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Abstract

In an old weighing puzzle, there aren � 3 coins that are identical in appearance. All the coins except one have the
weight, and that counterfeit one is a little bit lighter or heavier than the others, though it is not known in which dir
What is the smallest number of weighings needed to identify the counterfeit coin and to determine its type, using
scales without measuring weights? This question was fully answered in 1946 by Dyson [The Mathematical Gazette 3
231–234]. For values ofn that are divisible by three, Dyson’s scheme is non-adaptive and hence its later weighings
depend on the outcomes of its earlier weighings. For values ofn that are not divisible by three, however, Dyson’s schem
adaptive. In this note, we show that for all valuesn � 3 there exists an optimal weighing scheme that is non-adaptive.
 2003 Elsevier Science B.V. All rights reserved.
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An old and well-known mathematical puzzle is t
problem of the twelve coins: There are twelve co
that are exactly alike except for a counterfeit o
which weighs a bit more or a bit less than the othe
The goal is to identify the counterfeit coin in thre
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coin is underweight or overweight.
The standard solution in puzzle books (and

puzzle oriented news-groups on the web) first divi
the coins into three groupsG1 = {a, b, c, d}, G2 = {e,
f, g,h}, and G3 = {i, j, k, �}. In the first weighing,
groupG2 is put on the left pan of the scales andG3

is put on the right pan. Then there are three ca
corresponding to the three possible outcomes of
first weighing: In case the pans balance, the eight c
in G2 ∪ G3 are all genuine and the counterfeit coin
in G1 = {a, b, c, d}. Then in the second weighing, on

hts reserved.
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puts coinsa, b, c on one pan and three (genuine!) coins
from G2 ∪ G3 on the other pan.
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In a more general version of this weighing problem,
there aren � 3 coins that are identical in appearance.
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• If the pans balance, then coind is counterfeit. The
third weighing comparesd against a genuine coin
and thus determines whether it is underweigh
overweight.

• If the pan witha, b, c is heavier, then the counte
feit coin is one ofa, b, c and it is overweight. The
third weighing comparesa to b. If the pans do no
balance, then the heavier coin is counterfeit, a
if the pans do balance, thenc is counterfeit.

• If the pan witha, b, c is lighter, then the counter
feit coin is one ofa, b, c and it is underweight. The
third weighing comparesa to b. If the pans do no
balance, then the lighter coin is counterfeit, and
the pans do balance, thenc is counterfeit.

In case the pans do not balance at the first weigh
then in the second weighing one puts coinse, f, i

on one pan and coinsg,h, j on the other pan
Then some additional case distinctions for the th
weighing complete the solution; the tedious deta
are left to the reader. Clearly, the above approac
an adaptive approach: The second weighing depen
on the outcome of the first weighing, and the th
weighing depends on the outcomes of the first
second weighing.

Now let us discuss another approach where
later weighings donot depend on the outcomes
the earlier weighings; such an approach is callednon-
adaptive. The three weighings are as follows:

1st weighing:a, d, i, j versusb, e, g, k

2nd weighing:a,f, g, � versusb, d,h, j

3rd weighing:c, d, g, k versusa, e,h, �

If in the first two weighings the left pan is heavier a
in the third weighing the right pan is heavier, th
coin a is counterfeit and overweight. If in the firs
two weighings the left pan is heavier and in the th
weighing the pans balance, then coinb is counterfeit
and underweight. And so on, and so on, and so o
can be verified that in all possible cases, the outco
of the three weighings allow to uniquely identify th
counterfeit coin and its type. The exact mechan
behind this procedure will become clear in Sectio
of this paper.
All the coins except one have the same weight. W
is the smallest number of weighings needed to iden
the counterfeit coin and to determine whether it
overweight or underweight? Note that this quest
does not make sense forn = 1 andn = 2; in these two
cases, a weighing does not provide us with any n
trivial information. Note furthermore that a solutio
for n coins in w weighings does not immediate
imply a solution for n − 1 coins in w weighings
(consider for instance the case withn = 3). A simple
information theoretic argument shows that withw
weighings, one can not solve the case with1

2(3w − 1)

coins. In fact, the information theoretic bound is tig

Theorem 1 [1]. There exists a scheme that determines
the counterfeit coin and its type out of n coins with
w weighings on balance scales without measuring
weights, if and only if 3 � n � 1

2(3w − 3).

Dyson’s scheme is non-adaptive, ifn is a multiple
of three. Dyson’s scheme is adaptive, ifn is not a
multiple of three. In Section 2 we will prove th
following slight strengthening of Dyson’s result
non-adaptive schemes. Its proof is extremely sim
and suitable for classroom use.

Theorem 2. For any integer w � 2 and for any integer
n with 3 � n � 1

2(3w − 3), there exists a non-adaptive
scheme that determines the counterfeit coin and its
type out of n � 3 coins with w weighings on balance
scales without measuring weights.

Our proof is fairly close to the original argumen
of Dyson. The main contribution of this note is
clean presentation of the mathematical backgro
in Section 2 that helps to remove the adaptive p
from Dyson’s approach. In Section 3, we presen
straightforward argument that a non-adaptive wei
ing scheme cannot determine the counterfeit coin
of n = 1

2(3w − 1) coins withw weighings. This neg
ative result is a special case of Dyson’s more gen
negative result foradaptive weighing schemes, but ou
proof is short and easily comes out of the discussio
Section 2. For completeness, we also sketch Dys
weighing scheme in Section 4. For more informat
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on weighing problems and some of their variants, we
refer the reader (for instance) to [2,3].
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Now let us consider the case where coinj is
counterfeit and overweight: By condition (D1), every
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2. The proof

In this section we will prove Theorem 2. The
is a natural correspondence between non-adap
weighing schemes withw weighings and certain se
of w-dimensional vectors over the set{−1,0,1} that
we will call Dyson sets.

Definition 3. For w � 2, a setS of (pairwise distinct)
vectors in{−1,0,1}w is called a Dyson set, if and onl
if

(D1)
∑

v∈S v = 0, and
(D2) wheneverv ∈ S, then−v /∈ S.

The following Lemmas 4 and 5 together constitu
the proof of Theorem 2. Lemma 4 establishes the
act connection between Dyson sets and non-ada
weighing schemes, and Lemma 5 proves that Dy
sets indeed exist for 3� n � 1

2(3w − 3).

Lemma 4. Let w � 2 be an integer. If there exists
a Dyson set S ⊆ {−1,0,1}w, then there exists a
non-adaptive weighing scheme that determines the
counterfeit coin and its type out of n = |S| coins with
w weighings on balance scales without measuring
weights.

Proof. Let v1, . . . , vn be an enumeration of the ve
tors inS. Consider the following non-adaptive weig
ing scheme withw weighings: In theith weighing
(1 � i � w), coin j is put on the left pan if theith co-
ordinate of vectorvj equals−1, it is put on the right
pan if theith coordinate of vectorvj equals 1, and i
does not participate in the weighing if theith coordi-
nate of vectorvj equals 0.

If this scheme is applied to weighn coins, the
outcomes of thew weighings are collected in aw-
dimensional vectorz ∈ {−1,0,1}w in the following
way: Theith coordinatezi of z is set to−1 if in the
ith weighing the left pan is heavier,zi is set to 1 if
the right pan is heavier, andzi is set to 0 if the pans
balance.
weighing puts the same number of coins on the left
on the right balance. Therefore, whenever coinj is on
the left pan, the left pan is heavier; whenever coij

is on the right pan, the right pan is heavier; whene
coin j is on neither pan, the two pans balance. T
yields z = vj . A symmetric argument shows that th
case where coink is counterfeit and underweight lea
to z = −vk . By condition (D2), one can distinguish th
casesz = vj and z = −vk from each other and thu
identify the counterfeit coin. ✷
Lemma 5. For any w � 2 and n with 3 � n �
1
2(3w − 3), there exists a Dyson set S ⊆ {−1,0,1}w
of cardinality n.

Proof. Consider the bijectionf : {−1,0,1} → {−1,0,

1} with f (0) = 1,f (1) = −1, andf (−1) = 0. We ex-
tendf to the vectorsx = (x1, . . . , xw) in {−1,0,1}w
by definingf (x) = (f (x1), . . . , f (xw)). Note that for
anyx ∈ {−1,0,1}w we havef (f (f (x))) = x and

x + f (x) + f
(
f (x)

) = 0. (1)

Moreover, we observe that−f (x) = f (f (−x)) and
−f (f (x)) = f (−x). Next, we consider for an arb
traryx ∈ {−1,0,1}w the six vectors

x, f (x), f
(
f (x)

)
, −x, −f (x), −f

(
f (x)

)
. (2)

The so-calledtrivial class consists of the all-zero ve
tor, the all-one vector, and the all-minus-one vecto
x is from the trivial class, then the group of six ve
tors displayed in (2) boils down exactly to the trivi
class. Ifx is not from the trivial class, then the six ve
tors in (2) are pairwise distinct and form a so-cal
ordinary class. This naturally yields a partition of th
set {−1,0,1}w into 1

6(3w − 3) ordinary classes an
into the trivial class. Note that every class is clos
underf .

Now let us prove the statement in the lemma.
distinguish three cases. In the first casen = 3k holds
with 1 � k � 1

6(3w − 3). We simply constructS by
selectingk vector triplesx, f (x), f (f (x)) from k

distinct ordinary classes. By (1) the sum of thesek
vectors equals 0, and henceS satisfies condition (D1)
Moreover, from our discussion of (2) we see that
any selected vector triple the negative vectors−x,
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−f (x), −f (f (x)) are not selected. Hence,S also
satisfies condition (D2).
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The first vectorv1 comes from the trivial class. Vectors
v2 and v3 both come from the same ordinary class,
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In the second casen = 3k + 1 holds with 1� k <
1
6(3w − 3). If n = 4, we letS contain the following
four vectors (here a+ stands for+1 and a− stands
for −1):

v1: + + + + + · · · +
v2: − 0 0 0 0 · · · 0

v3: 0 − 0 0 0 · · · 0

v4: 0 0 − − − · · · −
The first vectorv1 comes from the trivial class
whereasv2, v3, v4 come from three different ordinar
classes. Clearly,S is a Dyson set. Ifn � 7, then we
start by putting the following seven vectors intoS:

v1: + + + + + · · · +
v2: − − + + + · · · +
v3: − − 0 0 0 · · · 0

v4: 0 0 − − − · · · −
v5: − + 0 0 0 · · · 0

v6: + 0 − − − · · · −
v7: + 0 0 0 0 · · · 0

The first vectorv1 comes from the trivial class. Vecto
v2, v3, v4 all come from the same ordinary class, sin
v3 = −f (v2) andv4 = f (f (v2)). Vectorsv5 andv6

both come from the same ordinary class, sincev6 =
f (v5), and vectorv7 comes from yet another ordina
class. Moreover, these seven vectors add up to 0
complete the setS by selectingk − 2 vector triples
x, f (x), f (f (x)) from the 1

6(3w − 3) − 3 � k − 2
remaining ordinary classes. The resulting setS of
n = 3k + 1 vectors satisfies conditions (D1) and (D
in Definition 3, and thus is the desired Dyson set.

Finally, we consider the casen = 3k + 2 with 1�
k < 1

6(3w − 3). We start by putting the following five
vectors intoS:

v1: + + + + + · · · +
v2: + − 0 0 0 · · · 0

v3: 0 − + + + · · · +
v4: − + − − − · · · −
v5: − 0 − − − · · · −
sincev3 = −f (v2), and vectorsv4 andv5 both come
from the same ordinary class, sincev5 = −f (v4).
Moreover, these five vectors add up to 0. We comp
the setS by selectingk − 1 vector triplesx, f (x),
f (f (x)) from the 1

6(3w − 3) − 2 � k − 1 remaining
ordinary classes. It is easily verified that the result
setS of n = 3k + 2 vectors satisfies conditions (D
and (D2). ✷

3. A lower bound argument

In this section we consider non-adaptive weigh
schemes forn = 1

2(3w − 1) coins, and we will
show that for this casew weighings are not enough
(This statement immediately follows from the mo
general negative result of Dyson for adaptive weigh
schemes. However, our proof is extremely short
nicely falls out of the concepts in Section 2.)

For the sake of contradiction let us suppose t
there exists a non-adaptive weighing scheme withw

weighings forn = 1
2(3w − 1) coins. Letv1, . . . , vn ∈

{−1,0,1}w be the corresponding Dyson setS for this
weighing scheme. By condition (D2), the setS cannot
contain the all-zero vector, and for any other vec
v ∈ {−1,0,1}w exactly one ofv and−v must be in
S. Therefore,S contains exactly12(3w−1 − 1) vectors
that have a 0 in the first coordinate and exactly 3w−1

vectors that have a 1 or−1 in the first coordinate. Bu
then the first coordinate of

∑
v∈S v cannot be 0 and

hence condition (D1) is violated.

Observation 6. Let w � 2 be an integer. Then there
does not exist a non-adaptive weighing scheme that
determines the counterfeit coin and its type out of
n = 1

2(3w − 1) coins with w weighings on balance
scales without measuring weights.

4. A sketch of Dyson’s argument

Dyson [1] uses strings of lengthw over the alphabe
{0,1,2} instead of vectors in{−1,0,1}w. Since these
concepts clearly are isomorphic to each other, we
present Dyson’s approach in the language of vect
moreover, we will use the concepts introduced in
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proof of Lemma 5. Dyson proceeds in two steps. In
the first step he solves the case withn = 1(3w − 3),
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However, it does not satisfy condition (D1), since the
sum of these vectors is non-zero in the last coordinate.
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and in the second step he solves the case with 3� n <
1
2(3w − 3).

For the case withn = 1
2(3w −3), Dyson ignores the

trivial class and scans each of the remaining vec
from left to right until he hits the first pair of unequ
entries. He selects a vector (as a coin label) if a
only if this pair equals(1,0) or (0,−1) or (−1,1).
In the language of our paper, he selects a vector tr
x, f (x), f (f (x)) from each of the16(3w −3) ordinary
classes and thus gets a Dyson set.

For the case with 3� n < 1
2(3w − 3), Dyson

distinguishes the ordinary class (hereinafter refer
to as: the distinguished class) that contains the th
vectors

v1: + + · · · + + 0

v2: 0 0 · · · 0 0 −
v3: − − · · · − − +
If n = 3k, then Dyson uses vector triplesx, f (x),
f (f (x)) from the non-distinguished ordinary class
as described above. Ifn = 3k + 1 then he furthermore
uses the vectorv2 from the distinguished class, and
n = 3k + 2 then he furthermore uses the two vect
v1 andv3 from the distinguished class. The resulti
set of vectors satisfies condition (D2) in Definition
Now the firstw − 1 weighings in Dyson’s schem
are done non-adaptively. If thesew − 1 weighings do
not all yield the same outcome (all+1, all −1, or
all 0), then the (one or two) coins that belong to vect
from the distinguished group must be genuine. Hen
they can be disregarded for the last weighing. If
first w − 1 weighings all yield the same outcome, th
the counterfeit coin must be among the (one or tw
coins that belong to vectors from the distinguish
group. The last weighing can be used to determine
type of this counterfeit coin.

The main difference between Dyson’s approa
and our approach in Section 2 is that Dyson does
use vectors from the trivial class, whereas we do
them. Without the trivial class, there is no chance
getting Dyson sets whenn is not a multiple of three.
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