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Abstract

In an old weighing puzzle, there are> 3 coins that are identical in appearance. All the coins except one have the same
weight, and that counterfeit one is a little bit lighter or heavier than the others, though it is not known in which direction.
What is the smallest number of weighings needed to identify the counterfeit coin and to determine its type, using balance
scales without measuring weights? This question was fully answered in 1946 by Dyson [The Mathematical Gazette 30 (1946)
231-234]. For values of that are divisible by three, Dyson’s scheme is non-adaptive and hence its later weighings do not
depend on the outcomes of its earlier weighings. For valuestbét are not divisible by three, however, Dyson’s scheme is
adaptive. In this note, we show that for all value® 3 there exists an optimal weighing scheme that is non-adaptive.
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1. Introduction weighings with a balance scale (and no measuring
weights), and to determine whether the counterfeit
coin is underweight or overweight.

The standard solution in puzzle books (and in
puzzle oriented news-groups on the web) first divides
the coins into three grougs; = {a, b, ¢, d}, G2 = {e,
f.g,ht, and G3 = {i, j, k, £}. In the first weighing,
group G2 is put on the left pan of the scales a6d
is put on the right pan. Then there are three cases
 rS— _ corresponding to the three possible outcomes of the

Ef:;fgggf&?g‘g@math_tu_graz_ac_at (A Born), first weighing: In case the pans balance, the eight coins
wscor@win.tue.nl (C.A.J. Hurkens), in G2 U G3 are all genuine and the counterfeit coin is
g.j.woeginger@math.utwente.nl (G.J. Woeginger). in G1={a, b, c,d}. Then in the second weighing, one

An old and well-known mathematical puzzle is the
problem of the twelve coins: There are twelve coins
that are exactly alike except for a counterfeit one,
which weighs a bit more or a bit less than the others.
The goal is to identify the counterfeit coin in three
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puts coinsz, b, c on one pan and three (genuine!) coins In a more general version of this weighing problem,
from G2 U G3 on the other pan. there aren > 3 coins that are identical in appearance.
All the coins except one have the same weight. What
o Ifthe pans balance, then cains counterfeit. The is the smallest number of weighings needed to identify
third weighing compareg against a genuine coin,  the counterfeit coin and to determine whether it is
and thus determines whether it is underweight or overweight or underweight? Note that this question
overweight. does not make sense foe= 1 andn = 2; in these two
o Ifthe pan witha, b, c is heavier, then the counter- cases, a weighing does not provide us with any non-
feit coin is one ofz, b, c and it is overweight. The  trivial information. Note furthermore that a solution
third weighing comparesto b. If the pansdonot ~ for n coins in w weighings does not immediately
balance, then the heavier coin is counterfeit, and imply a solution forn — 1 coins in w weighings
if the pans do balance, theris counterfeit. (consider for instance the case with= 3). A simple
o If the pan witha, b, ¢ is lighter, then the counter-  information theoretic argument shows that with
feit coinis one ofz, b, c and itis underweight. The  weighings, one can not solve the case v%(nw -1
third weighing comparesg to b. If the pans do not  coins. In fact, the information theoretic bound is tight:
balance, then the lighter coin is counterfeit, and if
the pans do balance, thers counterfeit. Theorem 1 [1]. There exists a scheme that determines
the counterfeit coin and its type out of n coins with
In case the pans do not balance at the first weighing, v weighings on balance scales without measuring
then in the second weighing one puts comns, i weights, if and only if 3< n < %(3") —3).
on one pan and coing, &, j on the other pan.
Then some additional case distinctions for the third  pyson’s scheme is non-adaptiverifis a multiple
weighing complete the solution; the tedious details qf three. Dyson’s scheme is adaptive,xifis not a
are left to the reader. Clearly, the above approach is myltiple of three. In Section 2 we will prove the
an adaptive approach: The second weighing depends following slight strengthening of Dyson’s result to

on the outcome of the first weighing, and the third non.adaptive schemes. Its proof is extremely simple
weighing depends on the outcomes of the first and znd suitable for classroom use.

second weighing.
Now let us discuss another approach where the Theorem 2. For any integer w
later weighings danot depend on the outcomes of
the earlier weighings; such an approach is cafiewt
adaptive. The three weighings are as follows:

> 2 and for any integer
n with 3< n < 3(3” — 3), there exists a non-adaptive
scheme that determines the counterfeit coin and its
type out of n > 3 coins with w weighings on balance

1st weighingu, d, i, j versush, e, g, k scales without measuring weights.

2nd weighinga, f, g, £ versush,d, h, j
3rd weighingic, d, g, k versusa, e, 1, ¢ Our proof is fairly close to the original arguments

of Dyson. The main contribution of this note is a
If in the first two weighings the left pan is heavier and clean presentation of the mathematical background
in the third weighing the right pan is heavier, then in Section 2 that helps to remove the adaptive parts
coin a is counterfeit and overweight. If in the first from Dyson’s approach. In Section 3, we present a
two weighings the left pan is heavier and in the third straightforward argument that a non-adaptive weigh-
weighing the pans balance, then céis counterfeit ing scheme cannot determine the counterfeit coin out
and underweight. And so on, and so on, and so on. It of n = %(3‘” — 1) coins withw weighings. This neg-
can be verified that in all possible cases, the outcomesative result is a special case of Dyson’s more general
of the three weighings allow to uniquely identify the negative result foadaptive weighing schemes, but our
counterfeit coin and its type. The exact mechanism proofis short and easily comes out of the discussion in
behind this procedure will become clear in Section 2 Section 2. For completeness, we also sketch Dyson’s
of this paper. weighing scheme in Section 4. For more information
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on weighing problems and some of their variants, we
refer the reader (for instance) to [2,3].

2. The proof

In this section we will prove Theorem 2. There
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Now let us consider the case where cainis
counterfeit and overweight: By condition (D1), every
weighing puts the same number of coins on the leftand
on the right balance. Therefore, whenever cpia on
the left pan, the left pan is heavier; whenever cpin
is on the right pan, the right pan is heavier; whenever
coin j is on neither pan, the two pans balance. This

is a natural correspondence between non-adaptiveYi€ldsz =v;. A symmetric argument shows that the

weighing schemes witly weighings and certain sets
of w-dimensional vectors over the st1, 0, 1} that
we will call Dyson sets.

Definition 3. Forw > 2, a setS of (pairwise distinct)
vectorsin{—1, 0, 1}" is called a Dyson set, if and only
if

(D1) > ,csv=0,and
(D2) whenevew € S, then—v ¢ S.

The following Lemmas 4 and 5 together constitute

case where coik is counterfeit and underweight leads
to z = —wvg. By condition (D2), one can distinguish the
casesy = v; andz = —y; from each other and thus

identify the counterfeit coin. O

Lemma 5. For any w > 2 and n with 3 < n <
$(3¥ — 3), there exists a Dyson set S € {—1,0, 1}*
of cardinality n.

Proof. Considerthe bijectiorf : {—1,0,1} — {—1,0,
1} with f(0) =1, f(1) =—-1,andf(—1) = 0. We ex-
tend f to the vectorst = (x1,...,xy) in {—1,0, 1}

the proof of Theorem 2. Lemma 4 establishes the ex- by defining f (x) = (f(x1), ..., f(xw)). Note that for
act connection between Dyson sets and non-adaptiveanyx € {—1,0, 1} we havef (f(f(x))) = x and

weighing schemes, and Lemma 5 proves that Dyson

sets indeed exist for8 n < 3(3* — 3).

Lemma 4. Let w > 2 be an integer. If there exists
a Dyson set § C {—1,0,1}", then there exists a
non-adaptive weighing scheme that determines the
counterfeit coin and its type out of n = | S| coinswith
w weighings on balance scales without measuring
weights.

Proof. Let vy, ..., v, be an enumeration of the vec-
tors in S. Consider the following non-adaptive weigh-
ing scheme withw weighings: In theith weighing
(1<i < w), coinj is put on the left pan if théth co-
ordinate of vectow; equals—1, it is put on the right
pan if theith coordinate of vectov; equals 1, and it
does not participate in the weighing if thh coordi-
nate of vectow; equals 0.

If this scheme is applied to weigh coins, the
outcomes of thew weighings are collected in a-
dimensional vectot € {—1,0, 1} in the following
way: Theith coordinatez; of z is set to—1 if in the
ith weighing the left pan is heaviet; is set to 1 if
the right pan is heavier, ang is set to 0 if the pans
balance.

x+ f)+ f(f)=0. 1)

Moreover, we observe that f(x) = f(f(—x)) and
—f(f(x)) = f(—x). Next, we consider for an arbi-
traryx € {—1, 0, 1} the six vectors

X, f(-x)v f(f(x))v —X, _f(x)’ _f(f('x)) (2)

The so-calledrivial class consists of the all-zero vec-
tor, the all-one vector, and the all-minus-one vector. If
x is from the trivial class, then the group of six vec-
tors displayed in (2) boils down exactly to the trivial
class. Ifx is not from the trivial class, then the six vec-
tors in (2) are pairwise distinct and form a so-called
ordinary class. This naturally yields a partition of the
set{—1,0,1}" into %(3“’ — 3) ordinary classes and
into the trivial class. Note that every class is closed
underf.

Now let us prove the statement in the lemma. We
distinguish three cases. In the first case 3k holds
with 1 < k < £(3” — 3). We simply constructs by
selectingk vector triplesx, f(x), f(f(x)) from k
distinct ordinary classes. By (1) the sum of thege 3
vectors equals 0, and hen§esatisfies condition (D1).
Moreover, from our discussion of (2) we see that for
any selected vector triple the negative vecters,
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—f(x), —f(f(x)) are not selected. Hencs, also
satisfies condition (D2).

In the second case= 3k + 1 holds with 1< k <
1(38% —3). If n =4, we letS contain the following
four vectors (here & stands for+1 and a— stands
for —1):

vt + + o+ o+ e+
vw.—- 0 0 0 0 .- 0
vz 0 — 0 0 O --- O
vy: 0 0 — — — o —

The first vectorvy comes from the ftrivial class,
whereax,, v, v4 come from three different ordinary
classes. Clearly§ is a Dyson set. Iz > 7, then we
start by putting the following seven vectors irfo

vi: + + + + + -+
v - - + + + - +
vz:. — — 0 O O --- O
vy: 0 0 — — — o —
vs:. — + 0 0O O .-~ O
ve: + 0 — — — .. —
vv. + 0 0 O O --- O

The first vectomw; comes from the trivial class. Vectors
v2, v3, v4 all come from the same ordinary class, since
v3 = —f(v2) andvg = f(f(v2)). Vectorsvs and vg
both come from the same ordinary class, singe=

f (vs), and vectow; comes from yet another ordinary
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The first vectow; comes from the trivial class. Vectors
v2 and vz both come from the same ordinary class,
sincevs = — f(v2), and vectore, andvs both come
from the same ordinary class, sinog = — f(va).
Moreover, these five vectors add up to 0. We complete
the setS by selectingk — 1 vector triplesx, f(x),
f(f(x)) from the £(3” —3) — 2> k — 1 remaining
ordinary classes. It is easily verified that the resulting
setS of n = 3k + 2 vectors satisfies conditions (D1)
and (D2). O

3. A lower bound argument

In this section we consider non-adaptive weighing
schemes forn = (3% — 1) coins, and we will
show that for this cas@ weighings are not enough.
(This statement immediately follows from the more
general negative result of Dyson for adaptive weighing
schemes. However, our proof is extremely short and
nicely falls out of the concepts in Section 2.)

For the sake of contradiction let us suppose that
there exists a non-adaptive weighing scheme with
weighings forn = (3" — 1) coins. Letvy, ..., v, €
{—1,0, 1}* be the corresponding Dyson s&for this
weighing scheme. By condition (D2), the setannot
contain the all-zero vector, and for any other vector
v e {—1,0,1}" exactly one ofv and —v must be in
S. Therefore,S contains exactly% (3»~1 1) vectors
that have a 0 in the first coordinate and exactly 3
vectors that have a 1 el in the first coordinate. But
then the first coordinate oy ., v cannot be 0 and

class. Moreover, these seven vectors add up to 0. Wehence condition (D1) is violated.

complete the sef by selectingk — 2 vector triples

x, f(0), f(f(x)) fromthe 3(3» —3) = 3>k — 2

remaining ordinary classes. The resulting Sebof

n = 3k + 1 vectors satisfies conditions (D1) and (D2)

in Definition 3, and thus is the desired Dyson set.
Finally, we consider the case= 3k + 2 with 1<

k < £(3¥ — 3). We start by putting the following five

vectors intoS:

v + + + + + +
1.+ — 0 0 O 0
vz: 0 — + + + +
V4. — - - - -

Observation 6. Let w > 2 be an integer. Then there
does not exist a non-adaptive weighing scheme that
determines the counterfeit coin and its type out of
n= %(3“’ — 1) coins with w weighings on balance
scales without measuring weights.

4. A sketch of Dyson’sargument

Dyson [1] uses strings of length over the alphabet
{0, 1, 2} instead of vectors if—1, 0, 1}*. Since these
concepts clearly are isomorphic to each other, we will
present Dyson’s approach in the language of vectors;
moreover, we will use the concepts introduced in the



A. Born et al. / Information Processing Letters 86 (2003) 137-141 141

proof of Lemma 5. Dyson proceeds in two steps. In However, it does not satisfy condition (D1), since the

the first step he solves the case with= %(3‘” -3), sum of these vectors is non-zero in the last coordinate.
and in the second step he solves the case withi3< Now the firstw — 1 weighings in Dyson’s scheme
%(3“’ -3). are done non-adaptively. If these— 1 weighings do

For the case with = (3" —3), Dysonignoresthe ~ not all yield the same outcome (a#1, all -1, or
trivial class and scans each of the remaining vectors all 0), then the (one or two) coins that belong to vectors
from left to right until he hits the first pair of unequal from the distinguished group must be genuine. Hence,
entries. He selects a vector (as a coin label) if and they can be disregarded for the last weighing. If the
only if this pair equalg1,0) or (0, —1) or (-1, 1). first w — 1 weighings all yield the same outcome, then
In the language of our paper, he selects a vector triple the counterfeit coin must be among the (one or two)
x, f(x), f(f(x)) fromeach ofth%(3w—3) ordinary coins that belong to vectors from the distinguished
classes and thus gets a Dyson set. group. The last weighing can be used to determine the

For the case with X n < %(3“’ — 3), Dyson type of this counterfeit coin.
distinguishes the ordinary class (hereinafter referred The main difference between Dyson’s approach
to as: the distinguished class) that contains the threeand our approach in Section 2 is that Dyson does not

vectors use vectors from the trivial class, whereas we do use
v + + - + + 0 them. Without the trivial class, there is no chance for
v 0 0 0 0 getting Dyson sets whenis not a multiple of three.

o _

If n = 3k, then Dyson uses vector triples f(x),

f(f(x)) from the non-distinguished ordinary classes [1] F.J. Dyson, The problem of the pennies, The Mathematical

as described above.df= 3k + 1 then he furthermore Gazette 30 (1946) 231-234.

uses the vector, from the distinguished class, and if [2] R. Bellman, B. Gluss, On various versions of the defective coin
- ' problem, Inform. and Control 4 (1961) 118-131.

n = 3k + 2 then he f_ur_therr_nore uses the two vec'gors [3] G. Shestopal, How to detect a counterfeit coin, Kvant 10 (1979)

v1 andvs from th(_e dllstmgws'hled class: The .re.s_ultmg 21-25 (in Russian).

set of vectors satisfies condition (D2) in Definition 3.
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