748 Jmo/e. o
B. The model system -0.80

In a previous paper, we used the Clarke 12-6
potential® to model particle—particle interactions. This po-
tential has the advantage that it goes smoothly to zero at :
predescribed cutoff distance. However, since much more*
data exist both numerically and theoretically on the simpler  _ggg
Lennard-Jones potential, we chose the latter for the preser
study. All interparticle interactions were modeled with the
standard Lennard-Jones 12-6 potential with a cutoff radius -0.95
(r.) of 2.50. Accordingly, all properties in this paper will be
presented in terms of the well-dep¢h the radiuso and the 00

massm. S 0.0 0.2 0.4 0.6 0.8 1.0
Because the potential is rigorously put to zero beyond a

the cutoff radius, the long-range tail of t(iafinite) potential . .

. ) . ) FIG. 2. Long-range corrections to the pressure in a two-phase system as a
is missed, which must _be corrected for in the energy and_ th@inction of the volume fractiony (=V,/V). Shown are expressions A4
pressure. Such corrections naturally depend on the density afid A6.

-0.85
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It has recently been pointed out by Baidalenal?that  a clear asymmetry of growth and melting. It was also shown
in simulations where an interface is present, it can be exthat imperfections eventually appeared in the crystalline
tremely important to explicitly take into account enough of phase when the system was run for a long time at the equi-
the long-range interactions. For example in their simulationdibrium temperature, which means that the crystals with im-
of the Lennard-Jones liquid—vapor interface, they found experfections really represent the thermodynamically favored
tensive changes of thermodynamic properties, the surfacgtate. It was argued that the crystals lacking imperfections
tension and the thickness of the interface layer upon goingnelt more slowly than realistic crystals would do. Indeed,
from a small(2.6 o) to a large(6.78 o) cutoff radius. Thus, when the crystals grown in the crystallization runs were used
the asymmetry that was felt by particles due to the presenc®r the melting runs, the asymmetry was shown to disappear.
of the interface extended far into both phases. This would'hus, an extensive and careful equilibration of the system at
imply that a big difference is to be expected between usinghe melting point will most probably also give a symmetric
our new expressions and rough estimates of long-range cobehavior of growth and melting.
rections, especially since our cutoff radius is not that large. In the present study, we chose to perform such a careful
No such differences were observed however. The reason faquilibration. Like before, we carried out bulk simulations of
this may be that liquid—vapor interfaces and crystal—liquidliquid and solid phases at the appropriate densities, but this
interfaces differ in the density change upon crossing the intime only at the melting temperature. The densities were
terface. At least for monatomic systems, this change is quitéound by doing severallPT runs of the bulk phases at dif-
small for the crystal-liquid interface and comparatively largeferent temperatures and fitting the average volumes as a
for the liquid—vapor interfaceln our caseps/p,=1.135). function of temperature. For the average volumes per particle

There is another, more pragmatic, problem with our newthis led to(in Lennard-Jones units
expression. In order to use it at runtime in a simulation, one
has to be able, at every single timestep, to tell the amount of
solid and liquid material in the system. For this, we could usegng
our solid—particle recognition criteriofsee Ref. 19but that
slightly overestimates the amount of liquid material since it ~ vs=1.0513-0.340 68 T+0.468 30< T?, (6)
assigns most of thédiffuse) interface to the liquid phase_. for 0.640< T<0.747.

Another method, which connects more closely to the deriva- First, we needed an estimate of the equilibrium tempera-

tion we used in the Appendix, is to look at the total INStan-y,, o T,,. For this we used the most accurate collection of

ta_meoug volume of the system. Smge we know from our bu”ihermodynamic data for the Lennard-Jones system at this
simulations  the .volumes per particle for each phase, Wehoment, the Johnson data for the lioffidind the van der
°°9'd at every Instance c_alculate the proportion bet\{veerp_'oef data for the solid® From these data we calculated the
solid and liquid phases. This, however, does not work er[herchemical potentials at the desired pressure and sought for the

Since instantaneous volume fluctuations will also take plac?emperature at which the chemical potentials of the solid and

i_n the bulk parts of the two-phase system, our average Pafhe liquid are equal. This gave an estimatelgf=0.687. At
ticle volumes are not a good measure. As a consequence, gt temperature, we performed a two-phAB&T simulation
certain instances, our prediction farcould exceed 1 ordrop 4 measured the pressure. Next we slightly changed the

b?IOW 0. As can be seen from Fig. 2, the new expressiog mperature until the pressure reached the desired value.
diverges close to these values. Any other method that coul rom this we foundT..=0.696 59 and thus. with the above
m . ]

be suggested to distribute the material over the two phasqzﬁS v%%=1.1819 ancy &%=1.0412. At this temperature and
would suffer from comparable inaccuracies. Since the assiire,sslure fhe equatio;s of. John.son and van der Hoef give
ciated errors are most probably larger than the differencv -1 18é8 andv.=1.0446, in quite good agreement with

. . . . S . 1
between the two expressions, we Qec@ed to keep using ”B%Jr calculations. The agreement of both the melting point
overall average density in calculating instantaneous COMeCind the associated densities is almost perfect, given the fact

tions to the pressure and the energy. that for simple systems, the curves of free energies of the two
phases versus temperature have very similar slope. Thus a
small error in the free energy of one phase with respect to the
In our earlier papet’ we showed that proper preparation other leads to a large error in the predicted transition point.
of the two-phase system plays a crucial role in the resulting  With the densities found above, we performdd/T
growth and melting rates. In that paper, we combined fullysimulations of the bulk phases at the equilibrium tempera-
equilibrated bulk phases of liquid and solid in one simulationture. Here the liquid boxes were elongated along the
box. To release excessive potential energies due to particledirection and were given the same cross-sectional areas in
overlap, 300 timesteps M VT simulations were performed the x,y-plane as the solid boxes. The bulk simulations were
with rigid temperature scaling at every timestep. Thereafterfirst run for 100 000 timesteps of equilibration, whereafter
NPT runs were carried out at the appropriate temperaturesoordinate files were written once every 1000 timesteps for
andP=2.512x 102 to study growth and melting. We found 50 000 more timesteps in total. To make two-phase boxes,
that the crystals that were grown in tthPT simulations one liquid configuration and one solid configuration were
contained just a little more “imperfectionslas defined by taken, both copied four times in thedirection, and subse-
our solid—liquid discriminator, see Ref. lthan the crystals quently put on top of each other. The resulting systems con-
that were molten directly after equilibration. This resulted intained two solid-liquid interfaces and consisted of 2000 ini-

v;=1.0312-0.158 02 T+0.537 48< T2 (5)

IIl. EQUILIBRATING THE TWO-PHASE SYSTEM
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100

were combined. In the bulk crystal simulations, on average
94.18% of the particles were classified as solid particles by
our discriminator. In the bulk liquid simulations, this was
0.058 59%. Accordingly the curve of the small box was
shifted down by 0.9418 2000+ 0.000 585% 2048= 1885
particles. The other curves were shifted by 3770 and 7539
particles, respectively.

All curves start below zero, as a result of the 750
timesteps with strict temperature scalifrgpt included in the
figure) and the fact that particles that “see” a crystal on one
side and a liquid on the other, will no longer be classified as
solidlike. (If it had been only for the latter effect, one would
have expected a value ef100, corresponding to 2 interfaces
of 50 atoms. During the equilibration of the liquid against
100 200 300 the constrained solid, the amount of crystalline material in-

t[(mo*/e)"”] creases. This happens because a crystal-like interface is built
up in the contact region between both phases. After the re-

FIG. 3. Increase and decrease of the number of solidlike particles during thﬁaase of the solid phase. the amount of crvstalline material
equilibration process. Shown are the results for three different box sizes: P ! Yy

4048 particlesthin solid line, 8096 particlesthick solid ling, and 16 192 drops again, because of relaxation in the crystalline part of
particles (dotted ling. The dashed line denotes the point after which the the interface. For the smallest box, equilibrium is only

crystal is allowed to relax. reached after approximately 300 000 timestéusrespond-
ing to a simulation time of 224.ma?/€), which is ex-
tremely much larger than most other studies so far have as-
sumed to be sufficient. The two larger boxes need less time
This is the point where the new procedure starts to del0 reach equilibrium. Note also that the double and quadruple

viate from the one in the previous study. We used to continu ox seem to converge to approxmate_zly the same valibe Of_
with 300 timesteps of strict temperature scaling to release th)-{‘ve will come back_ to these observations Iat_e r when we dis-
particle—particle overlap caused by the combination of the?USS the system size effects on our production runs.
two phases. Upon closer examination, however, it appeared
that this had the side effect of removing any “imperfgctions” IV. NONEQUILIBRIUM SIMULATIONS
that were present in the bulk crystal phase. So the imperfec-
tions, which belong to a well-equilibrated crystal, disap- To carry out production runs of crystallization and melt-
peared just because of thogeery short) simulations with  ing, the well-equilibrated two-phase systems were quenched
strict temperature scaling. Therefore we decided to keep thie the desired temperatures, by reassigning velocities from a
solid phase atoms frozen at their positions and applied 75Gaussian distribution with the appropriate mean and width.
timesteps of strict temperature scaling to the liquid only. ThisThen simulations were carried out in tih¢PT ensemble,
proved to be enough to get rid of most of the overlap enerwith a Nose-Hoover thermostat and barostat, applying the
gies. Thereafter the liquid was equilibrated for 100 000same parameters as in the bulk simulatigBsc. Il A). The
timesteps, while still constraining the crystal to its original barostat was adopted such that the volume relaxation in the
configuration. This way, the liquid was equilibrated against ax-, y-, andz-directions took place independently. The produc-
crystal with the correct amount of imperfections, but with ation runs were again carried out over 50 independent starting
temperature of essentially zero Kelvin. Therefore, the equiliconfigurations(the end configurations of the equilibration
bration should not be extended too long, in order to avoidung at each temperature. During the runs, the number of
excessive “freezing” of the liquid on the crystalline surface. crystalline particles was calculated once every 100 timesteps.
After the liquid equilibration, the solid was finally relaxed as Results of the 50 runs were subsequently averaged.
well and the whole system was run another 300000 One example of an averaged melting run is shown in
timesteps of equilibration. During the whole procedure, weFig. 4. To investigate the influence of equilibration time, we
counted the number of solidlike particles using our recognistarted melting runs from three different stages in the equili-
tion function® This was done for 50 runs of different start- bration (100, 200, and 300 thousand timesteps after the re-
ing configurations and subsequently averaged at each timiease of the crystal phaseAll three cases show an initial
We found that this number of 50 runs gave a good trade-offapid drop of the number of crystalline particles. This reflects
between accuracy and computational cost. We will also disthe relaxation of the system to the new temperature. Simul-
cuss this in the next sectigiig. 5). taneously, the volume of the box increased by a correspond-
Results for the averaged equilibration curves are showing amount. After this short period, tHaveraged tempera-
in Fig. 3. Apart from the results of the 4048 particle system,ture and pressure had relaxed to their desired values.
curves are also shown for systems of double and quadruple Shortly after the initial box relaxation, the system started
size. In order to monitor processes at the interface, all threto melt with a constant velocity in all three cases. The ex-
curves were shifted downward by the number of solid parperiment with the shortest equilibration time melted some-
ticles that corresponds to the sizes of the bulk systems thathat slower than the two others. A remarkable feature, how-

50

-100
0

tially crystalline particles (%5xX20 unit cells and 2048
particles initially belonging to the liquid phase.
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FIG. 4. Melting curves aT =0.714 /kg started from three different stages FIG. 6. Averaged melting curves at=0.714¢/k g for different box sizes

in the equilibration process. with a total number of particles of 40480 runs, thin solid ling 8096 (50
runs, thick solid ling and 16 192(32 runs, dotted ling respectively.
Clearly shown is the good agreement of both the initial and the final slopes

ever, of all three cases, is that they displayed a second r&f the different experiments.

gime, where the melting was again linear in time but took

place at a smaller rate than initially. This crossover from an

initial to a second regime was clearly noticeable for most ofiN€ wo regimes corresponds to the rates that are to be as-

the temperatures at which we performed our measurement§(,)Ciat9(j with macroscopic crystal growth such as would be

. . i i 7
though less pronounced for the crystallization runs than fols'eerll n %xpenmentds. . ff q
the melting runs and less pronounced for temperatures very, n order to study system.5|ze eflects, we repeatg our
close to equilibrium. Note, however, that the effect is also imulations for systems of twice and four times the original

quite subtle: in order for the effect to be seen, it is necessar izes. We could have constructed the new two-phase boxes
to carry out averaging over many different runs. This is

y taking 8 or 16 periodic images of the bulk phagaestead
shown in Fig. 5, where a selection of single runs is draw

of 4 for our smaller systejn However, we chose to do the
together with the curve averaged over all 50 boxes. On th

ulk (NVT) simulations anew at the actual sizes that we
temperature range that we study, the fluctuatior.gh one needed in the two-phase simulations. In this way, we made
single run are of the same order as the differences betwe

Syre that we combined two completely randomized phases
the averaged curves of different temperatures. and did not introduce any undesired periodicitp a previ-
The discovery of two distinct regimes of growth and ous study of ours! where we studied density fluctuations of
melting raises two questionys this an artifact of the simu- adsorbed species in nanopores, we learned that in order to

lation method (e.g., an effect of system size), or is it a real;

Isample long-wavelength fluctuations of the order of the box
physical effect?"and*If it is not an artifact, which one of sizel, one has to completely randomi;e initial positions of the
particles over the whole pore. There it proved not to be suf-
ficient, say, to divide the pores in four sections of equal
500 ; length and distribute a fourth of the particles randomly over
each of the sectionsTo summarize, the two-phase systems
of 8096 particles were constructed from bulk liquids of 4096
particles and bulk solids of 4000 particles, and the two-phase
systems of 16 192 particles were constructed from bulk
phases of 8192 and 8000 liquid and solid particles, respec-
tively.

The resulting averaged curves for the same temperature
as in Fig. 5 are shown in Fig. 6. The most striking feature of
this graph is that all three curves seem to start with the same
initial slope and to end with approximately equal slopes as
well. Only the time over which the initial regime extends
seems to shorten substantially with increasing box size. We
suggest that both regimes belong to a physical process,
which is reflected by the fact that neither slope does change

t[(mc’e)"”] significantly upon enlarging the box size. Since the second
FIG. 5. Melting curves aT=0.714 ¢/kg showing a selectiofb rung from regw_ne seems 10 be persu;tent and becomgs mcreasmgly
different starting configurations, as well as the average over 50(tuoad ~ dOMinant when the system is enlarged, we infer that this
line). regime is to be associated with the macroscopic limit of crys-
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FIG. 7. Comparison of melting curves for the small and intermediate box

sizes, where either both phases are doubled or the whole system is copi&diG. 8. Dependence upon the supersaturafé@viation of the temperature

twice. from equilibrium of the initial (pyramidg and long-time(circles growth
and melting rates. Shown are the results for the sKogen symbolsand
intermediate(closed symbolsbox sizes.

tal growth (or melting. As can be seen from the figure, the

slope of the second regime still changed somewhat upon

enlarging the size, but for computational reasons we decideﬁ1e melting point than the overall temperature. In order to

the results of the intermediate boxes were converged satidlVestigate this, we did a thorough study of temperature pro-
factorily (this was a generic trend for all temperatures files by monitoring local averages of the kinetic energy, both
The initial regime may be a relaxation of the imerfaceaveraged over the whole run and followed as time evolution.

reflecting a change from the equilibrium shape at the meItin%; neither case did we find any noticeable deviation of the

point to a steady-state shape belonging to the actual temper iterface temperature from the overall temperature. From this
ture of the experiment. This is in accordance with kinetic Ve conclude that our thermostat relaxation time was chosen

mean field results of Williams. Moss. and Harrow&Il small enough so as to effectively produce constant tempera-

One might argue that if local density fluctuations arelUre experiments.
crucial and only the total number of particles in the simula-
tion plays a role in the size of these fluctuations, the eﬁecﬂi&EYNzEﬁﬁﬁggE DEPENDENCE OF GROWTH AND
should also be seen in a system that is built as two copies
the original box(thus containing four interfaces per simula- We carried out simulations with the small and interme-
tion cell). This we checked by comparing the results from thediate boxes at several different temperatures below and
small box with those from the intermediate box and thoseabove the equilibrium temperature. For all experiments, av-
from a system that was made by copying the small box twiceerages were calculated over 50 different initial configura-
in the z-direction. The results are shown in Fig. 7. One cantions. The small box systems were equilibrated over 100 000
see that the larger fluctuations in the “doubled small” boxtimesteps with frozen crystal configurations and 300 000
give ease to a better buildup of the equilibrium interfacetimesteps with the whole system relaxed, while the interme-
(reflected in the starting point of the melt run which is closediate box systems were equilibrated over 100 000 steps with
to that of the large box In the nonequilibrium situation, a frozen crystal and 200 000 steps with both phases relaxed.
however, the long-time behavior is close to that of the smalFor the small systems, the initial slopes were calculated eas-
box. Thus it is really the bulky behavior of the large phasesdly, but the second regime was only accurately measured in
in the larger box that makes the interface relax to its nonone growth and four melting experiments. The reason for this
equilibrium shape. Note again that our “small” system is of was that close to equilibrium, the second regime was not
comparable size or larger than the maximum system sizes édund, and far from equilibrium, there was only a very short
most other studies. This means that those studies probabtyne of second regiméf any) before the system had grown
have been investigating interface relaxation rates rather thamne of the two phases so far that the two interfaces in the box
macroscopic crystal growth rates. started to interact. Most of the intermediate size experiments

A second concern that might be raised is that immedishowed both regimes over a substantial time. The results are
ately after the initial quench, the crystal starts to graw  shown in Fig. 8. It can be seen that over the whole range of
melt) thereby releasingconsuming latent heat of fusion. If temperatures studied, the agreement between both system
the thermostat would not be able to remove all of the extraizes is good. The long-time regime rates are perfectly linear
heat, the interface may heat (gool down until balance is  with respect to temperature. We think that this is clear evi-
reached between heat production and heat transport. Thience of the Ansatz of Tammahand supplies an extra con-
effect would slow down both growth and melting rates, sincefirmation of the fact that the long-time regime is indeed to be
the final temperature at the interface would then be closer tassociated with the macroscopic limit of growth and melting.
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The initial rates are not linear in temperature. This im- 400 . ' T
plies that improper equilibration might be one of the reasons
why earlier researcher@ncluding ourselves have found Q\\
nonlinearities or slope-discontinuities around equilibrium in 200 ¢ o~ |
the dependence of growth rates upon under- and supersati "**\:\\
ration, even for roughly growing surfaces. \’“‘\3&.

Finally, we investigated the dependence of the crossover- 0 T
time between the two regimes upon temperature. We starteis (‘:\\
to make a linear fit through the second-regime growth rates< 200 | AN N |
(denoted byR,). This resulted in: 0\\ e

RM(T)=99.052- 142.07T. 7) ‘\\

-400 .
Note that this leads to a definitive estimate of the equilibrium Ve
temperature for our system of,=0.697%/kg, in very
close agreement with our earlier estimate. Next we fitted the  -600 * : : :
-0.06 -0.03 0.00 0.03 0.06

initial-regime growth rates with a third order polynomial in
AT (the deviation of the temperature from equilibriurihis

resulted in FIG. 9. Temperature dependence of intercefts (diamondg and A,
. (circles of the growth and melting curves. The dashed lines represent the
R{(T)=—184.19AT—739.39AT?—38291AT3. (8) fits of Egs. 9 and 10.

T [e/kg]

The accuracies of these fit can be appreciated from Fig. 8.
Now, for each experiment, we did not only measure the

slopes of the growth curves, but also the intercepts with thg,ubsequent nonequilibrium simulations and showed that our

N-axis. We fitted the intercept&enotedA) of the initial Solid—liquid recognition function supplies a powerful tool to

) ; . e monitor the equilibration process.
regimes with a third-order polynomial iAT: We discovered two linear regimes. The initial regime

Aft=—10.2-3850.4AT— 17694AT? was associated with interface relaxation and was shown to be
3 most dominant for small system sizes and close to equilib-
+1.2236<10° AT?. © rium. The second regime was associated with the macro-
Next we fitted the intercepts of the second regimes, whilescopic limit of growth and melting. The linear dependence of
constraining the zeroth order term to the value of the initialtheé macroscopic rates upon temperature provides clear evi-
intercepts. This means forcing both curves to coincide aflence of the early observation of Tammann that roughly

equilibrium (AT=0): growing surfaces with one type of interaction sites cannot
it 5 have a slope discontinuity in the rate-temperature curve. This

A, =—10.2-6443.4AT—39576AT contrasts some earlier simulation studies. We showed that
—1.87724 1P ATS. (10) improper equilibration of the two-phase systems can result in

i the observation of only the initidlinterface relaxationre-
The results are shown in Fig. 9. The difference betwegh gimes. Since these were shown not to vary linearly with
and Af" can be interpreted as a measure for the difference
between the widths of the nonequilibrium interface and the

equilibrium interface. The points at which both fifs™ 1500 . .

+R™x t intersect are our estimates for the crossover times: l
I .
2593.0+ 21 882AT +3.1008< 10° AT? " 10001 ]
cross > . \ T
42.12+739.39AT+ 38 291AT 500 | \\ - i
In Fig. 10, we have drawn all growth and melting curves for — e
the intermediate box size, including the fits to the linear re-T == > .
gimes as well as Eq. 11. As can be clearly seen, the crossové N e ——" _
time grows large upon approaching equilibrium, while at the | N
same time the initial and the second-regime rates grow more -500 3 N“M -
and more equal. / '
-1000 / 1
/
/
-1500 L ' : :
VI. CONCLUSIONS 0 20 40 60 80 100

t[(mo’re)"”]
We presented the most accurate simulations to date of

; _ FIG. 10. Growth and melting curves for all temperature at intermediate box
crystal growth and melting rates of the Lennard-Jofi€x) size, showing both the measurement data and the fits to the initial and final

face at temperature_s_ close to equilibrium. We proposed ggpes. The dashed line shows the calculated crossover times between both
way to carefully equilibrate two-phase systems to carry outegimes.
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temperature, soméor all) of the earlier observations of a depends on the distancebetweenr; andr,. In the case of
slope discontinuity may be explained by this. simple Lennard-Jones particles, this function reads:
Now that the necessary hardware requirements have LI

. ; : do 48 24
come into reach, it has become possible to study the effect of )=y —=— — 4+ =
system size and simulation times upon dynamic measure- dr rtz  r6
ments of two-phase systems. The present study proves that |5 the integral, positiorr; probes all material in the
both of these have to benuch larger than generally ac- simylation box, so this coordinate is restricted to the box
cepted in order to arrive at the correct rates. This reflects thgsjyme v/, while the second coordinate represents all of the

fact that the interface present in two-phase systems has &yrroundings of the first one and thus, in principle, extends
effective interaction range that is apparently much largegyer infinite space:

than any measure of the interface width would suggest. We

think this study provides a good guideline to what dimgn- P=— i dflf drop(ry)p(r)w(|ra—rq)). (A2)

sions should be used in these systems and may be a suitable 6VJv o

starting point to study crystal-melt systems of more complex  Note that in the calculation of the “uncorrected” pres-
molecules, where the molecular correlation lengths are algre, the integral reduces to a double sum over nearest im-
ready much larger. ages, since all interactions beyond the cutoff radius are zero
and box dimensions should be such that non-nearest images
are more tham. apart.

For the construction of the long-range correction, we
apply the usual assumptiththat beyond the cutoff radius,

In this Appendix, we derive an expression for the long-the central particle only “sees” average surroundifighich
range correction to the pressure in a system where twéor a pure substance comes down to assungirg=1 for
phases are present. We restrict ourselves to the case of a purer.]. Because of this assumption, we may substitute the
substancethe interactions between all particles are identi-average densities of the respective phasesp{o), where
cal), the only difference between the two phases being theithe choice for eithep, or ps depends on the region of the
respective densities. We write the pressure-d$6 V times  corresponding integral. Since there are two different phases,
a double integral over space of the densities at two positionthat can appear in four combinations, the long-range correc-
r, andr, multiplied by the virial functionw, whose value tion to the pressure can be split into four distinct integrals:

(A1)

APPENDIX A: LONG-RANGE CORRECTIONS TO THE
PRESSURE IN A TWO-PHASE LENNARD-JONES
SYSTEM

1 al, + o + o
Pic=— 6_VLxLyPIfO le[ Jiw dXZJ,w dy2

+ o0 + o0 + o0 0
Xfo d22p|w(|r2—r1|)®(|r2—rl|—rc)+J:‘ dXsz dY2J7 dzopwW(|ra—r1)O(ra—rq—r¢)
1 0 + o0 + o0 +o0
__LxLysz dz J dXzJ dY2J dzpW([ra—r)O(Jra—rq|—r¢)
6V ~(1-al, —w —w 0

“+ o0 + o0 0
+j7 dxzfi d)&fﬁ dePsW(|r2_r1|)®(|r2_"1|_rc)], (A3)

where the unit step functio® is used to denote that only the region outside the cutoff range is taken into account. The
integration space covered by the above expression is schematically drawn in Fig. 11.

If we take the further(legitimate assumption that. is smaller than the length of either of the two phases along the
z-direction, the above expression can be elaborated upon to give

16 g\1 (32 g%\ 1 B3 B3 1
Plrc:_7TP|2{(3(1—2,34-7)%—(3(1—/34- 45a8)é]_7Tp|ps[(4ﬂ_§——3(l_a)2 E

N )1_2(16__ B )1_(32__ B° )1
(ZB 450°  45(1-a)® rfg} T 3T e e T T e

(A4)
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FIG. 11. Sketch of the integration space as meant in(Eg). Position 1

Crystallization and melting in the Lennard-Jones system 9443
— N+Ng V)V
P=—y Py TPy
=ap+(1-a)ps. (A8)
This leads to
,(161 321
Pre=—mlapt(1-a)psl”| 5 55 5 (A9)
3 r 9 re

Note the subtle difference with expressiohr).

traverses the whole simulation box while position 2 traverses infinite space.

The drawn sphere denotes the volume within a radiuf position 1, which
is excluded from the integral by means of the unit step functon

where we have used the following substitutions:
a=V|IN=1-V,/V,

B=r./L,.
The expression that has been found should be checked
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