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Simulation of crystal shape evolution in two dimensions
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Abstract

We present a simulation tool for the prediction of the evolution of macroscopic crystal growth and etching shapes

that can be represented in a two-dimensional setting. It is assumed that the advance rate of the crystal surface depends

solely on the surface orientation, which implies that the classical kinematic wave theory applies. We present an

algorithm to calculate the crystal shape at any given point in time in a single time step for initial crystal shapes that are

either completely convex or completely concave. We show that calculation of the crystal shape for mixed convex/

concave crystal shapes may require a series of time steps. Boundary conditions imposed at imperfections in the crystal

surface or at boundaries with a container wall or a mask are treated. The possibility of two or more disconnected crystal

shapes that meet at some point in their evolution is also taken into account. The simulation tool is used to predict

crystal shape evolution for the technologically relevant case of wet chemical etching of masked silicon {1 0 0} wafers

with multiple mask openings. It is shown that the experimental evolution of Si{1 1 0} surfaces cannot be reproduced

using any simulation tool based on the assumption that the etch rate depends solely on the surface orientation. The

differences between experiments and simulations are explained on the basis of the etching mechanism of Si{1 1 0}

surfaces. r 2002 Elsevier Science B.V. All rights reserved.

PACS: 68.10.Jy; 82.20.Wt

Keywords: A1. Computer simulation; A1. Interfaces

1. Introduction

Crystal growth and etching have been investi-
gated extensively using atomistic models, which
has resulted in valuable insight in the growth and
etching mechanisms of crystal surfaces with near-

facet orientations [1–3]. However, for the purpose
of predicting the evolution of macroscopic crystal
growth and etching shapes, it seems more appro-
priate to use a continuum description, where the
crystal surface is regarded as a sharp mathematical
surface. Each point on such a surface can be
designated its own growth or etch rate perpendi-
cular to the surface. In general, this advance rate
depends on the local surface orientation and
the local driving force for crystallization or
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dissolution. The local driving force is determined
by the local composition and temperature of the
solution and also by the local curvature of the
surface, which give rise to the Gibbs–Thomson
shift [4]. Here, we assume that solute diffusion in
the solution and diffusion of heat are very fast,
which implies that growth or etching is purely
geometric, i.e., the growth or etch rate depends
only on the local shape of the crystal. Geometric
models of crystal growth have been studied
extensively, for a review, see Ref. [5]. In this
paper, we also assume that curvature effects may
be neglected, which implies that the driving force is
homogeneous over the crystal surface. Effectively,
this means that we restrict ourselves to the case
where the orientation of the surface is the only
parameter in the growth or etch rate function. This
specific case of interface motion is described by the
classical kinematic wave theory, which is devel-
oped for crystal growth and etching by Frank [6]
and Chernov [7].

In this paper, we present a simulation tool for
the prediction of the evolution of macroscopic
crystal growth and etching shapes that can be
described in a two-dimensional setting. First of all,
the tool can predict the evolution of step patterns
on a crystal facet. Secondly, it can be used to
predict the evolution of (parts of) three-dimen-
sional crystals that can be fully described by a two-
dimensional cross-section. Essential for the applic-
ability of the simulation tool is detailed knowledge
of the growth or etch rate of the crystal at the
experimental conditions under consideration. In a
previous paper, we have described a construction
method for analytical orientation dependent
growth and etch rate functions containing only a
small number of, physically meaningful, para-
meters [8,9]. These functions are very useful in
continuum simulations of crystal growth or etch-
ing.

The paper is structured as follows. In Section 2,
we present a survey of the classical kinematic wave
theory in two dimensions. Next, in Section 3, we
present the simulation algorithms. We emphasize
the complications that may arise when the initial
crystal shape consists of both convex and concave
parts. For an initial shape that is completely
convex or completely concave the final crystal

shape can be calculated in a single step, while for a
mixed convex/concave initial shape several calcu-
lation steps may be required. The simulation tool
can take into account local imperfections of the
crystal surface and it can deal with two or more
disconnected crystal shapes that meet at some
point in time. In Section 4, we elaborate on a
technologically relevant example that highlights all
features of the simulation tool: wet chemical
etching of masked silicon {1 0 0} wafers with
multiple mask openings. Finally, in Section 5 we
discuss the difficulties that will be encountered
when extending the algorithms to three dimensions.

2. The kinematic wave theory

The classical kinematic wave theory developed
by Frank and Chernov [6,7] is the continuum
description of crystal growth and etching for the
case that the growth or etch rate RðnÞ or RðfÞ is
uniquely determined by the normal orientation of
the surface, n ¼ ðcos f; sin fÞ: Originally, this is
hardly a theory on crystal growth, but rather a
description of interfaces propagating with an
orientation dependent rate: it is a generalization
of Huygens’ principle for propagating wave fronts
[10].

In this paper, we adhere to the convention that
the two-dimensional normal vector n points in the
direction of propagation, i.e. from crystal to
parent phase for growth, in the opposite direction
for etching. It is convenient to define the polar-
plotting vector operator P; the ‘‘Gibbs–Wulff’’
vector operator Q and the stiffness tensor operator
S operating on the propagation rate RðfÞ;

PR fð Þ ¼ RðfÞðcos f; sin fÞ; ð1Þ

QRðfÞ ¼RðfÞðcos f; sin fÞ

þ
dRðfÞ
df

ð�sin f; cos fÞ; ð2Þ

SRðfÞ ¼ RðfÞ þ
d2RðfÞ

df2
: ð3Þ

When the advance rate depends solely on the
orientation, loci of constant orientation follow
straight lines: the kinematic wave trajectories as
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Frank called them [6]. By definition the advance
rate of the surface is constant following these
trajectories, hence we can define the vector velocity
of the surface along such a trajectory. This vector
velocity equals the vector QRðfÞ [11]. In the
papers of Cahn and coworkers, this description of
the motion of the interface is called the gradient
formulation [5,12]. The vector QRðnÞ equals the
characteristic of motion wðnÞ ¼ rReðpÞ; where
ReðpÞ is the extension of RðnÞ to all vectors:
ReðpÞ ¼ jjpjjRðp=jjpjjÞ: Another useful quantity is
the rate of change of the inverse of the surface
curvature following the surface along a kinematic
wave trajectory. It can be shown that this rate of
change equals the inverse of the second funda-
mental tensor of the QRðnÞ surface, which we call
SRðnÞ [11]. For interface motion in two dimensions
SRðnÞ equals the one-dimensional tensor defined in
Eq. (3).

Now we will introduce the analytical advance
rate RðfÞ that we will use for all illustrations in this
and the next section. This choice for the advance
rate function is

RðfÞ ¼J� 4mv10J2msinðfÞ e10In;

v10J2msin fþ
p
2

� �
e10In;

v11J2m sin f�
p
4

� �
e11In;

v11J2msin fþ
p
4

� �
e11InIn; ð4Þ

where Jam F,G,H,y In�½Fa þ Ga þ Haþ

 
 
�1=a: The use of this mathematical operation,
which we call assembling operation, is further
explained in Ref. [8]. This function describes
growth or etching of a square crystal with two
facet orientations, {1 0} and {1 1}. The advance
rate function contains four physically meaningful
parameters: two parameters for each family of
facets. The function assembles the complete
advance rate function from the advance rates in
the vicinity of the facet orientations. The four
operands of the outer assembling operation
describe the growth or etch rate in the vicinity of
a facet orientation. The advance rate of a vicinal
facet is supposed to stem from the competition of
two processes: misorientation step flow and
nucleation of monolayer islands or pits. The

parameters v10 and v11 are the step velocities on
the {1 0} and {1 1} facets, respectively. The
parameters e10 and e11 describe the relative
importance of nucleation and step flow for the
{1 0} and {1 1} facets, respectively. e equal to 0
represents the case that nucleation can be ne-
glected. The parameter e can be related to DG�; the
free energy needed to form a critical nucleus on the
facet, and as such can be viewed as a measure of
the surface roughness [8].

We have chosen to consider the case v10=v11
and e10=0.15, e11=0.25. In Fig. 1 the polar plot
for the advance rate, PRðfÞ; is drawn. Also
depicted is the QR-shape, which displays many
self-intersections, forming ‘‘ears’’. Notice that each
minimum of RðfÞ corresponds to a convex section
of the QR-shape, and that, for this example, each
maximum of RðfÞ corresponds to a concave
section of the QR-shape. The transitions from
convex to concave sections of the QR-shape
correspond to the zero points of SRðfÞ: The QR-
shape yields the so-called dynamical Gibbs–Wulff
shape, i.e. the crystal shape that develops from a
point nucleus. In that case kinematic wave
trajectories for the full orientation range f ¼
022p emanate from this single point. The

Fig. 1. The polar plot PRðfÞ for the advance rate, RðfÞ; used
for all illustrations in Figs. 2–7. RðfÞ is given by Eq. (4) with

v10 ¼ v11 and e10 ¼ 0:15; e11 ¼ 0:25:
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dynamical Gibbs–Wulff shape is obtained by
removing the non-physical ‘‘ears’’ from the QR-
shape, i.e. by only considering the inscribed figure.

It is instructive to compare the crystal shape
evolution of an isolated protruding corner and an
isolated re-entrant corner. In Fig. 2(a) the crystal
surface evolving in a time t from a convex initial
shape with a protruding corner is depicted. The
crystal surface evolving from a concave initial
shape with a re-entrant corner, complementary to
the protruding corner in Fig. 2(a), is depicted in
Fig. 2(b). Each point in a smooth section of the
initial shape is displaced along its kinematic wave
trajectory over the vector tQRðfÞ: In a corner of
the initial shape kinematic wave trajectories
emanate for all latently present orientations.
Suppose that the normal orientations of the initial
surface on both sides of the corner, with coordi-
nate vector s; are n1 and n2: Then the crystal
surface at time t is completed by connecting the
points s þ tQRðf1Þ and s þ tQRðf2Þ following the
curve s þ tQRðfÞ from f1 to f2. The ‘‘ears’’, cut
short by the self-intersections, are non-physical
and should be eliminated. For a protruding corner
the relatively faster orientations are removed,
while for a re-entrant corner the relatively slower
orientations are removed. This implies that a
crystal shape evolving from a protruding corner
can only consist of convex sections of the QR

curve and that a crystal shape evolving from a re-
entrant corner can only consist of concave

sections. So we might say that a protruding corner
is a ‘‘convex point source’’ and that a re-entrant
corner is a ‘‘concave point source’’. A point
nucleus is also an example of a convex point
source, which explains that the dynamical Gibbs–
Wulff shape only consists of convex sections.

3. The simulation algorithms

3.1. Representation of a surface

We assume that we have an analytical repre-
sentation of the initial crystal shape. Of course, in
order to calculate the evolution of this shape a
discretization of the initial surface is required. We
use a string representation for all surfaces, follow-
ing the crystal interface in the direction that keeps
the crystal on the left side of the interface. For
each discretization point of the surface we store
four data: the x- and y-coordinate and the normal
orientations directly before and behind the point.
Corners in the initial surface must be represented
exactly. The orientations directly before and
behind a discretization point are only different
for corner points. The density of discretization
points is determined by two resolutions: a resolu-
tion in the distance between points and a resolu-
tion in the difference in surface orientation
between points. The angular resolution in parti-
cular determines the quality of the representation

Fig. 2. Crystal shape evolution of an isolated protruding corner (a) and the complementary isolated re-entrant corner (b). (a) Slow

orientations or convex sections in final shape, and (b) fast orientations or concave sections in final shape.
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of the surface. The simulation algorithms de-
scribed below maintain the angular resolution. The
angular resolution of 11 used in this paper suffices
to obtain smooth surfaces.

3.2. Convex or concave initial shapes

In this section we treat the evolution of crystals
with an initial crystal shape that consists solely of
convex or solely of concave sections. In this case,
the final crystal shape can be calculated in a single
time step for arbitrary evolution time t: All points
on the discretized initial surface are displaced
along their kinematic wave trajectories, over the
vector tQRðfÞ: At a corner, with coordinate vector
s; extra points s þ tQRðfÞ are added with the
predefined angular resolution. These points corre-
spond to kinematic wave trajectories for orienta-
tions that are latently present in the corner. Now,
all we need to obtain the final crystal shape is an
algorithm to cut off the unphysical ears. This
algorithm we refer to as the vanGogh algorithm.

The concept that is the starting point of the
vanGogh algorithm is illustrated in Fig. 3. In this
figure an evolved shape is shown, corresponding to

a convex initial shape, which contains an ear that
is to be cut off to obtain the final shape. Now
consider two points of the discretized initial
surface A and B; for which the corresponding
points on the evolved shape are on a concave part
of this shape, which implies that the segment
between A and B cannot be on the final shape. The
kinematic wave trajectories of points A and B
intersect. This is another condition that is suffi-
cient to conclude that the segment between A and
B will not be on the final shape. Hence, the first
step of the vanGogh algorithm is determining for
each segment of the evolved shape whether the
kinematic wave trajectories corresponding to the
start and end point of the segment intersect. The
second step of the vanGogh algorithm is walking
over the evolved surface segment-by-segment and
checking for self-intersections of the current
segment with segments that are already passed.
Checking for self-intersections is only done if the
presence of an unphysical ear is first detected, i.e. if
first a section of the evolved surface is passed that
cannot be on the final shape according to the first
step of the algorithm. An adapted line-sweep
algorithm is used to minimize the number of
checks necessary to find possible self-intersections
[13]. If a self-intersection is found, the correspond-
ing ear is cut off the evolved surface. It is possible
that after completing the walk over the surface one
final ear must be cut off, because the starting
segment is on this final ear.

In Fig. 4, several stages in the evolution of a
dissolving crystal shape that consists completely of
concave sections are drawn. Note that we call this
crystal shape completely concave in accordance
with the direction conventions of Section 2. The
time interval between consecutive crystal shapes is
constant. All crystal shapes are calculated in a
single calculation step. The trajectories of the
corner points are also indicated. These trajectories
are only straight lines if the surface orientations on
both sides of the corner are constant or if the
symmetry of the crystal imposes this.

3.3. Mixed convex/concave initial shapes

In this section, we treat the evolution of crystals
with an initial shape that consists of both convex

Fig. 3. The kinematic wave trajectories of point A and point B

intersect, which implies that segment AB is not on the final

shape.
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and concave sections. The calculation of the final
crystal shape for a mixed convex/concave initial
shape may require several time steps. The cause for
this is the behavior of corners. In Section 2 a
somewhat simplified picture of the evolution of a
corner is presented. There it is stated that at t ¼ 0
only, kinematic wave trajectories are emanating
from the corner for all orientations latently present
at the corner. In fact, new kinematic wave
trajectories are emanating from the corner for all
latently present orientations continuously. For a
protruding corner, or convex point source, in a
completely convex initial shape this amounts to
the same. However, consider a protruding corner,
or convex point source, bordered by a concave
section of the surface. At such a corner certain
orientations will vanish altogether from the crystal
surface: relatively fast orientations present in the
concave section drive out relatively slow orienta-
tions near the corner decreasing the range of
orientations latently present in the corner. In a
protruding corner only relatively slow orientations
will develop, but it depends on the range of
orientations latently present, which orientations
are relatively slow. If this range becomes smaller,
then new orientations may develop at the corner.

In most practical situations, the problem identi-
fied above will only have consequences when the
trajectories of two corners, one stemming from a

convex section or point source and another
stemming from a concave section or point source,
meet. An example of this behavior is presented in
Fig. 5(a), which shows several stages in the
evolution of a section of a crystal shape that
contains a protruding and a re-entrant corner. In
the initial crystal shape the protruding corner is
bordered by two {1 0} surfaces. The evolving
protruding corner initially remains bordered by
vicinal {1 0} surfaces, see Fig. 2(a). In the re-
entrant corner fast orientations develop, see
Fig. 2(b). At some point in time tc the protruding
corner and a corner stemming from the re-entrant
corner meet and merge into one corner. A whole
range of orientations is annihilated at once. The
result is a protruding corner bordered by one {1 0}
surface and one fast surface in between {1 0} and
{1 1}. From this moment on a {1 1} surface
develops at this corner, region A in Fig. 5(a).
Note that the kinematic wave trajectories in this
region all originate from the location of the
protruding corner at t ¼ tc and definitely not from
the location of the protruding corner at t ¼ 0:
Therefore, the calculation of the evolution of this
crystal shape for times t > tc can only be correct
when using two time steps. First, using the
simulation algorithm described in the previous
section the crystal shape at time tc should be
calculated. A second calculation using the simula-
tion algorithm, with the crystal shape at time tc as
initial shape, yields the desired final crystal shape.

Thus, every time when a corner stemming from
a convex section of the surface merges with a
corner stemming from a concave section of the
surface, the calculation should be stopped and re-
started. Unfortunately, there is, in our opinion, no
general algorithm that can be used to identify the
exact time tc of occurrence of such an event.
Hence, the user of the simulation tool will have to
provide an upper bound of tc: Usually, a small
number of trial calculations are needed to deter-
mine such an estimate.

The vanGogh algorithm for cutting off unphy-
sical ears from an evolved surface also becomes
more complicated for mixed convex/concave
initial shapes. Fig. 5(b) shows the evolved surface
including unphysical ears corresponding to the
time tc that the protruding and re-entrant corner

Fig. 4. Several stages in the evolution of a dissolving crystal

shape that consists completely of concave sections. The

trajectories of the corners are also depicted.
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meet, see also Fig. 5(a). At point a in the surface
the two corners meet and two ears have to be cut
off there. Two complications should be paid
attention to. Observe that the ear corresponding
to the re-entrant corner sticks outside the final
shape at point b: This implies that in the second
step of the vanGogh algorithm, segment-wise
checking for self-intersections, the first found
self-intersection after detecting this ear should be
ignored. Here, the ear enters the crystal shape
again; the second self-intersection that will be
found shortly after the first should be used to cut
off the unphysical ear. The second complication is
even trickier. We need to be able to calculate
reasonable crystal shapes for times t slightly larger
than tc; because we need to re-start the calculation
just after the two corners merged into one. In
the case of Fig. 5, this is only possible if after
detecting that the ear corresponding to the re-
entrant corner sticks out of the surface at point b;
the ear already cut off at point a corresponding to
the protruding corner is re-attached to the surface
momentarily.

3.4. Velocity sources

The classical kinematic wave theory is limited to
the evolution of isolated crystals, without compli-
cations due to grain boundaries, dislocations,
stacking faults, foreign particles contaminating

the surface, etc. Effectively this limitation implies
that only the shape of a perfect single crystal,
freely floating in a parent phase, is described
correctly. In recent papers, we have treated the
generalization of the kinematic wave theory to
imperfect crystal surfaces [14,15]. There, we have
coined the name velocity sources for those
imperfections of the surface that locally change
the advance rate and consequently the crystal
shape. A point velocity source is completely
defined by its velocity source vector R. The
direction of this vector is the direction in which
the velocity source is advancing. The magnitude of
this vector equals the advance rate imposed by the
velocity source.

Consider the specific example of a velocity
source accelerating growth on an initially flat
{1 0} surface of our two-dimensional crystal,
moving perpendicular to this surface. A stacking
fault in a 2D crystal can act as velocity source of
this type. In Fig. 6, this case is elaborated for two
different magnitudes of the velocity source vector
R. To determine the effect of this velocity source
on the evolution of the crystal surface, first the
orientations n1 and n2 of the surfaces on both sides
of the velocity source that remain connected to the
source, which generate the so-called cone shape,
need to be calculated. This is a simple calculation:
the growth rate of these surfaces matches the
advance rate of the velocity source and, therefore,

Fig. 5. (a) Several stages in the evolution of a section of a crystal shape that contains a protruding and a re-entrant corner. At time tc
the protruding and re-entrant corner meet and in the resulting protruding corner a {1 1} facet develops (region A). (b) The evolved

surface including unphysical ears at time tc:
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the cone orientations can be found by calculating
the intersections of the PRðfÞ plot and the circle
through R and the origin, P[Rn]. The resulting
cone orientations are shown in Fig. 6 for both
choices of the magnitude of the velocity source
vector.

The calculation of the evolution of the crystal
surface is now straightforward. At t ¼ 0 the
velocity source is present as point A on the flat
{1 0} surface. This single point has to be repre-
sented in the discretization of the surface by three
points on this exact location: A1; a re-entrant
corner with orientations before and behind this
point nf10g and n1; A2; the top of the cone shape;
A3; a re-entrant corner with orientations before
and behind this point n2 and nf10g: The crystal
shape can now be calculated as follows. Point A2

has to be displaced over the distance tR. The rest
of the crystal shape can be calculated as before.
Again, to obtain the final crystal shape we need to

cut off the unphysical ears, using the vanGogh
algorithm. Inspecting Fig. 6 it will be clear that it
depends on the magnitude of the velocity source
vector whether the hillock, which arises around the
velocity source, consists solely of the cone shape.
In Fig. 6(b) an additional section of fast orienta-
tions develops in the re-entrant corners of the cone
shape.

3.5. Interacting initial shapes

The simulation tool includes an algorithm that
deals with the possibility of two or more dis-
connected crystal shapes meeting at some point in
their evolution. A prerequisite of this algorithm is
that the overall crystal orientation of two meeting
crystal shapes is identical. This seems a severe
restriction, but the algorithm actually has some
important applications. One application is the
evolution of step patterns. Step contours auto-

Fig. 6. Effect on the evolving crystal shape of a point velocity source accelerating growth on an initially flat {1 0} surface. The direction

of the velocity vector R is perpendicular to the {1 0} surface. (a) Moderate value for the magnitude of the velocity vector R. Evolving

shape consists solely of the cone shape with orientations n1 and n2 cut off by the {1 0} surface. (b) Larger value for the magnitude of the

velocity vector R. In the re-entrant corners additional sections of fast orientations are formed.
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matically have the same orientation, as the under-
lying crystal lattice acts as a template [16]. Another
application is presented in the next section: etching
of a masked single crystal wafer with multiple
mask openings.

If two crystal shapes meet in the course of their
evolution, it is necessary to calculate the exact time
tm that the two crystal shapes touch. At that exact
moment, two surfaces merge into one and quite
likely two re-entrant corners are formed at the
meeting point. Therefore, the calculation must be
stopped and re-started at time tm: new fast
orientations will develop in the re-entrant corners.
An example of this behavior is given in Fig. 7(a),
which shows two meeting convex crystal shapes
evolving from two identical circular initial shapes.
Note that when two convex crystal shapes meet,
the combined crystal shape is mixed convex/
concave, which means that further calculation of
the crystal shape evolution requires extra caution.

The algorithm used to automatically find the
time tm that two crystal shapes meet is based on
iteration. The first iteration step starts by calculat-
ing the two final crystal shapes corresponding to
an evolution time t1 > tm; where t1 equals the final
time t. These two curves have one or more pairs of
intersections, which are found using an adapted
line sweep algorithm [13]. For instance, in the case
of Fig. 7 one pair of intersections, A and B, is
found, see Fig. 7(b). Subsequently, for a pair of

intersections it is determined which segments on
both curves are (partly) inside the other curve. For
each kinematic wave trajectory corresponding to
the start or end point of one of these segments,
which ends inside the other curve, the reduced
evolution time that makes that this trajectory
would no longer end inside but end exactly on the
other curve is calculated. The minimum of these
reduced evolution times is still an upper bound of
the meeting time tm; and this time is used as time t2
in the second iteration step. The second iteration
step starts by calculating the two final crystal
shapes corresponding to an evolution time t2 > tm:
The iteration stops when the reduction in time
tiþ12ti becomes lower than a preset threshold.
Then the meeting time is identified with tiþ1; i.e.
tm ¼ tiþ1; and the two crystal shapes are merged
into one.

For some initial crystal shapes it might occur
that one part of an evolving crystal shape touches
another part of this same crystal shape at some
point in time. In general, the simulation tool
cannot handle such an event.

4. Wet chemical etching of silicon

Anisotropic wet chemical etching of masked
{1 0 0} single crystal silicon wafers is used for fast
and reproducible shaping of micromechanical

Fig. 7. (a) Two convex crystal shapes, meeting at time tm; evolving from two identical circular initial shapes. (b) Illustration of the

algorithm for finding time tm; all relevant (virtual) kinematic wave trajectories are shown.
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structures in the fabrication of microsystems [17].
Nowadays the anisotropic etching technology is
used in the fabrication of devices that range from
pressure sensors and accelerometers to sensors for
flow, temperature, force, position, magnetic fields,
chemicals, light, etc. Frequently, the complexity of
the desired microstructure demands an anisotropic
etching step that involves multiple mask openings
on both sides of a silicon wafer. In this section, a
simple example of such an etching experiment is
compared with a simulation.

4.1. Description of the experiment

In the experiment a Si{1 0 0} wafer is etched
from both sides in a strongly alkaline KOH water
solution (25wt% KOH) at a temperature of 701C.
A cross-section of the wafer through [1 0 0] and
[0 1 1] is depicted in Fig. 8(a). The thickness of the
wafer is approximately 380 mm and the silicon
nitride masks on both sides are applied on a lateral
distance of 260 mm. The mask edges are aligned
along ½0 1 %1�:

Necessary for performing a simulation is de-
tailed knowledge of the etch rate of silicon in KOH
for the chosen experimental conditions in the
crystallographic zone through [1 0 0] and [0 1 1].
Fortunately, the complete orientation dependence

of the etch rate of silicon in 26wt% KOH at 701C
has been measured comprehensively by Sato et al.
[18], using a sphere etch experiment. In previous
work, we have formulated an analytical etch rate
function containing only nine parameters, which is
shown to describe this experimental etch rate very
well [9]. In Fig. 8(b) the experimental and the
analytical etch rate in the zone through [1 0 0] and
[0 1 1] are both depicted. Clearly, the analytical
etch rate function is a good representation of the
experimental etch rate.

The etch rate of a {1 1 1} surface is very low; the
exact value of this etch rate cannot be obtained in
a sphere etch experiment. Therefore, we have used
a value obtained in an underetch experiment [19],
R(1 1 1)=15.8 nm/s. A complication of the experi-
ment is that the junction between a silicon nitride
mask and a Si{1 1 1} surface can act as a velocity
source. Experimentally, it is found that a Si{1 1 1}
surface with an obtuse contact angle with the mask
of approximately 1251 etches faster than a Si{1 1 1}
surface with an acute contact angle with the mask
of approximately 551 [19,20]. For an acute contact
angle the mask junction does not act as a velocity
source. The reason for the velocity source behavior
for a large contact angle is that beyond a certain
value for the contact angle, 1D nucleation of steps
at the mask is faster than the nucleation processes

Fig. 8. (a) Cross-section of the Si{1 0 0} wafer used in the etching experiment. On both sides of the wafer a mask is present. The mask

edges are aligned along ½0 1 %1�: (b) Polar plot of the etch rate of silicon in 26wt% KOH at 701C in the crystallographic zone through

[1 0 0] and [0 1 1]. The solid line corresponds to the measurement of Sato et al., while the dashed line represents the analytical expression

for the etch rate used in the simulation.
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on the {1 1 1} surface [19,21]. Specifying the
velocity source vector R111 for this case is very
simple: the direction of the vector is the direction
along the mask into the silicon crystal, and the
magnitude of the vector is the measured underetch
rate of a Si{1 1 1} surface with an obtuse contact
angle [19], |R111|=29.4 nm/s.

4.2. Simulation

The simulation of the etching experiment uses
all the simulation algorithms presented in Section
3. In Fig. 9(a) 27 consecutive stages of etching with
a time interval of 25min are shown.

There are two initial shapes: on the upside of the
wafer a (1 0 0) oriented surface starting at a mask
junction and on the downside of the wafer a ð%1 0 0Þ
oriented surface ending at a mask junction. The
corners at the mask are disguised protruding
corners. The orientations directly before and after
the corner for both the mask corner on the upside
and the mask corner on the downside of the wafer
correspond to ½%1 0 0� and [1 0 0], respectively. The
difference in orientation is as large as 1801 in order
to allow all possible contact angles of the silicon
surface with the mask. For each time step, the final
shape is calculated using the algorithms explained
in Section 3. After this calculation an additional
step is necessary. The mask acts as a boundary of
the validity range of the solution; the parts of the
final shape beyond the mask boundary have to be
cut off. If more than one time step is necessary,
then the orientation directly before the top mask
corner should be reset to ½%1 0 0� and the orientation
directly behind the bottom mask corner should be
reset to [1 0 0].

The initial shapes are completely convex. In the
initial stages two trenches are formed, bounded by
Si{1 1 1} surfaces with an acute contact angle with
the mask and by {1 0 0} bottom surfaces. After
245.5min of etching, these two trenches meet each
other. From that moment, only one crystal shape
remains, which connects the upside mask with the
downside mask, and which consists of both convex
and concave sections: a re-entrant corner is formed
the moment the wafer is etched through. From this
re-entrant corner two sets of fast orientations
emerge: the re-entrant corner splits up into three

re-entrant corners. From the upside mask to the
downside mask, the crystal shape now consists of a
{1 1 1} surface (acute contact angle), a vicinal
{1 1 0} surface, a fast orientation in between {1 1 1}
and {1 0 0}, a {1 0 0} surface and again a {1 1 1}
surface (acute contact angle). From the upside
mask to the downside mask, we encounter the

Fig. 9. (a) Simulation of the etching experiment. Twenty-seven

consecutive stages of etching with a time interval of 25min are

shown. The numbers depicted at corners in some of the stages

correspond to the numbering used in the text. Re-entrant corner

6 is not resolved in this series of stages. (b) The underetch

distance as a function of time for both the upside (stars) and the

downside (circles) of the wafer. The inset shows the detailed

evolution of the crystal shape at the mask junction on the

downside of the wafer.
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protruding upside mask corner, re-entrant corner
1, re-entrant corner 2, re-entrant corner 3,
protruding corner 4 and the protruding downside
mask corner.

After 323min of etching, the trajectory of the re-
entrant corner 1 meets the trajectory along the
mask of the protruding upside mask corner. This
means that the calculation must be stopped and re-
started. From this moment on, a Si{1 1 1} surface
with an obtuse contact angle will develop. The
upside mask corner is a velocity source that
propagates with vector velocity R111. Besides the
protruding mask corner a new protruding corner 5
is formed, connecting the {1 1 1} surface (obtuse
contact angle) and the vicinal {1 1 0} surface.
Further in the evolution of the surface the
calculation needs to be stopped five more times.
The first time (356min) is when the trajectory of
the re-entrant corner 3 meets the trajectory of the
protruding corner 4. No new orientations are
formed; protruding corner 4 now connects the fast
orientation in between {1 1 1} and {1 0 0} and the
Si{1 1 1} surface (acute contact angle). The second
time (364.5min) is when the trajectories of re-
entrant corner 2 and protruding corner 4 meet; re-
entrant corner 2 persists and now connects the
vicinal {1 1 0} surface and the Si{1 1 1} surface
(acute contact angle). After a short time of etching
a new re-entrant corner 6 is formed connecting the
vicinal {1 1 0} surface and a second vicinal {1 1 0}
surface slanted in the other direction with respect
to (0 1 1). The third time that the calculation must
be stopped and re-started (372min) is when the
trajectories of protruding corner 5 and re-entrant
corner 6 meet. The newly formed protruding
corner splits up in two protruding corners 7 and
8. The fourth time (404min) is when the trajec-
tories of protruding corner 8 and re-entrant corner
2 meet; re-entrant corner 2 persists. The fifth time
(524.5min) is when the trajectories of re-entrant
corner 2 and the protruding downside mask corner
meet. From this moment on, also on the downside
of the wafer a Si{1 1 1} surface with an obtuse
contact angle will develop. Again, the downside
mask corner is then a velocity source that
propagates with vector velocity R111. The evolu-
tion of the crystal shape at the mask junction on
the downside of the wafer is shown as an inset of

Fig. 9(b). Fig. 9(b) shows a graph of the underetch
distance as a function of time for both the upside
and the downside of the wafer. The graph clearly
shows the very fast flipping from a Si{1 1 1}
surface with acute contact angle to a Si{1 1 1}
surface with obtuse contact angle after 323 and
524.5min, respectively [19].

4.3. Comparison simulation and experiment

Two Si{1 0 0} wafers are etched in 25wt% KOH
at 701C, one for a total etching time of 300min
and one for 397min. On the wafers silicon nitride
mask patterns are applied such that the cross-
sectional configuration of Fig. 8(a) occurs several
times on the wafer. After etching, the etched
structures are embedded in epoxy resin in order to
facilitate sawing the desired cross-sections. Cross-
sections on the same wafer, i.e. etched for the same
etching time, are perfectly identical. In Figs. 10(a)
and 10(c) the resulting experimental cross-sections
are given.

In Fig. 10(b) the simulated and the experimental
cross-sectional crystal shape corresponding to an
etching time of 300min are compared. It is
obvious that the absolute scaling of the etch rate
(Fig. 8(b)) is not correct. The experimental crystal
shape after 300min has evolved further than the
simulated crystal shape. The experimental etch
rate of {1 0 0}, and we assume the etch rate for any
other orientation, is about 15 percent higher than
the analytical etch rate depicted in Fig. 8(b). Apart
from the time scaling, both cross-sections are very
similar. The same fast orientations in between
{1 1 1} and {1 0 0} have emerged from the re-
entrant corner formed when etching through the
wafer. Also, in both cases a vicinal {1 1 0} surface
is formed with virtually the same misorientation
with respect to (0 1 1). A very important difference,
however, is that in the experimental cross-section
the vicinal {1 1 0} surface is slanted in the opposite
direction.

In Fig. 10(d), the simulated and the experimen-
tal cross-sectional crystal shape corresponding to
an etching time of 397min are compared. Re-
markably, in this case, the experimental and the
simulated cross-section seem to be in almost the
same stage of their evolution. We feel this is a
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coincidence: two opposite effects canceling each
other. There are two important differences. Firstly,
the vicinal Si{1 1 0} surface in between the two
Si{1 1 1} surfaces found in the experimental cross-
section is again slanted in the opposite direction as
the Si{1 1 0} surface in the simulation. Secondly, in
the simulation slow orientations are emerging in
the protruding corner between the Si{1 1 1} surface
(obtuse contact angle) and the vicinal Si{1 1 0}

surface. This is a direct consequence of the first
difference. Protruding corner 5 in the simulation
connects a {1 1 1} surface (obtuse contact angle)
and a vicinal {1 1 0} surface slanted in the same
direction as the surface in the experimental cross-
section in Fig. 10(c). In this corner, no slow
orientations emerge. Only after protruding corner
5 and re-entrant corner 6 meet and an oppositely
slanted Si{1 1 0} surface is connected with the

Fig. 10. Comparison of the etching experiment and the simulation. (a) Experimental cross-section after 300min of etching, (b)

simulated (solid line) and experimental (dashed line) cross-section at t ¼ 300min, (c) experimental cross-section after 397min of

etching and (d) simulated (solid line) and experimental (dashed line) cross-section at t ¼ 397min.
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Si{1 1 1} surface, in the simulation slow orienta-
tions emerge in the protruding corner. On the
other hand, it would seem that in the experiment
fast orientations should emerge in the re-entrant
corner between the vicinal Si{1 1 0} surface and the
Si{1 1 1} surface (acute contact angle), which
obviously is not the case.

In order to find an explanation for the
differences, we need to consider the mesoscopic
details of the etching mechanism of Si{1 1 0}
surfaces. For silicon etched in KOH with a
concentration lower than approximately 40wt%,
exact Si{1 1 0} surfaces break up in a staircase or
zig-zag pattern [9,22–24]. The zig and zag surfaces
are inclined towards the adjacent {1 1 1} surfaces.
For vicinal Si(1 1 0) surfaces inclined towards
{1 1 1} the surface is still dominated by an
asymmetric zig-zag pattern up to the inclination
of the zig and zag surfaces. The re-entrant edges
are velocity sources, moving perpendicular to the
{1 1 0} surface. In the orientation range between
the zig and the zag orientation the etch rate equals
the velocity source rate, as can be seen in Fig. 8(b).
We have hypothesized that this velocity source
behavior can be explained by the presence of
silicate particles adhering to the surface [24]. Tiny
silicate particles are formed continuously during
etching and are deposited uniformly on the
surface. Some are somewhat larger than others
and, consequently, slow down etching locally,
initiating the formation of a re-entrant edge. Once
an initial edge is formed, this edge starts to act as a
sink of silicate particles. Most of the silicate
particles present on the surface do not seriously
affect the etch rate, but they keep attached to the
surface and, as a consequence, follow trajectories
that are on average perpendicular to the local
surface. As a result, for a zig-zag surface, these
particles assemble on the re-entrant edges.

We feel that the differences between the experi-
ment and the simulation might be explained by
realizing the following. Using the etch rate of
Fig. 8(b) in the simulation, essentially means that
we assume that a zig-zag pattern is immediately
formed on an emerging Si{1 1 0} surface. Sato et al.
have shown that in reality it takes time before a
zig-zag pattern is formed [22]. Thus, a Si{1 1 0}
surface emerging from a corner is initially flat,

before a zig-zag pattern is formed. Apparently, the
dependence of the etch rate of such a developing
surface on the time elapsed, i.e. on the stage of
development of the zig-zag surface, is quite
complex. Very small local variations in the etch
rate of short duration may very well explain the
etching behavior found experimentally in Fig. 10.
If this is true, then it is impossible to reproduce the
experiment using any simulation tool based on the
kinematic wave theory, i.e. on the assumption that
the etch rate depends solely on the surface
orientation. Any successful simulation would have
to incorporate a detailed account of the formation
of the zig-zag pattern on all emerging Si{1 1 0}
surfaces.

5. Extension to three dimensions

Extension of the simulation algorithms from
two to three dimensions is not straightforward at
all. Already the representation of three-dimen-
sional surfaces presents difficulties. Discretizing an
arbitrary initial surface is not a simple task in
itself, but especially it will be difficult to find a
general recipe to describe the orientations that are
latently present in a vertex of a three-dimensional
crystal shape.

For a completely convex or a completely
concave initial three-dimensional crystal shape it
is easy to visualize the evolution in time of the
crystal shape based on the simulation algorithms
presented in Section 3.2. Again a single calculation
step suffices. It is straightforward to find the
evolved shape including unphysical ears. However,
removing three- instead of two-dimensional ears is
much more complicated. Extension of the van-
Gogh algorithm is not possible for two reasons.
Firstly, there is no natural ordering of discretiza-
tion points on the surface, which is essential in
both steps of the vanGogh algorithm. Secondly,
the detection of an unphysical ear using the
principle of intersecting kinematic wave trajec-
tories (see Fig. 3) does not work in three dimen-
sions. In three dimensions it is very likely to find
that the kinematic wave trajectories of two
neighboring discretization points cross instead of
intersect. Hence, a different algorithm has to be
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developed to cut off unphysical ears in three
dimensions.

The most important hurdle, however, is the
extension to three dimensions of the calculation of
the evolution of mixed convex/concave initial
crystal shapes. In Section 3.3, we have found that
in two dimensions the presence of both convex and
concave sections in the initial crystal shape
complicates the algorithm for cutting off ears
considerably, and that more than one calculation
step may be required to obtain the final crystal
shape. In three dimensions the necessary adjust-
ments to the algorithm for cutting off ears are even
more challenging. The detection of points in time
where the interaction of convex and concave
sections requires stopping and re-starting the
calculation algorithm is another extremely difficult
task. It should be realized also that, in certain
cases, the calculation algorithm should be stopped
immediately at t ¼ 0: The reason for this is that in
a three-dimensional surface not only protruding
and re-entrant vertices but also saddle-type ver-
tices can occur. A saddle-type vertex has a mixed
convex/concave character. A moving vertex adds
length to at least one of the edges connected to the
vertex. This means that the new kinematic wave
trajectories that are continuously emitted by the
vertex may affect the evolving shape. For re-
entrant and protruding vertices it can be shown
that this does not change the evolving shape. In
the case of a saddle-type vertex it may lead to the
nucleation of new conical surfaces. As a result
other saddle-type corners may be generated
immediately at t ¼ 0: In turn, these generated
saddle-type corners may nucleate another set of
new conical surfaces, etc. The evolution of saddle-
type corners is the subject of another, dedicated
paper [25,26].

In conclusion, for simulation of three-dimen-
sional crystal shape evolution it is probably best to
develop a simulation algorithm that proceeds in
small time steps. Still, it would be necessary to
develop algorithms to calculate the evolution at
edges (protruding and re-entrant) and at corners
(protruding, re-entrant and all different saddle-
types [25,26]). Additionally, another algorithm
should be devised that decides when edges/corners
that are very close to each other should be

combined into one edge/corner. Of course, the
numerical precision of such a simulation tool is
probably not optimal; all rounding and discretiza-
tion errors will be amplified due to the explicit
simulation algorithm used.

6. Conclusion

A simulation tool for crystal shape evolution in
two dimensions is presented for the case that the
advance rate of the surface solely depends on the
surface orientation. The number of time steps
necessary to calculate the final crystal shape at
some time t is one for completely convex or
completely concave initial crystal shapes and a
small number for mixed convex/concave initial
crystal shapes, depending on the complexity.
Accordingly, the calculated final crystal shape is
very close to the mathematically exact final crystal
shape. The simulation tool can cope with bound-
ary conditions imposed at imperfections or other
boundaries acting as velocity sources. The tool can
also deal with multiple crystal shapes that merge at
some point in their evolution.

We have applied the simulation tool to the
technologically relevant case of wet chemical
etching of masked silicon {1 0 0} wafers with
multiple mask openings. This example uses all
the features of the simulation tool. Also, the
example clearly shows a limitation of this type of
continuum simulations. If in an experiment the
advance rate locally deviates from the advance rate
used in the simulation, even if it is only for a short
duration, this may induce essential differences
between experiment and simulation.

Extension of our simulation algorithms to three
dimensions is extremely challenging. It seems most
promising to develop a simulation tool that is
based on an explicit calculation scheme of small
time steps.
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