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Abstract

In this paper we consider a k-out-of-N system with identical, repairable components under a condition-based main-
tenance policy. Maintenance consists of replacing all failed and/or aged components. Next, the replaced components
have to be repaired. The system availability can be controlled by the maintenance policy, the spare part inventory level,
the repair capacity and repair job priority setting. We present two approximate methods to analyse the relation between
these control variables and the system availability. Comparison with simulation results shows that we can generate
accurate approximations using one of these models, depending on the system size.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many of today�s technological systems, such as aircrafts, military equipments or medical equipments, are
becoming more and more complex. At the same time, the requirements concerning availability and reliability
are becoming higher. There are several ways to influence the system availability. First, we can prevent system
failures using redundancy of critical components and preventive maintenance. Second, we can reduce the
length of system downtimes caused by corrective and/or preventive maintenance. The latter can be achieved
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by replacing failed components immediately and repairing off-line. To this end, we need a certain amount of
spare part inventories that is balanced with the demand for spare parts and the repair throughput time of
failed components. If we have sufficient spare parts, the system downtime is limited to the replacement time
of failed components. If not, the downtime is extended with the time needed to repair additional compo-
nents. In this sense, we have a trade-off between spare part inventory levels and repair shop throughput
times. The repair shop throughput time itself can be influenced by the repair capacity and possibly by repair
shop priority setting if multiple types of repair jobs share the same repair capacity.

The simultaneous setting of all structural parameters (redundancy, repair shop capacity) and control
variables (spare part inventory levels, preventive maintenance policy and repair job priorities) is mathemat-
ically a hard problem. A prerequisite for optimisation is that we are able to evaluate the system availability
as a function of these factors efficiently. To this end, we present in this paper an approximate method to
analyse these relations for the special case of a single parallel redundant (k-out-of-N) system with compo-
nent wear-out under a condition-based maintenance policy. That is, we initiate maintenance if the number
of failed components passes some critical level m. Such a policy can also be seen as an m-failure group
replacement policy, see Wang (2002).

We model the wear-out as follows: The time to component failure consists of a first phase where the
component moves from the as-good-as-new state to the degraded state and a second phase where the com-
ponent moves from the degraded state to the failed state. We assume that the sojourn time in each state is
exponentially distributed. We consider two types of repair jobs, namely, repair of degraded and failed com-
ponents, both having an exponential repair time distribution. This wear-out model is inspired by real sys-
tems found in practice, like the Active Phased Array Radar (APAR) used by the Royal Netherlands Navy,
see Fig. 1 and De Smidt-Destombes et al. (2004). This system consists of many transmit and receive ele-
ments. An element is said to have degraded if it is only capable of transmitting signals or receiving signals,
but not both. If both functions fail, the element has completely failed. Another interesting example is the
ATAS, a towed array sonar consisting of several hydrophones towed to the end of a ship in order to find
submarines. Other examples include batteries for pumps, servers and other industrial equipments.

A single repair facility with one or more parallel, identical servers handles all jobs. A certain lead-time
may be necessary between maintenance initiation and execution for set-up activities and/or moving the sys-
tem to the repair facility. Maintenance consists of replacing failed and/or degraded components by new
ones (spares). If insufficient spares are available, maintenance is delayed until the required components have
been repaired.
Fig. 1. The Active Phased Array Radar (APAR, left) consists of four ‘‘faces’’, each having a large number of elements (right); a face
can be modelled as a k-out-of-N system.
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The literature on spare part management is extensive, see Rustenburg (2000) and Kennedy et al. (2002)
for a review. Parts of our problem have been discussed as well. Firstly, there is a range of papers on inven-
tory analysis of repairable spare parts under a finite repair capacity (Dı́az and Fu, 1997; Sleptchenko et al.,
2003; Zijm and Avsar, 2003; Avsar and Zijm, 2003). For a recent overview of these models integrating spare
part management and repair capacity we refer to Sleptchenko et al. (2002). Secondly, the literature on the
relation between spare part inventories and maintenance mainly focuses on age based maintenance rather
than condition-based maintenance. Some papers (Kabir and Al-Olayan, 1996; Park and Park, 1986) con-
sider consumable spares rather than repairables, in which case repair capacity is not relevant. Sarkar and
Sarkar (2001) consider a problem related to ours, namely a one-component model with maintenance based
on periodic inspections where the function of the component, degraded or failed, is taken over by a spare
one. In our paper, however, we use a maintenance policy based on redundancy and also we include the ef-
fect of limited repair capacity. Thirdly, the importance of integrating the maintenance policy with spare
parts and repair capacity is mentioned by several authors, see e.g. Dinesh Kumar et al. (2000) and Gross
et al. (1985). However, only a few papers actually deal with the integration of these three aspects in quan-
titative models. De Smidt-Destombes et al. (2004) present a similar model with two-state components (up
or down only).

Compared to the latter model, the introduction of wear-out complicates the analysis considerably. We
have different repair jobs (failed and degraded components) and so we may consider repair priorities to re-
duce system downtime. Also, the computation of the system uptime and particularly the system downtime
is more complex. The introduction of a degraded state also allows for a wider class of maintenance policies
if the component states are observable during system uptime, as is true for the APAR example. We may
then use a maintenance policy based on the number of failed and degraded components. For example, if
the number of failed components is not too high but many components are degraded, it may be wise to
initiate maintenance to avoid system failure during the lead-time.

The remainder of this paper is structured as follows. In Section 2, we present our model and nota-
tion in detail and we discuss our basic assumptions. Next, we present two approaches to evaluate the
system availability approximately, an exact analysis (for major parts of the analysis) in Section 3 and a
simple and fast approximate analysis in Section 4. In Section 5, we show some numerical examples and
compare them with simulations to examine the accuracy of our approximations and to get some insight
in the relations between the parameter settings and the system availability. We discuss several extensions
of our basic model in Section 6. We end with conclusions and possibilities for further research in
Section 7.
2. Model description

We consider a single k-out-of-N system with deteriorating components and hot standby redundancy,
which means that all components are active and have the same failure behaviour. Each component has
three possible observable states, namely as-good-as-new (state 0), degraded (state 1) and failed (state 2).
When in use, the sojourn time of a component in state i � 1 is exponentially distributed with mean 1/ki

(i = 1, 2). The system is fully operational if less than N � k + 1 components have failed. To prevent system
down time, maintenance is performed dependent on the condition of the system. In the simplest case, the
maintenance policy consists of a single critical number m, being the number of failed components at which
maintenance is initiated. We have a deterministic lead-time or set-up time L between maintenance initiation
and execution. Therefore, it may be wise to initiate maintenance before the actual system failure
(m < N � k + 1).

Maintenance consists of replacing all failed and possibly also all degraded components by spares (repair-
by-replacement). We denote the number of spares by S. We assume that the replacement time is negligible.



Nomenclature

c repair capacity
k the least number of components needed for a functional system
L lead-time: time from maintenance initiation until the start of maintenance activities
m the number of failed components to initiate maintenance activities
N the total number of components in the system
S the total number of spares
ki the transition rate of a system component from state i � 1 to state i

li the repair rate of a component from state i to state 0
T(i, j) time from system state (N � i� j, i, j) until maintenance initiation
a(i, j) probability of system transition from state (N � i � j, i, j) to (N � i � j � 1, i + 1, j)
b(i, j) probability of system transition from state (N � i � j, i, j) to (N � i � j, i � 1, j + 1)
s(i, j) sojourn time of the system in state (N � i � j, i, j)
Q(i, j, t) probability of the system reaching state (N � i � j, i, j) at time t given m failed components at

time 0
pij(t) probability of a component transition from state i to state j during time t

P(i, m) probability of the system being in state (N � i � m, i, m) at maintenance initiation
PL(i, j) probability of the system being in state (N � i � j, i, j) at the start of maintenance
p(i, j) probability of the spares being in state (i, S � i � j, j) at the start of maintenance
R(r, s1, s2) time to repair r components from spares state (S � s1 � s2, s1, s2) given capacity c

H(w, x, y, z, t) probability that spares state changes from (S � w � x, w, x) to (S � y�z, y, z) in time t,
given repair capacity cbT time from maintenance initiation until system failure, given maint. initiation level mbT ði;mÞ time from system state (N � i � m, i, m) to failure, given maint. initiation level m

Ai number of system components in state i at the start of maintenance activities
Bi number of spare components in state i at the start of maintenance activities
Ci number of spare components in state i at the end of maintenance activities
Wi number of components in state i to repair during the maintenance period
Rl(X) time needed to repair X components given repair rate l and repair capacity c

Zl(X) number of components repaired in time X given repair rate l and capacity c

Avm,S,c the system availability, given the maintenance intiation level m, number of spares S and the
repair capacity c

Tm time until maintenance initiation given maintenance initiation level m

Um uptime during the lead-time L, given maintenance initiation level m
Dm,S,c downtime caused by maintenance activities, given maintenance initiation level m, number of

spares S and repair capacity c
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If the number of ready-for-use spares is less than the number of components to be replaced at the start of
maintenance, the maintenance period is extended by the time needed to repair the remaining components.
The repair time of a component in state i (i.e., the time needed for a transition to state 0) is exponentially
distributed with mean 1/li (i = 1, 2). Because it is plausible that degraded components can be repaired fas-
ter than failed components, we assume l2 6 l1. The repair shop contains c parallel, identical servers that
are able to handle both types of repair jobs. We denote the system state by the triple (n0, n1, n2), with ni the
number of components in state i (hence n0 + n1 + n2 = N). Equivalently, we denote the state of the spares
as (s0, s1, s2), with s0 + s1 + s2 = S.
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For this system, we address the following questions in order to obtain a certain prescribed availability
level:

1. What is the influence of the system state/condition to initiate maintenance activities (choice of m)?
2. What is the influence of the number of spare parts (choice of S)?
3. What is the influence of the repair capacity (choice of c)?
4. What is the influence of the priority rule used for the two types of repair jobs?

Of course, there is a clear interaction between the various parameters, as several choices of m, S, and c

might lead to the same system availability. Although this gives rise to a multi-dimensional optimisation
problem, the emphasis here is on the analysis of the availability as a function of m, S, and c.

We model the evolution of the system state (n0, n1, n2) as a renewal process, see Fig. 2. A system cycle
starts when the system is as-good-as-new. The operational period lasts until maintenance is initiated upon
the mth failure. During the lead-time L, the system is still operational and will degrade further, where it may
even fail. Then maintenance starts, components are replaced and the system is as-good-as-new again.

A second cycle, the spares cycle, describes the evolution of the spares state (s0, s1, s2). It starts when sys-
tem maintenance has just been finished. Then, the spares in state 1 and state 2 represent repair jobs that
have to be addressed during the next operational period of the system plus the lead-time. When the system
arrives for maintenance, the failed and degraded components are replaced by good ones. If the number of
ready-for-use spares is insufficient (s0 < n1 + n2), we have to wait until the remaining components have
been repaired. Note that the spares cycle is not a renewal process, because subsequent cycles are generally
not independent. However, we treat this cycle as a renewal process. The state of the spare parts in the begin-
ning of each cycle may be different and therefore we use a stationary distribution.

A complication is that the system cycle and the spare cycle are interrelated. We can explain this intui-
tively as follows. Suppose that in a certain system cycle the operational time is relatively long. Then it is
likely that many components have been degraded until the time that m components have failed. Hence,
the number of components in state 1 (n1) is relatively large at the start of maintenance. At the same time,
the number of restored spares (s0) is likely to be relatively large when the operational time is relatively long.
Therefore the system state and the state of the spares at the beginning of the maintenance period are not
independent. As an approximation, however, we assume that both cycles are independent. Whether these
approximations have a significant impact, is discussed when comparing our approximate methods with re-
sults from discrete event simulation (Section 5).

As a performance measure, we focus on the limiting or steady state system availability, defined as the
quotient of the system uptime, consisting of the time to maintenance initiation Tm and the uptime during
the lead-time Um, and the total cycle, being the time to maintenance initiation Tm plus the lead-time L plus
the maintenance time Dm,S,c (see Fig. 2):
Lead-time

(N,0,0) (N-m-i,i,m) (N-n1-n2,n1,n2) (N,0,0)system

spares (S-s1-s2,s1,s2)

Maint. period

System operational System downSystem partly operational, partly down

m i,i,m) (N-n1-n2,n1,n2) (N,0,0)

(S-s1-s2,s1,s2)

Operational time

Fig. 2. Schematic presentation of the system�s cycle above and the spares� cycle beneath.
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Avm;S;c ¼
E½T m� þ E½Um�

E½T m� þ Lþ E½Dm;S;c�
: ð1Þ
In Section 3, we discuss how to calculate E[Tm], E[Um] and E[Dm,S,c] exactly if there is no correlation be-
tween the system state and spares state. Because numerical problems arise for large systems when calculat-
ing E[Um] and E[Dm,S,c], we describe approximations for E[Um] and E[Dm,S,c] which are applicable for larger
systems in Section 4. In Section 6 we discuss some variants of the model as described in this section: a wider
class of maintenance policies based on both degraded and failed spares (Section 6.1), maintenance on failed
components only (Section 6.2) and redundant components in the cold standby mode (Section 6.4).
3. Method A

From now on, we omit in our notation, the indices referring to the parameters m, S, c, N and k since
these are fixed parameters during the calculations. Assuming that all components in state 1 and state 2
are replaced by new ones during maintenance and there is no correlation between the system state and
the spares state we compute E[T], E[U] and E[D] exactly in Sections 3.1 till 3.3 respectively. In Section
3.4 we discuss the computational issues.

3.1. Expected operational time

The operational time until maintenance initiation T is the time until the mth component failure
(1 6 m 6 N � k + 1). If L = 0, it is clear that we should choose m = N � k + 1. If L > 0, m is likely to
be chosen smaller. The distribution function F(t) for T is given by
F ðtÞ ¼ Pr number of failed components at t P mð Þ ¼
XN

i¼m

N

i

� �
ðp02ðtÞÞ

i 1� p02ðtÞð ÞN�i
; ð2Þ
where p02(t), the probability that a component will move from state 0 to state 2 in time t, equals
1� e�k1t � k1

k1�k2
ðe�k2t � e�k1tÞ. Although we could derive E[T] from

R1
t¼0ð1� F ðtÞÞdt, it is far easier to use

a recursive approach. Let us define T(i, j) as the time needed for a transition from state (N � i � j, i, j) to
the set of states in which maintenance is initiated (n2 = m). Obviously, we have that T(i, m) = 0. If
j < m, the mean value of T(i, j) equals the expected sojourn time in the current state (N � i � j, i, j) plus
the expected time needed from the next state on. The expected sojourn time in state (N � i � j, i, j) equals
s(i, j) = ((N � i � j)k1 + ik2)�1. Next, the system state changes to (N � i � j � 1, i + 1, j) with a probability
aði; jÞ ¼ ðN�i�jÞk1

ðN�i�jÞk1þik2
and to (N � i � j, i � 1, j + 1) with a probability bði; jÞ ¼ ik2

ðN�i�jÞk1þik2
. Note that if i = 0

then a(i, j) = 1 and b(i, j) = 0 and if i + j = N then a(i, j) = 0 and b(i, j) = 1, Hence
E½T ði; jÞ� ¼
0 if j ¼ m;

sði; jÞ þ aði; jÞE T ðiþ 1; jÞ½ � þ bði; jÞE T ði� 1; jþ 1Þ½ � else:

�
ð3Þ
Observing that E[T] = E[T(0, 0)], we can compute this value starting with E[T(i, m)] = 0. It can be shown
that we need 1

2
mðmþ N � 3Þ simple computations, which is no problem at all from a computational

perspective.

3.2. Expected uptime during L

We denote the uptime during the lead-time L by U, which can be written as L minus the downtime dur-
ing L, so
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E½U � ¼ L�
Z L

t¼0

XN

j¼N�kþ1

XN�j

i¼0

Qði; j; tÞdt: ð4Þ
Here Q(i, j, t) is defined as the probability of reaching state (N � i � j, i, j) at time t, given that there were m

failed components at time 0 (the time of maintenance initiation). This implies that each system state
(N � x � m, x, m) with x 2 [0, i + j � m] is possible at time 0. We define P(x, m) as the probability of
the system being in state (N � x � m, x, m) at time 0. We define the number of transitions from state 1
to state 2 as y, with y 2 [max{0, x � i}, min{j � m, x}]. Given the system state at time 0, the system state
at time t and the number of transitions from state 1 to state 2, we also know the number of transitions from
state 0 to state 1 and the number of transitions from state 0 to state 2. The probability of a component
transition from state i to state j is denoted as pij(t). Hence,
Qði; j; tÞ ¼
Xiþj�m

x¼0

P ðx;mÞ
Xminfj�m;xg

y¼maxf0;x�ig

x

y

� �
N � m� x

i� xþ y

� �
N � m� i� y

j� m� y

� �
p00ðtÞð ÞN�i�j p01ðtÞð Þi�xþy

� p02ðtÞð Þj�m�y p11ðtÞð Þx�y p12ðtÞð Þy : ð5Þ
We can explicitly write the transition probabilities as
p00ðtÞ ¼ e�k1t; p01ðtÞ ¼
k1

k1 � k2

e�k2t � e�k1t
� �

and p11ðtÞ ¼ e�k2t;
where obviously p12(t) = 1 � p11(t) and p02(t) = 1 � p00(t) � p01(t). Now let us derive an expression for the
probability P(x, m). Because at this state (N � x � m, x, m) maintenance is initiated, it can only be reached
through a transition from state (N � x � m, x + 1, m � 1). As a result, we obtain a recursive calculation
scheme for the probabilities of reaching each possible system state until maintenance initiation. This scheme
is given in Eq. (6), and an example is illustrated in Fig. 3.
P ði; jÞ ¼
1 if i ¼ j ¼ 0;

aði� 1; jÞPði� 1; jÞ þ bðiþ 1; j� 1ÞP ðiþ 1; j� 1Þ else:

�
ð6Þ
3.3. Expected maintenance duration

For the expected maintenance duration E[D], we condition on the system state and the spares state just
before the system arrives for maintenance at the repair shop. Because we assume that the spares cycle and
the system cycle are independent (see Section 2), we have that
(4,0,0)

(3,1,0)

1

1
λ
λ

(2,2,0) (1,3,0) (0,4,0)

(3,0,1) (2,1,1) (1,2,1) (0,3,1)

(2,0,2) (1,1,2) (0,2,2)

2

3λ1

3λ1

3λ1

λ+

2

2

λ+
λ

XX XX  

Example of a 2-out-of-4 system with m = 2. Transitions from (1, 1, 2) to (0, 2, 2) and from (2, 0, 2) to (1, 1, 2) are not taken into
t, because these states would have initiated maintenance themselves.
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E½D� ¼
XS

s0¼0

XS�s0

s2¼0

XN

n2¼m

XN�n2

n1¼0

P Lðn1; n2Þpðs0; s2ÞE Rðn1 þ n2 � s0; n1 þ S � s0 � s2; n2 þ s2Þ½ �: ð7Þ
PL(n1, n2) is the probability of the system having n1 degraded and n2 failed components when actual main-
tenance activities starts and p(s0, s2) is the steady state probability of the spares inventory consisting of s0

ready-for-use spares and s2 failed spares (note that s1 = S � s0 � s2). Rðr;~s1;~s2Þ is the time to repair r com-
ponents with capacity c when there are ~s1 degraded and ~s2 failed components available at the start of the
repair. Regarding the system state at maintenance initiation, we have that n2 = m and PL(n1, m) = P(n1, m)
if L = 0. If L > 0 then PL(n1, n2) = Q(n1, n2, L). We provide expressions for Rðr;~s1;~s2Þ in Section 3.3.1 and
p(s0, s2) in Section 3.3.2.

3.3.1. Repair time and priority rule

The repair time Rðr;~s1;~s2Þ depends on the order in which the ~s1 degraded and ~s2 failed components are
repaired, which can be given by a certain repair priority rule. The other way round, the repair priority rule
influences the spares state at the start of system maintenance. We try to minimise the maintenance duration
by repairing as many degraded components as possible. When the number of degraded components is not
sufficient to replace all failed and degraded components (n1 + s1 < N � s0 � n0), we have to repair some
failed components as well. It is well known that we minimise the makespan (and hence the system repair
time) by selecting the longest mean processing times first, see Pinedo and Chao (1999). So we use the fol-
lowing repair priority rule:

If there are sufficient degraded spares (in state 1), then only repair degraded components. If the number of
degraded components is insufficient, start repairing the minimum number of failed components needed to
repair the system. Next, repair the degraded components.

If we have both degraded and failed spares to be repaired after system repair, we need a second repair
priority rule. It is logical to aim for handling as many jobs as possible before T + L (the time between main-
tenance instances). Therefore we complete the jobs with the shortest mean repair time first.

Now let us apply the repair priority rule to find the mean repair time E½Rðr;~s1;~s2Þ�. We define
r = [n1 + n2 � s0]+ as the total number of repairs needed to repair the system, where x+ = max{0, x} for
any real number x. Then we need to restore [r � s1]+ failed spares during the maintenance period. Since
we have at most c spares in the repair shop, we start with the min{c, [r � s1]+} failed spares in repair at
the start of the repair period. Next, we assign a = min{s1, c � min{c, [r � s1]+}} degraded spares to the repair
shop. If there is still repair capacity left, we use this capacity for the remainder of the failed components. The
number of failed spares in the repair shop is now equal to b = min{s2, c � a}. Let us denote the number of
components in state 1 and state 2 at the start of the repair period by a and b respectively. Using Rðr;~s1;~s2Þ ¼ 0
if r = 0 or s1 < 0 or s2 < 0, we find the following recursive relation for the expected repair time:
E½Rðr;~s1;~s2Þ� ¼
1

al1 þ bl2

þ al1

al1 þ bl2

E½Rðr � 1;~s1 � 1;~s2Þ� þ
bl2

al1 þ bl2

E½Rðr � 1;~s1;~s2 � 1Þ�: ð8Þ
3.3.2. The steady state probabilities of the spares states

We use a Markov chain to determine the steady state probabilities p(i). Here we use a short hand notation
i = (s0, s2). We want to solve the steady state conditions p = MTp with

P
p(i) = 1. Each entry (i, j) of the

transition matrix M equals the transition probability qij that j ¼ ðs00; s02Þ is the spares state just before the
maintenance period starts, while the spares state just before the previous maintenance period was
i = (s0, s2). We calculate the probability qij by conditioning on the time to maintenance initiation T = t:
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qij ¼
XN

n2¼m

XN�n2

n1¼0

P Lðn1; n2Þ
Z 1

t¼0

f ðtÞH min s1 þ n1; S � s2 � n2½ �þ
� �

;min s2 þ n2; Sf g; s01; s02; t þ L
� �

dt; ð9Þ
where f(t) is the density function of T and H(w, x, y, z, t) is the probability that the spares state changes from
w degraded and x failed spares to y degraded and z failed spares during t with c servers. In the special case
L = 0, we have that n2 = m and so the transition probabilities consist of one summation only. The density
function f(t) can be found as the derivative of F(t) from Eq. (2):
f ðtÞ ¼
XN

g¼m

XN�g

h¼0

N

g

� �
N � g

h

� �
ð�1Þhðg þ hÞk2p01ðtÞ p02ðtÞð Þgþh�1

: ð10Þ
Let us now derive an expression for H(w, x, y, z, t). We first note that only a non-negative number of
spares can be restored, so H(w, x, y, z, t) = 0 if w < y and/or x < z. Because our repair priority rule states
that we should first restore degraded components, it is not possible to restore one or more failed compo-
nents if the number of degraded components remaining is at least equal to the number of servers; thus
H(w, x, y, z, t) = 0 if y P c and x > z. If no spares are restored (i.e. w = y and x = z) we have a repair
rate that is equal to min{c, w}l1 + min{x, c � min{c, w}}l2 and therefore H(w, x, y, z, t) decreases expo-
nentially with that rate. If spares are restored, we distinguish two cases: one in which all spares are being
repaired immediately (w + x 6 c) and one in which not all repairs, but only c repairs, start immediately
(w + x > c).

In the first case we have a combination of two binomial distributions, one with parameters w and e�l1t,
and one with parameters x and e�l2t. In the second case, where w + x > c, we can write H(w, x, y, z, t) in a
recursive formulation. In case w 6 c, it is possible to have a failed spare restored before a degraded spares is
restored or the other way around. In case w > c, the only possibility is to restore a degraded spare. In the
recursive formulation, y and z play the role of fixed parameters, which we suppress for readability. We find
that
Hðw;x; tÞ¼

0; w< y_x< z_ y P c^x> zð Þ;

e� min c;wf gl1þmin x;½c�w�þf gl2ð Þt; w¼ y^x¼ z;

w

y

 !
x

z

 !
e�ðyl1þzl2Þt 1� e�l1tð Þw�y 1�e�l2tð Þx�z

; wþx6 c;

R t
s¼0

W ðsÞ ðc�wÞl2H w;x�1; t� sð Þþwl1H w�1;x; t� sð Þð Þds; wþx> c^w6 c;R t
s¼0

wl1W ðsÞH w�1;x; t� sð Þds; wþx> c^w> c:

8>>>>>>>>>>><>>>>>>>>>>>:
ð11Þ
Here W ðsÞ ¼ e�wl1se�ðc�wÞl2s. From Eqs. (10) and (11) we are able to determine all the elements qij of the
transition matrix M (see Eq. (9)).

3.4. Computational issues

Our approach has several drawbacks. First, Eqs. (4) and (5) contain binominals of high order. Therefore,
we encountered numerical problems and long computation times when evaluating the equations for larger
systems (say N > 80). The computation time for a system with N = 80 components is several hours on a
Pentium II, 800 MHz pc. A similar problem occurs for the maintenance duration (Eqs. (7)–(9)). Further-
more, we found that the computation time to evaluate the transition probabilities becomes large even for
smaller problems, because we evaluated the integrals numerically. The number of integrals is very large
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because of the recursive character of Eq. (11). The system size for which we can find the maintenance dura-
tion within a reasonable amount of time (less than about an hour) is up to 10 or 20 components.
4. Method B

Because of the drawbacks of method A, we developed simpler and faster approximations for E[U] and
E[D]. These approximations are based on the first two moments by fitting an appropriate distribution. For
continuous distributions on [0,1) we use phase type distributions, see Tijms (1994). For discrete distribu-
tions on [0, 1, 2, . . .) we use either a mixture of two binomial distributions, a mixture of two negative bino-
mial distributions, a mixture of two geometric distributions or a Poisson distribution dependent on the
mean and the variance, see Adan et al. (1995).

4.1. Expected uptime during L

Let us denote the time from maintenance initiation to system failure by bT , the time from m component
failures until the (N � k + 1)th component fails if L ! 1. Then the mean uptime during the lead-time
equals E½minfbT ; Lg� ¼ E½bT � � E½½bT � L�þ�. We can evaluate such an expression easily for specific classes
of probability distributions, particularly for phase type distributions (for example, hyperexponential distri-
butions or mixtures of Erlang distributions). Therefore, a simple approximation is to calculate the first two
moments of bT exactly and next to approximate the distribution of bT by a mixture of Erlang distributions
with the same first two moments. Such an approach has appeared to be fruitful in many applications where
the performance measure to be approximated does not depend heavily on the tails of the probability dis-
tribution, see Tijms (1994).

The first two moments of bT can be found by conditioning on the system state at maintenance initiation:
E½bT � ¼XN�m

i¼0

P ði;mÞE½bT ði;mÞ�; ð12Þ

E½bT 2� ¼
XN�m

i¼0

P ði;mÞE½bT 2ði;mÞ�: ð13Þ
Here bT ði;mÞ is the time until the (N � k + 1)th component failure occurs when the system is in state
(N � i � m, i, m) at maintenance initiation. E½bT ði;mÞ� is found analogously to Eq. (3) with only a small dif-
ference in the restriction, which becomes equal to j = N � k + 1. For the second moment, the recursion is
not straightforward because the transition depends on the sojourn time. After some algebra we find Eq. (14)

with E½bT 2
ði; jÞ� ¼ 0 if j = N � k + 1.
E bT 2
ði; jÞ

h i
¼ 2sði; jÞE bT ði; jÞh i

þ aði; jÞE bT 2
ðiþ 1; jÞ

h i
þ bði; jÞE bT 2

ði� 1; jþ 1Þ
h in o

: ð14Þ
4.2. Expected maintenance duration

The basic idea for approximation of the mean system downtime is to use a moment iteration scheme as
has been proposed by De Kok (1989) for the analysis of the waiting time in the G/G/1 queue. First, we de-
fine W1 and W2 as stochastic variables for the number of repairs of type 1 and type 2 respectively during the
maintenance time. We can approximate the maintenance duration by
E½D� � E½W 1�
cl1

þ E W 2½ �
cl2

: ð15Þ
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This is an approximation, because we pretend as if first all c servers are busy with failed components at a
joint rate cl2 and next they are all busy with degraded components at a joint rate cl1. The reality is that
failed and degraded items can be repaired simultaneously and that the repair rate can be less than cl1 at the
end of the maintenance period if less than c components are available, leaving one or more servers idle. The
variables W1 and W2 depend on the system state and the spares state at the start of maintenance. We define
Ai as the number of system components and Bi as the number of spare components in state i (i = 0, 1, 2)
when the system arrives for maintenance. Because of our repair priority rule, failed spares are only repaired
if the total number of failed components exceeds the number of spares S, hence
W 2 ¼ A2 þ B2 � S½ �þ: ð16Þ

The number of type 1 repairs equals the total number of components needed, which equals [N � A0 � B0]+,
minus the components that are obtained by repairing failed components:
W 1 ¼ N � A0 � B0½ �þ � W 2: ð17Þ

The Bi depend on the number of spares in each state at the end of the previous maintenance period. Defin-
ing the variables Ci as the number of spare components in state i after the maintenance is finished:
C0 ¼ B0 � ðA1 þ A2Þ½ �þ ¼ B0 þ A0 � N½ �þ;

C1 ¼ S � C0 � C2;

C2 ¼ min A2 þ B2; Sf g:
Because we start with repairing type 1 spares when maintenance is finished, C1 decreases with the number of
type 1 spares that can be repaired during T + L with capacity c and repair rate l1, which is denoted by
Zl1
ðT þ LÞ. If time is left, C2 decreases with the number of failed spares that can be restored during the

remaining time. Therefore we denote Rl1
ðC1Þ as the time needed to restore C1 components with repair rate

l1 and capacity c. For Bi we find
B0 ¼ S � B1 � B2;

B1 ¼ C1 � Zl1
T þ Lð Þ

	 
þ
;

B2 ¼ C2 � Zl2
T þ L� Rl1

ðC1Þ
	 
þ� �h iþ

:

Unfortunately, we face correlations between Ai and Bi (see Section 2). To simplify calculations we assume
that B1 = 0. This means that T + L is long enough to restore all spares that are degraded at the end of the
maintenance period. This is a reasonable assumption, since the degraded spares have priority to be
repaired. The set of equations is simplified to
B0 ¼ S � B2; ð18Þ

B2 ¼ C2 � Zl2
T þ L� Rl1

ðC1Þ
� �	 
þ

; ð19Þ

C0 ¼ B0 þ A0 � N½ �þ; ð20Þ

C1 ¼ S � C0 � C2; ð21Þ

C2 ¼ min A2 þ B2; Sf g: ð22Þ
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Now we find E[W1] and E[W2] using the following moment iteration algorithm:

Step 0: Set the first two moments of B2 to 0, determine the first two moments of A0 and A2.
Step 1: Fit a discrete distribution to A2 + B2 assuming that A2 and B2 are uncorrelated.
Step 2: Determine the first two moments of B0, using Eq. (18) and fit a discrete distribution for A0 + B0

assuming that A0 and B0 are uncorrelated.
Step 3: Calculate the mean and the variance of C0 and C2 using two moment approximations (20) and (22).
Step 4: Calculate the mean and the variance of C1 from (21) taking into account cov(C1, C2).
Step 5: Calculate the mean and the variance of B2 by approximating the first two moments of

X ¼ S � ðC2 � Zl2
ðT þ L� Rl1

ðC1ÞÞÞ and using B2 = [S � X]+.
Step 6: Determine E[W2] and E[W1] from (16) and (17) using the mean of W = [N � (A0 + B0)]+. If the

convergence criterion is not satisfied then go to step 1, otherwise stop.

The first two moments of A0 and A2 that we need for step 0 are relatively easy to find:
E½A0� ¼
XN�m

i¼0

P ði;mÞðN � m� iÞp00ðLÞ;

E½A2
0� ¼

XN�m

i¼0

P ði;mÞðN � m� iÞp00ðLÞf1� p00ðLÞ þ ðN � m� iÞp00ðLÞg;

E½A2� ¼ mþ
XN�m

i¼0

P ði;mÞ ðN � m� iÞp02ðLÞ þ ip12ðLÞf g;

E A2
2

	 

¼
XN�m

i¼0

P ði;mÞ ðN � m� iÞp02ðLÞ 1� p02ðLÞ þ ðN � m� iÞp02ðLÞf g
�

þ ip12ðLÞ 1� p12ðLÞ þ ip12ðLÞf g

þ 2iðN � m� iÞp02ðLÞp12ðLÞ þ 2mðN � i� mÞp02ðLÞ þ 2mip12ðLÞ þ m2
�
:

For step 2 we have E[B0] = S � E[B2] and var[B0] = var[B2] and we are able to fit a distribution for
A0 + B0.

For step 3 we have a distribution for A0 + B0 from step 1, which allows us to determine E[C0] and
var[C0]. E[C2] and var[C2] are found using the distribution we found for A2 + B2 in step 0 or in step 5.

In step 4 we use Eq. (23) with only the covariance as an unknown term.
E½C1� ¼ S � E½C0� � E½C2�;
var½C1� ¼ var½C0� � var½C2� � 2cov½C1;C2�:

ð23Þ
For cov[C1, C2] we condition on A1:
cov½C1;C2� ¼ E½cov½C1;C2 j A1�� þ cov½E½C1 j A1�;E½C2 j A1�� ¼ cov½minfA1; S � C2g;C2�
¼ PrðA1 > S � C2Þcov½S � C2;C2� ¼ �var½C2�PrðA1 > S � C2Þ
¼ �var½C2�PrðN � A0 þ B2 > SÞ ¼ �var½C2�PrðA0 þ B0 < NÞ:
In step 5 we define X ¼ S � ðC2 � Zl2
ðT þ L� Rl1

ðC1ÞÞÞ and we approximate the mean and the variance of
Rl1
ðC1Þ and Zl2

ðX Þ by
E Rl1
C1ð Þ

	 

� E C1½ �

cl1

;



Table
Input
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var Rl1
ðC1Þ

	 

� E½C1�
ðcl1Þ

2
þ var½C1�
ðcl1Þ

2
;

E Zl2
Xð Þ

	 

� cl2E½X �;

var Zl2
ðX Þ

	 

� cl2E X½ � þ cl2ð Þ2var½X �:
The mean and the variance of X are now written by
E½X � ¼ S � E½C2� þ cl2 E½T � þ L� E½C1�
cl1

� �
;

var½X � ¼ cl2 E½T � þ L� E½C1�
cl1

� �
þ ðcl2Þ

2var½T � þ l2

l1

� �2

E C1½ � þ var C1½ �ð Þ þ var C2½ � þ 2
l2

l1

cov C1;C2½ �:
For B2 we find E[B2] = E[[S � X]+] and var[B2] = var[[S � X]+]. With the mean and the variance for A2

from step 0 and the mean and the variance for B2 from step 4, we fit a discrete distribution to A2 + B2.
In step 6 we determine E[W2] using the distribution we found for A2 + B2 in step 5. We use the distri-

bution for A0 + B0 to find the mean for the total workload W = [N � A0 � B0]+. Then E[W1] is found by
E[W] � E[W2].
5. Numerical examples

Because both methods as discussed in Sections 3 and 4 are approximations, we need to test the accuracy
of both methods. To this end, we constructed a discrete event simulation model as benchmark. The simu-
lation results given in this paper are based on 5000 cycles.

We computed over 460 scenarios divided into three different system sizes: 7-out-of-10 system, 58-out-of-
64 system and 2700-out-of-3000 system.

In Table 1 we give an overview of the different scenarios we used. We used method A as presented in
Section 3 (if feasible within a few hours computation time), method B as presented in Section 4. To compare
these results with our simulation model, we need to make sure that the simulation results are accurate. In
our simulation model we compute T, U and D for a number of cycles. Given 95% confidence intervals for
the maintenance duration, we found a relative accuracy of 6%, 2.5% and 0.2% for 7-out-of-10 systems, 58-
out-of-64 systems and 2700-out-of-3000 systems, respectively. The values for the availability are even
better.

The computation times for the 7-out-of-10 system using method A vary between 0.25 and 30 seconds,
dependent on the number of spares. Using method A for the 58-out-of-64 system the computation times
are at least 140 minutes per scenario. With method B the dependency on the system size is very small
and the computation times found are around 0.01 seconds per instance. All computation times are mea-
sured on a Pentium II, 800 MHz pc.
1
used for our numerical examples; within brackets the stepsize is given

L k1 k2 l1 l2 m S c

of-10 30, 168 0.01 0.05 0.2 0.1 1 � � � 3(1) 1 � � � 6(1) 1 � � � 3(1)
-of-64 168 0.000125 0.00025 0.05 0.03 1 � � � 7(1) 1 � � � 10(1) 1 � � � 3(1)
ut-of-3000 168 2.9 · 10�5 5.8 · 10�5 0.125 0.0625 250 � � � 300(10) 250 � � � 350(20) 5 � � � 20(5)



Table 2
For different system sizes the mean and maximum differences for the repair time per method based on roughly 200 instances for the
small system, 100 instances for the medium sized system and 150 instances for the large system

Mean differences Max. differences

Method A (%) Method B (%) Method A (%) Method B (%)

7-out-of-10 system 2.7 4.2 44.3 22.4
58-out-of-64 system – 1.4 – 10.6
2700-out-of-3000 system – 0.2 – 0.9
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The maximum correlation found for the systems between the system cycle (number of components in
state 1 at the start of maintenance) and the spares cycle (number of spares in state 0 at the start of main-
tenance) is 0.08 at the most, which justifies our model approximation to neglect this correlation. The dif-
ferences in E[D] between the computations according to method A and method B compared to simulation
are given in Table 2.

For the 7-out-of-10 system the maximum differences are rather large. However, when we only take into
account the scenarios with L = 168 the maximum difference for method A reduces to 1.2%. This is due to
the fact that a lead-time of 30 is too small for the assumption that all spares of type one will be restored. For
method B the maximum difference hardly changes, only the mean difference changes to 1.0%. The instances
Table 3
Some results for different system sizes with a comparable availability results for different combinations of values for maintenance
initiation, number of spares and repair capacity

Input E[T] E[U] E[D] Av

A Sim. A B Sim. A B Sim. A B Sim.

N = 10, k = 7, L = 30 22.44 22.86 27.46 27.48 27.29 2.03 1.85 1.93 0.92 0.92 0.92
m = 1, S = 4, c = 2
k1 = 0.01, k2 = 0.05
l1 = 0.2, l2 = 0.1

N = 10, k = 7, L = 30 37.76 38.01 22.46 22.44 22.57 1.23 0.99 1.23 0.87 0.88 0.88
m = 2, S = 5, c = 3
k1 = 0.01, k2 = 0.05
l1 = 0.2, l2 = 0.1

N = 64, k = 58, L = 168 950 916 168 168 168 – 52.86 54.16 – 0.95 0.96
m = 1, S = 3, c = 2
k1 = 0.000125, k2 = 0.00025
l1 = 0.05, l2 = 0.03

N = 64, k = 58, L = 168 2230 2247 167 167 167 – 108 111 – 0.96 0.95
m = 4, S = 2, c = 3
k1 = 0.000125, k2 = 0.00025
l1 = 0.05, l2 = 0.03

N = 3000, k = 2700, L = 168 11 740 11 745 – 168 168 – 506 508 – 0.96 0.97
m = 250, S = 250, c = 10
k1 = 2.9 · 10�5, k2 = 5.8 · 10�5

l1 = 0.125, l2 = 0.0625

N = 3000, k = 2700, L = 168 13 102 13 104 – 26.52 27.39 – 580 582 – 0.95 0.95
m = 300, S = 270, c = 10
k1 = 2.9 · 10�5, k2 = 5.8 · 10�5

l1 = 0.125, l2 = 0.0625
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with the largest differences, have a rather extreme combination of parameters, e.g. m = 1, S = 6 and c = 1.
This results in high utilisation rates, which gives uncertainty about the assumption that all type 1 spares are
repaired before the next maintenance period. Larger lead-times reduce this uncertainty and therefore give
better results for the repair time.

The maximum difference of 10.6% for a 58-out-of-64 system is also obtained in a rather extreme situation
where m = S = 1 and c = 3. Leaving out such scenarios, the maximum difference would be 5%.

For the 2700-out-of-3000 system scenarios we found similar results as we did for the other systems. Note
that the average error found is smaller than the average simulation accuracy for all three systems. Of course,
the approximate values may be outside the corresponding 95% confidence interval for individual cases.

Next, we show that various combinations of control parameters (m, S, c) may lead to a similar system
availability. In Table 3, we give six examples (two for each system) with comparable availability. To give
an impression of the different possibilities for achieving a certain availability see Fig. 4 for a 7-out-of-10
system.

In Fig. 5 we show the availability of the 2700-out-of-3000 system as a function of S for different values of
c. The value of m is chosen such that the availability is maximal (without bothering about the effects on the
cycle length or cost).
0.5
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0.65
0.7
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0.8
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1

m=1,c=1 c=2 c=3 m=2,c=1 c=2 c=3 m=3,c=1 c=2 c=3

S=1 S=2 S=3 S=4 S=5 S=6

Fig. 4. Columns are depicted for a 7-out-of-10 system with different values for maintenance initiation and capacity. In each column a
new shading represents an extra spare. Given a desired availability level, each column shows the parameter combination needed to
reach this level.
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Fig. 5. For a 2700-out-of-3000 system and several values of capacity we show the availability as a function of the spares amount. The
maintenance initiation level is chosen such that the availability is the highest.
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6. Model extensions

6.1. Maintenance also based on degraded components

Until now, we discussed a maintenance policy dependent only on the number of failed components. If we
are able to observe the number of degraded components in the system during the operational time, we could
use another rule. Denoting a system state as (i, j), which means there are i degraded components and j failed
components in the system, we have one set with all system states X = (i, j) with i 2 [0, N] and j 2 [0, N � i].
We divide X into three subsets:

XU: all system states in which the system is operational and maintenance is not yet initiated.
XM: all system states in which the system is operational and maintenance has been initiated.
XD: all system sets in which the system has failed.

Of course, the sets need to be defined such that it is impossible to make a transition to a state in XU once
the system state is in one of the other sets, except caused by maintenance.

The expression for the operational time until maintenance initiation only changes slightly. In Eq. (3), the
condition j = m changes into (i, j) 2 XM. For the expected uptime during the lead-time, Eq. (4) remains sim-
ilar because the definition of a failed system remains unchanged. We define a subset of XM with only the
system states that initiate maintenance, thus the system states (i, j) 2 XM with (i + 1, j � 1) 62 XM or
(i � 1, j) 62 XM, denoted by XI. The uptime is estimated using the equations of Section 4.1. Taking into ac-
count the number of degraded components, the expressions for E½bT � and var½bT � are modified by replacing m

by j and we sum over (i, j) 2 XI. In expression (6), for P(i, j) we only change the restriction j = m into
(i, j) 2 XI. For the expected maintenance duration, we only change E[Ai] and E½A2

i � for i = 0, 1, 2. This
change is similar to the other changes: replace m by j and sum over (i, j) 2 XI.

Note that a maintenance policy should define the set XM. Optimisation of such a maintenance policy is
not straightforward, but at least we are able to evaluate the consequences of a given choice. Explicit opti-
misation is subject for further research.

6.2. Replacement of failed components only

If it is impossible to distinguish the condition of type 0 and 1 components, we can only replace failed
components during maintenance. The system state at the start of a cycle is then unknown and could be
any state (N � i, i, 0) with 0 6 i 6 N � m. As a consequence we cannot use E[T(0, 0)] because the system
is not as-good-as-new at the start of the cycle. We adjust the equation to
E½T � ¼
XN�m

i¼0

P startðiÞE½T ði; 0Þ�: ð24Þ
Here Pstart(i) is the probability that the system state at the start of a cycle is equal to (N � i, i, 0). This prob-
ability Pstart(i) equals the sum of probabilities of the system being in state (N � i � j, i, j) with
j = m, . . . , N � i at the start of the preceding maintenance period.
P startðiÞ ¼
XN�i

j¼m

P maintði; jÞ: ð25Þ
Here Pmaint(i, j) is the probability that the system state equals (N � i � j, i, j) at the start of maintenance.
This probability depends on the system state at maintenance initiation and state transitions during the
lead-time:
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P maintði; jÞ ¼
Xiþj�m

h¼0

P initðh;mÞP transððh;mÞ; ði; jÞ; LÞg; j P m: ð26Þ
Here Ptrans((h, m),(i, j), L), the probability of a transition from state (N � h � m, h, m) to state
(N � i � j, i, j) in time L, which is given by
P transððh;mÞ; ði; jÞ; LÞ ¼
Xminfj�m;hg

y¼½h�i�þ

h

y

� �
N � h� m

N � i� j

� �
iþ j� h� m

j� y � m

� �
ðp00ðLÞÞ

N�i�jðp01ðLÞÞ
iþy�h

� ðp02ðLÞÞ
j�y�mðp11ðLÞÞ

h�yðp12ðLÞÞ
y
:

The probability Pinit(h, m) is defined as the probability of the system state being (N � h � m, h, m) at main-
tenance initiation, which is a function of the system state at the start of the cycle:
P initði;mÞ ¼
Xiþm

h¼0

P startðhÞP h;mði;mÞ: ð27Þ
Ph, m(i, j) is the probability of reaching state (N � i � j, i, j) given initial state (N � h, h, 0) and maintenance
initiation at m failed components. This probability is found recursively using
P h;mði; jÞ ¼
1 if ði; jÞ ¼ ðh; 0Þ;
aði� 1; jÞP h;mði� 1; jÞ þ bðiþ 1; j� 1ÞP h;mðiþ 1; j� 1Þ else:

�

By filling in Eq. (27) into Eq. (26) filled into Eq. (25) we have a set of equations with only Pstart(i) which can
be solved using

PN�m
i¼0 P startðiÞ ¼ 1. With Pstart(i), we have E[T].

For the uptime during the lead-time we can use our approximation with Pinit(i, m) = P(i, m).
For the maintenance duration our model becomes less complex because we only have type 2 components

in our repair shop. This enables us to use the method we used in our model without ageing (see De Smidt-
Destombes et al., 2004) with the repair rate equal to l2.

When considering large systems we encounter the same problem with Ptrans((h, m),(i, j), L) as we did
before with Q(i, j, t). An alternative is to use a moment iteration approach. To find the distribution of
the system being in state (N � i, i, 0) is equal to finding the distribution of A1 with the first two moments:
E½A1� ¼
XN�m

i¼0

P ði;mÞfðN � m� iÞp01ðLÞ þ ip11ðLÞg;

E½A2
1� ¼

XN�m

i¼0

P ði;mÞfðN � m� iÞp01ðLÞf1� p01ðLÞ þ ðN � m� iÞp01ðLÞg þ ip11ðLÞf1� p11ðLÞ

þ ip11ðLÞg þ 2iðN � m� iÞp01ðLÞp11ðLÞg:

The distribution of P(i, m) is the only expression that changes. We start by choosing an initial distribution
for A1. Then we determine P(i, m) using the recursion of Eq. (3). We then have E[A1] and E½A2

1�. By iteration
we find the system state distribution at the start of the cycle.

6.3. Stochastic lead-time L

In our model we assumed the lead-time to be deterministic. In the case of a stochastic lead-time we have
to adjust the calculations for E[U] and E[D]. For method A this means changing Eqs. (4) and (5). We could
do this by conditioning on the lead-time. Eq. (5) results in terms of the form exL. The expectation of these
terms is found using the Laplace transform of L and taking a Gamma function for instance. Adjusting Eq.
(4) can also be done but takes more effort.
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In method B only the second expectation of E½U � ¼ E½bT � � E½½bT � L�þ� changes. Because bT and L are
independent it is rather easy. For E[D] Eq. (19) for B2 and the equations for the first and second moments
of A0 and A2 change. In Eq. (19) we need Zl2

ðT þ L� Rl1
ðC1ÞÞ for which the mean and the variance are still

the same because T, L and Rl1
ðC1Þ are independent of one another. The expressions for the moments of Ai

we condition on L and find terms of the form exL. The expectation of these terms is found by using Laplace
transforms and a Gamma distribution for L for instance. See for a more detailed explanation (De Smidt-
Destombes et al., submitted for publication).

6.4. Cold standby redundancy

If components are easily switched on, one may choose for cold standby redundancy instead of hot stand-
by redundancy. This results in a system with k active components that degrade while being used, whereas
the other components are inactive and therefore are not subject to degradation. This variant is known as
cold standby redundancy. This changes the transition probabilities between and the sojourn times in system

states. For E[T] we modify E[T(i, j)] from Eq. (3). We change sði; jÞ ¼ 1
ðk�iÞk1þik2

, aði; jÞ ¼ ðk�iÞk1

ðk�iÞk1þik2
and

bði; jÞ ¼ ik2

ðk�iÞk1þik2
. For E[U] we are able to use the approximation given in method B, for which

E½bT ði; jÞ�, E½bT 2ði; jÞ� and P(i, j) changes equivalently to E[T]. For E[D] the only parameters effected in meth-
od B are the Ai. If we assume L = 0 then we know the first and second moments for Ai by using P(i, m).
When L > 0, we encounter difficulties with the determination of the first and second moments. This is
caused by the fact that we need to take into account the exact timing of the transitions. Otherwise we
do not know the number of components in state 0 that are subject to failure.

Hence, we can analyse cold standby redundancy if L = 0, but need another approach if L > 0.
7. Conclusions and further research

In this paper, we introduced component wear-out in a model for the trade-off between spare part inven-
tories, repair capacity and maintenance policy. This extension implies a lot of complications. The first com-
plication is the correlations between different parameters. The state of the spares at the start of maintenance
is not independent of the state of the system at the start of maintenance. Even if we ignore this correlation,
we found it impossible to compute the different expressions we need to determine the availability. On the
one hand it is impossible because of large binomials in the expression for the uptime during the lead-time.
On the other hand it is impossible because of the large state space for the spares needed to compute the
steady state probabilities of the spares at the start of the maintenance period. Especially if we want to
use the model presented in the paper as a basic model for an optimisation between cost and availability
we are in need of an accurate model with small computation times. Our numerical examples show that
the second approximation (Section 4) fulfils these requirements and can be used for this purpose.

In our further research we aim to extend to model a situation in which there are several identical systems
using the same repair capacity and spare parts in order to keep the system running. This problem can be
divided into two different problems. In the first one we assume there are a lot of systems using the same
means for their maintenance, which implies the arrival process at the repair shop is approximately Poisson.
The second problem is the one in which we have a few systems, which implies that is impossible to assume
the arrival process to be Poisson. In this case it may be useful not only to take into account systems that
have reached the level m in order to be maintained but also systems that have less than m failed compo-
nents. This way the workload in the repairshop is more spread over time and the number of available sys-
tems is more stable. In practice it is not unreasonable to have such a policy in order to have at least a certain
percentage of the total number of systems available at any time.
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Another extension would be to take into account multiple types of components. Making the model mul-
ti-item could imply a set of mi, one for each type of components. Also the spares become a set of spares, Si.
The capacity is used for the repair of all the types of components. The repair strategy for this problem is not
evident because spares of all kinds are needed during the maintenance period. Last but not the least, further
research includes the practical application of the model using field data to show the applicability of the
model. In such a case study, attention has to be paid to explicit optimisation of spares and repair capacity.
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