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A B S T R A C T

Computational synthesis (CS) researches the automatic generation of solutions to design problems. The

aim is to shorten design times and present the user with multiple design solutions. However, initializing a

new CS process has not received much attention in literature. With this motivation, this paper presents a

framework to structure and model routine design to assist the development of new CS processes. First,

concepts are presented and used to propose a structure for artifactual routine design problems. Latter,

base models (building blocks) for creating new designs are described. Finally, a classification of design

families according to its structure and models is presented together with its relation to know CS methods.
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1. Introduction

Research in computational synthesis (CS) studies algorithmic
procedures to automate the generation of designs. This is done by
combining ‘‘low-level’’ building blocks in such a manner that ‘‘high
level’’ functionalities can be achieved. CS methods vary from,
among others, straight forward implementation of artificial-
intelligence, constraint solving and optimization techniques down
to much more specialized approaches as in shape grammars [1]
and A-design [2].

A well-accepted model for CS is shown in Fig. 1, as presented in
[3]. The model highlights the processes a CS system should
resemble in order to automatically generate designs solutions. In
the flowchart, the design problem is first formulated by the user,
which (in engineering design problems) is usually done by
declaring variables, constraints, and constructing objective func-
tions. This information is then assembled into representations

(models) that can support the computational processes that take
care for the generation of candidate solutions. A candidate solution
is one that satisfies all constraints in the problem, independently
on how well the goal is achieved. An evaluation step analyses the
results by calculating its performances and decides whether to
accept, adjust or reject a solution. Guidance drives the generation
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process in a given direction, with the goal of generating improved
solutions.

As representations define the level of detail and focus of the
computational search processes, one can argue that it is the key
challenge in initializing a CS process. Furthermore, representations
have to model and reassemble the structure of the problem such that
the appropriate generation and search mechanism can be deter-
mined. However, and as indicated by Cagan et al. [3], the act of
initializing a CSprocess has not receivedmuch attention inliterature,
as most computational synthesis methods are developed to solve a
particular design problem. To cope with this, this paper presents a
framework to structure and model design problem formulations.
While structuring a problem permits defining strategies for
automating the CS process, modeling it permits describing the
building blocks and algorithms to both represent the problem and
generate solutions. Strategies consist of procedures to decompose a
problem and later integrate generated solutions. Algorithms take
care about instantiating the variables and are therefore more
dependent on the type models used in the representation. The
authors believe that counting with such a framework assists the:
* id
entification of types of design problems based on its
structures rather than on its specific context sensitive
information,
* d
evelopment of CS strategies based on problem structure, and
selection (or development) of CS algorithms based on the
problem model, and
* fu
ture development of reasoning engines that automate the
identification of problem structures and take decisions about
strategies and algorithms to automate the CS process.

mailto:j.m.jaureguibecker@ctw.utwente.nl
http://www.sciencedirect.com/science/journal/17555817
http://dx.doi.org/10.1016/j.cirpj.2008.10.002


Fig. 1. Computational synthesis model [3].

Fig. 2. Gear device: elements, descriptions and configurations.
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This paper is organized as follows: Section 2 presents an
descriptive analysis for deriving a framework to structure routine
design problems; Section 3 introduces models for artifactual repre-
sentation and generation; Section 4 uses the structure and models to
categorize four common types of design problems; and finally,
Section 5 presents a summary and follow-up research to this paper.

2. Structure of routine design problems

The structure of design problems has been an important subject
of research in the field of Problem Solving Theory (PST) [4–6] as
well as in the field of CS [3,7]. From a PST perspective, Simon [4] has
defined problem structuring as the process of drawing upon our
knowledge to compensate for missing information, and using this
knowledge to construct the problem space. From here, it follows
that design problems whose problem space are completely defined
are regarded as well-defined, while those which are not are
regarded as ill-defined. Characteristic to well-defined problems is
that they can be structured as function of a known initial state, a
clear goal state, a constrained set of logical states and constraint
parameters [5]. Additionally, well-defined problems can be solved
using generally applicable problem-solving mechanisms, whereas
ill-defined problems require more creative approaches [6].

As routine design problems proceed within a known space of
functions, expected behaviors and structure variables and the
problem is one of instantiating structure variables [7], it is regarded
as well defined. Furthermore, the space of designs produced is
substantially smaller than the space of possible designs, given that
the ranges of applicable values for variables are constrained.
Therefore, in this paper a routine design problem is structured when:
* i
ts parts and interrelations are formalized according to their role
in the process of creating new designs and
* i
t meets the conditions of well-defined problems, as in PST.

Sections 2.1–2.5 present definitions, which are used in Section 2.6 to
introduce a framework to structure routine design problems. Section
2.7 proposes Semantic Networks as means to represent problem
structures.

2.1. Artifacts descriptions

Design artifacts can be described by three different types of
entities: (a) vocabulary of elements, (b) descriptions of elements
and (c) the configuration of elements. Consider the case of the gear
device shown in Fig. 2. Here, the vocabulary of elements is two
gears and two shafts. Descriptions determine the attributes of the
artifact, like the diameter (D) and angular velocity (w). Config-
urations determine the disposition of the elements in the structure,
as for example the connectedness between elements represented
by the relations in the figure. Configurations can be classified into
topologic relations and physical coherence constraints. While the
former define the topology of the elements in the structure, the
latter is used to assure no physical impossibilities are committed
by the artifact being designed. For example, two gears cannot share
the same place in space. Furthermore, when formulating design
problems, only relevant descriptions need to be taken into account.
Consider the gear device design, if the designer is only interested in
determining the gears diameters to deliver a given angular
velocity, no further variables need be taken into account. In [8],
a method is presented to aid the identification of the information
required for formulating a given routine design problem. The
methodology uses FBS modeling to assess the Function, Behavior,
Principle, State and Structure representations of the artifact in
question.

2.2. Embodiment

Embodiment is here defined as the subset of representations of
an artifact upon which instances are created to generate design
solutions. In Fig. 3 this is shown for the case of the gear device,
where several descriptions are required to model the whole design
artifact. However, since the purpose of design is limited, only the
diameters and velocity are considered. The embodiment in this
case is composed of two elements: one input gear and one output
gear. Descriptions are its diameter and velocity.

2.3. Scenario

Artifacts exist in the natural world, and therefore are exposed to
environments. An artifact’s ability to accomplish its function is
greatly affected by its interaction with its environment. The subset
of environment variables, attributed to elements in the natural
world and considered in measuring a design artifact’s ability to
accomplish its function, is here defined as scenario. Consider the
case of the gear device design in Fig. 3. Scenario can be a shaft
attached to the input gear and one connected to the output gear. As
for embodiments, descriptions are used to specify scenarios. For
example, the rotational speed of the shafts.

2.4. Design goals

Given that design functions are expressed in abstract terms, it is
necessary to use measurable descriptions to, both, express and
assess its goals. Goals are commonly represented by objective
functions, where performance indicators are weighted and added



Fig. 3. Gear device: elements, descriptions and configurations.
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to compute the overall performance of the design. Performances
are calculated by analysis relations using instantiated embodi-
ments and scenarios. Analysis relations use known principles – as
for example laws of physics and economics – to model the
interaction of the design artifact with its environment and predict
its behavior.

Goals can be expressed by defining requirements on the
objectives functions and performance parameters. On the other
hand, goals are assessed by calculating – using analysis relation – the
performances and objective function of an instantiated artifact.
Furthermore, two types of goals can be found in a design problem,
namely, constraint satisfaction and optimization. In constraint
satisfaction, the objective is finding instances of design artifacts
within the allowed topology relations and confinement constraints.
Here, performances are used as means of assessing the design. For
optimization, maximization or minimization of performances is
added to the constraint satisfaction problem. Performances are used
to express the desired quality of the design artifact.

Analysis in design is often done analytically, by simulation, or by
a combination of both. They can vary from algebraic equations to
complex differential equations. Finite element methods, computa-
tional fluid dynamics, circuit simulation, and other computational
analysis tools offer accurate and robust analyses [3].

For the case of the gear device in Fig. 3, a performance indicator
could be the rotational speed of the output shaft. The objective
function could be expressed by this performance, reducing the goal
to that of the output rotational speed. The goal can then be
expressed by a required rotational speed, while it can be assessed
by an analysis technique for an instantiated design.

2.5. Synthesis knowledge

Synthesis knowledge determines values of the embodiment as
function of scenario and performances descriptions. Here, synth-
esis knowledge is considered independent from the CS strategies
and algorithms. Synthesis knowledge is often the result of
experience, and lowers design complexity by further constraining
the ranges of permitted value of the embodiment. Synthesis
knowledge can also aid the generation, evaluation and guidance
processes by providing shortcuts to values that have proven to be
successful in design practice.

2.6. Structuring framework

Applying the concepts described before, in this paper a routine
design problem is structured at two different abstractions: a
problem class and a problem instance.
A problem class is structured in:
� E
lements: are considered class descriptions, and are used to
represent both, embodiment and scenario elements. Element’s
responding to functions that cannot coexist simultaneously are
structured separately.

� R
elations: are considered class descriptions and are of different

types, namely: topology, physical coherence, analysis and
objective. Their descriptions can be declared within the scope
of the class or referred by pointing towards descriptions of
embodiment and scenario elements.

� D
escriptions: are variables that characterize elements and

relations by mathematic models (see Section 3).

A problem instance is structured by instantiating scenario and
performances descriptions, becoming scenario specifications and
performance requirements, respectively. Furthermore, a partiality
of embodiment descriptions might also be instantiated, imposing
constraints to the space of possible design solutions. These are
regarded as embodiment requirements. One problem-instance
might have several design solutions, each presented as a different
solution instance of the same problem instance. This obliges
solution generation algorithms and software architecture to be
capable of creating solutions independent from where embodi-
ment requirements, scenario specifications and performance
requirements are set. By following this structure, CS strategies
and algorithms have to be valid for a design problem class, rather
than for specific problem instance.

Using this structure results in a problem formulation where:
* e
mbodiment elements and scenario elements describe the initial
state of the design,
* o
bjective function, performance indicators and analysis relations

express and assess the goal of the design artifact,

* to
pology relations and physical coherence constraints indicate the

set of logical states that have to hold for the design artifact to
exist,
* c
onfinement constraints restrict the values that embodiment,
scenario and performance descriptions are allowed to reach;

which satisfies the conditions of a well-defined problem, as
stated in Section 2.

2.7. Design structure representation

Designing requires representations with sufficient expressive
power to capture the nature of the concepts while supporting
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design processes [7]. In the case concerning this paper, they
also have to allow designing the computational processes that
will generate design solutions. In this research, a Semantic
Networks [9] based representation has been chosen. Semantic
Networks are attributed graphs, where the nodes represent
concepts, arcs represent relations between concepts, and labels
are used to represent properties of both nodes and arcs. The
following guidelines are used to represent the problem
structure:
� N
odes: represent elements. Have a type, which depends on
whether the element belongs to the embodiment or the
scenario.

� A
rcs: represent the relation among the elements. Relations also

have a type, which depends on whether the relation is topologic,
coherence, analysis or objective function.

� N
ode labels: uses descriptions and its confinement constraints to

elaborate on the class definition of the element.

� A
rc labels: specifies the model of the relation by relating element

descriptions and independent descriptions if required. A weight
factor is an example of an independent description.

In Fig. 4, a semantic network is presented to represent the
design of the gear device in Fig. 2. Here, two embodiment elements
are shown, namely, an input gear and an output gear. Two scenario
elements (input shaft and output shaft) model the relation
between the embodiment and its environment. Each node is
provided by a label containing the descriptions that are considered
in the design problem. The elements are interconnected by three
relations, describing the topology of the elements in the artifact.
The example is meant to illustrate the representation, and
therefore omits analysis relations, coherence constraints and
objective function.

3. Models for artifact representation

So far, a scheme for to structure a routine design problem has
been presented. This section presents models to represent
descriptions and relations. The aim is to further structure the
problem by using common data models, which can be regarded as
basic building blocks for formulating artifact design problems.
Doing so facilitates the development of abstract formulations from
where to differentiate families of design problems, and later
develop algorithms to automate them.
Fig. 4. Gear device design problem representation.
3.1. Descriptions

Descriptions are classified in five model categories: parameter,
field, space, shape and topology. Each category represents a
complexity dimension in the problem space, as different problem
solving approaches are required to generate solutions (see Section
4). Design problems formulated as a function of more than one
dimension have a higher degree of complexity and require
different methods to automate the generation of solutions.

3.1.1. Parameter

Parameters model properties valid for the entire element. They
are used to represent attributes as material properties, color,
weight, density, etc. These can be of different nature, as for
example numeric, symbolic, logic, predicate, and combinations
among them. For numeric parameters, confinement constraints
define a continuous or discrete space of possible values. For
symbolic, predicate and logic ones, all possible values have to be
specified. That is for every A = {A1. . .An}, exists an Ai such that:

Ai 2 ðN; Z;Q ;R;CÞ; or Ai ¼ ftrue; falseg; or Ai ¼ Symbol:

3.1.2. Space

Describe positional attributes of the elements in a topology.
Positional descriptions depend on the chosen coordinate system –
Cartesian, cylindrical of spherical – and the dimensions of interest
– 1D, 2D, or 3D. These can be considered as numeric parameters
related by a model that is determined by the chosen coordinate
system. Values can either be continuous or discrete.

3.1.3. Field

Use parameters and geometric vectors to describe properties
that are valid in specific regions of the elements. Fields are
specified together with an incident zone, shown in Fig. 5 as cubic.

Incident zone is the spatial place where the field influences an
element. An incident zone can be a volume, an area, a line or a
point. Meshed CAD models are used in Computer Aided
Engineering (CAE) software to specify incident zones. Vectors
and parameters can then be attributed to each mesh-element. In
Fig. 5 an example illustrates how a parameters and vectors are
related with their incident zones.

3.1.4. Shape

Describe the form of the elements – or groups of elements –
present in the design structure. Commonly used models are based
on geometric relations and graphs.

Geometry models the form by means of mathematic equations.
Models are defined with parameters related by geometric
Fig. 5. Example of a field attribute.



Fig. 7. Example shape graph of electric resistor symbol. (a) Handmade resistor

symbol. (b) Graph representation of resistor symbol.
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functions, the latest being usually algebraic or differential. When
the geometric function is known, parameters are instantiated to
produce new shapes. When not known, the problem becomes one
of finding the correct geometric relations. Polynomials are often
used for this purpose, having the polynomial degree and its
coefficients as unknowns. Depending on the case, confinement
constraints are set either to parameters or geometric functions.
Furthermore, perimeters, areas and volumes can also be subject of
restriction. Super quadrics [10] have been broadly used for this
purpose. Super quadrics are polynomials whose degrees and
coefficients values vary depending on the shape being modeled. In
Fig. 6 a toroid super quadric shape is shown together with its
polynomial equation. By changing the values of the polynomial
coefficient, the shape of the toroid can be changed.

Attributed graphs model shapes using nodes (representing
shape primitives) and arcs (representing the connection within
primitives). Primitives might be further decomposed into sub-
graphs, obtaining shape models with several levels of abstrac-
tion. When the shape graph is specified, design generation
consist in instantiating attributes related to the graph’s nodes
and arcs. When the graph is not specified, but its primitives and
relations are, shapes are generated by constructing new graphs.
Confinement constraints can be set to both, the number and the
types of primitives and relations. In Fig. 7, a handmade symbol
of an electrical resistor shape is modeled using such an
attributed graph. Arcs of the graph represent segments, while
the nodes are used to represent vertices. Labels are used to
further specify the arcs.

3.1.5. Topology

For design problems whose elements can be instantiated
several times, its cardinality can be defined as a topology
description. It reflects the number of instances of one element
present in the artifact. This variable allows controlling the creation
of elements instance when the design problem is one of generating
topologic structures. The cardinality of a topology can be
constrained by defining the number of element instances in one
design artifact. The concept of cardinality also applies to topology
relations. In this case, the number of allowable relations is
determined by its cardinality. For example, in the case of the gear
device, a gear could be connected with more than one gear. If so,
the cardinality of this topology relation determines how many
gears can be connected one to another.

3.2. Relations

Different types of models are used in design to describe
relations. Their characteristics determine the approaches required
to handle them, and are here restricted to three basic types:
algebraic, differential and logic models. However, this set is not
restrictive as others can also be considered.

Topology relation might be used in two different places in a
design formulation. The first is to define the set of logic states to
Fig. 6. Super quadric of a Toroid [10].
hold in the design. The second is as part of the embodiment being
designed. In the first, algebraic models using element descriptions
are commonly used. Constraint solving techniques have a long
history, which makes managing these types of relation feasible
with existing methods. For the second, logic models are better
suited. In this case, the relation’s cardinality has to be taken into
account, as the number of relations admissible in the design
(number of instances of the relation) is unknown and therefore
subject of design. In [11], an ontology of eight basic topology
relations is presented through which all possible configuration can
be modeled. Also, the bases are established for qualitative
reasoning with topological relations using propositional logic
models.

Physical coherence constraints and objective functions are
commonly modeled with algebraic relations. In some cases,
when the descriptions are symbolic rather than numeric, logic
models can be assembled. First order logic and propositional
logic models are the most common types of logic models in
design.

Analysis relations are often modeled by a combination of all
three types. Analytic methods are usually a combination of
algebraic and logic models, while simulations make use of numeric
methods to solve differential equations.

4. Common design problem formulations

Depending on the type of models involved in the formulation,
different design categories – families – can be enumerated.
This section describes four common types: parametric, config-
uration, layout and shaping. In Table 1 these design problems
are shown together with the types of models used for its
representation.

4.1. Parametric design

When the design problem does not exhibit complex spatial,
topologic and shape requirements; and all possible solutions
adhere to a common template, it is possible to simplify the
problem by modeling the artifact by a set of parameters (see
Table 1). In this case, problem solving becomes the process of
assigning values to parameters in accordance with the require-
ments, constraints, and optimization criterion. At present, several
algorithms exist for solving this type of problems, as for instance
Genetic Algorithms (GAs), Simulated Anealing (SA), Evolutionary
Algorithms (AEs), etc.



Table 1
Common design problems.

Information contents P C L Sh

Description Model E S E S E S E S

Parameter – + + + + + + +

Space – + + – + + + + +

Field – – – – + + + – +

Shape Geometry + + – + + + – –

Polynomial – – – – – – + +

Constituted Graph – – – – – – + +

Primitives and relations – – – – – – + +

Topology

(Cardinality)

Elements V V F F

Relations F V V F

P = parametric, C = configuration, L = layout, Sh = shaping. E = embodiment, S = sce-

nario, + = present, – = absent, F = fixed, V = variable.

J.M. Jauregui-Becker et al. / CIRP Journal of Manufacturing Science and Technology 1 (2009) 120–125 125
4.2. Configuration design

For design problems that can be modeled in terms of predefined
design elements and known topologic relation, the design process
consists of assembling and configuring design elements. In this case,
shape descriptions and spatial descriptions are not the main subject
of design, as shown in Table 1. Solutions need to satisfy design
requirements and constraints, and approximates some, typically
cost-related, optimization criterion. Configurations can be gener-
ated by either instantiating new relation types, or by generating new
elements in the topology. Grammatical approaches are very
common in the generation of configurations. Startling and Shea
[12] developed a parallel grammar for design synthesis of mechanic
clocks. An FBS design model of the clock was produced to map the
possible Functions to embodiment Structures. A Function grammar
(defining the connectivity between Functions) and a Structure
grammar (based in the topologic relations of the clock) are used
simultaneously to generate solutions.

4.3. Layout design

Determining placement locations for components within a
product housing or container is, in short, the goal of layout design.
The embodiment elements are described by geometric functions and
spatial attributes, while scenario element shape impose constraints,
as it can be seen in Table 1. Characteristic to layout design is to count
with multiple local optima, space discontinuities, high number of
components, constraints, and multiple objectives. All this, makes it a
difficult design problem to solve. In [1] references are given to
different approaches for solving these types of problem.

4.4. Shaping

Consists of determining the shape of the embodiment elements.
Solutions are generated by either defining new mathematic relations
or by assembling new graphs structures. Shape grammars have been
successfully used inthe generation ofelementsshapes,as reportedin
[1]. They consist of construction rules that determine how shape
primitives can be bounded to produce new shapes. McCormack et al.
[13] developed the Buick Grammar, used to generate novel Buick
forms. Super quadrics are used in [14] to recognize shape features in
the CS of cooling systems for injection molding.

5. Summary

Structure and models for routine design problems were
discussed in this paper. Designs are structured in a problem class
and a problem instance. A problem class is assembled by defining
classes of elements and relations, and interrelating them into one
formulation. Elements are differentiated into embodiment (which
are subject of designing) and scenario (which model the
environment in which the design exist). A problem instance is
found by instantiating requirements on both, embodiment and
scenario elements. This results in a formulation in terms of initial
states, goal statements, constrained states and constraint para-
meters. Semantic Networks are used to graphically represent
design structures and facilitate the development of CS processes
for problem classes. Models for representing and generating
artifacts are classified into five types: parametric, space, fields,
shapes and topology. Each of these are described by mathematical
schemes for modeling them.

Results indicate the framework is useful in:
1. Id
entifying families of routine design problems by analyzing the
structures and models used for its formulation.
2. D
efining CS processes to automate the generation of design
solutions.

Software implementation of this framework is current subject
of research. The goal is counting with a computer program where
users formulate their design problems by using the structure and
models presented in this paper. Then, a reasoning engine would
search for adequate CS processes (as in Section 1) by analyzing the
structures and models used in the problem formulation. To
accomplish this end, data structures should be such that a problem
formulation is independent from its solution finding strategies and
algorithms. This would guarantee the reusability of elements and
relations such that they can be used in new problem formulations.
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