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Optimization of externalities and accessibility using dynamic traffic management measures on a strategic level is a specific
example of solving a multi-objective network design problem. Solving this optimization problem is time consuming, because
heuristics like evolutionary multi objective algorithms are needed and solving the lower level requires solving the dynamic user
equilibrium problem. Using function approximation like response surface methods (RSM) in combination with evolutionary
algorithms could accelerate the determination of the Pareto optimal set. Three algorithms in which RSM are used in different
ways in combination with the Strength Pareto Evolutionary Algorithm 2+ (SPEA2+) are compared with employing the
SPEA2+ without the use of these methods. The results show that the algorithms using RSM methods accelerate the search
considerably at the start, but tend to converge more quickly, possibly to a local optimum, and therefore loose their head start.
Therefore, usage of function approximation is mainly of interest if a limited number of exact evaluations can be done or this
can be used as a pre phase in a hybrid approach.

Keywords Dynamic Multi-Objective Network Design Problem; Dynamic Traffic Management Measures; Evolutionary
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INTRODUCTION

Although a significant portion of research on optimization
in traffic and transport considers a single objective related to
accessibility (Gao, Wu, & Sun, 2005; Zhang & Lu, 2007), it
may no longer suffice to neglect externalities of traffic. This
is also the case for optimization of networks through dynamic
traffic management (DTM) measures. Optimization using DTM
measures on a strategic level (i.e., implementation of measures
optimizing long-term effects) incorporating objectives on exter-
nalities is a specific example of a multi-objective network design
problem (MO-NDP) in which the implementation of DTM mea-
sures can influence the supply of infrastructure dynamically (e.g.

Address correspondence to Luc Wismans, Centre for Transport Studies,
Faculty of Engineering, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands. E-mail: l.j.j.wismans@ctw.utwente.nl

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/gits.

traffic signals and rush hour lanes). The presence of multiple
conflicting objectives makes the optimization problem interest-
ing but difficult to solve. Since in general no single solution can
be termed an optimum solution, the resulting multi-objective
(MO) optimization problem resorts to a number of trade-off
optimal solutions, known as Pareto optimal solutions.

Mathematical modeling of such a highly complex sociotech-
nical system provides insight in the extent to which objectives
are conflicting or not and the consequences related to weights
used concerning the trade-offs, which may be very useful in the
decision-making process. The NDP is usually formulated as a
bilevel problem in which the lower level describes the behavior
of road users who optimize their own objectives (travel time and
travel costs), modeled by solving the user equilibrium problem.
Because DTM measures are the decision variables and traffic
dynamics are important explanatory variables assessing the
effects on externalities, a dynamic traffic assignment (DTA) to
solve the lower level is preferred. The upper level consists of the
objectives that have to be optimized for solving the NDP.
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18 L. WISMANS ET AL.

Because of the nonconvexity of the problem (Chiou, 2005;
Gao et al., 2005), often heuristics are used to optimize the
total system. In multi-objective bilevel optimization studies,
the solution approach using (population-based) evolutionary
algorithms (EA) has been proven successful (Wismans, van
Berkum, & Bliemer, 2012).

Because the evaluation of any possible solution requires solv-
ing the lower level using a DTA model and heuristics are needed
to search the Pareto optimal solutions, computation time can
become extremely large, especially for large-scale real-world
applications. A possible solution for accelerating the search is
combining an EA with function approximation methods. Func-
tion approximation methods are methods in which a surrogate
model is estimated using exact evaluations of solutions (e.g.,
by fitting a model using regression). This estimated surrogate
model can be used in different ways within the optimization
process. Genetic algorithms (GA), which are part of the class
of EA, are the most widely used heuristic also for NDP, and in
the available studies comparing heuristics, GA has been proven
to perform best. Earlier research (Fikse, 2010) has shown that
response surface methods (RSM) in which a full quadratic func-
tion is estimated show promising results. A comparison of dif-
ferent GA has shown that the Strength Pareto Evolutionary Al-
gorithm 2+ (SPEA2+) performs well for the dynamic MO-NDP
(Wismans et al., 2012). Because the SPEA2+ shows more di-
versity in solution and objective space than other tested GAs and
diversity is relevant for the estimation of the surrogate model,
this algorithm is used as a starting point. However, the RSM
methods can also be used in conjunction with other heuristics
like swarm intelligence systems. In this research we compared
three possible algorithms in which RSM are used, with employ-
ing the SPEA2+ algorithm without using these methods.

The use of a surrogate model in conjunction with a heuristic
to accelerate the optimization of MO-NDPs has to the best of the
authors’ knowledge not been addressed earlier. The contribution
of this article is a comparison of possible methods to use RSM
methods as an accelerator for often-used solution approaches.
Although not the main focus of this article, solving this highly
complex dynamic MO-NDP using a DTA model that we con-
nected with externality models that take traffic dynamics into
account is also rarely addressed.

The outline of this article is as follows. In the second section
we provide background information on MO-NDP problems.
Then possible approximation methods are discussed in the third
section, methods that can be found in the literature to accel-
erate expensive optimization problems in general. The fourth
section describes the optimization problem and framework of
the dynamic MO-NDP in which DTM measures are the decision
variables. The SPEA2+ solution approach is presented in the
fifth section, as well as the approaches using RSM. This section
also describes the performance measures used for the compar-
ison. The sixth section describes the case used to compare the
algorithms and the results of the comparison is described in
the seventh section. Finally, the eighth section closes with the
conclusions and directions for further research.

MULTI-OBJECTIVE NETWORK DESIGN PROBLEM

The NDPs are typically grouped into discrete problems
(DNDP), in which the decision variable is a discrete variable
(Gao et al., 2005; Poorzahedy & Turnquist, 1982); continuous
problems (CNDP), in which it is assumed that the decision
variable is a continuous variable (Chiou, 2005; Dantzig, Har-
vey, Lansdowne, Robinson, & Maier, 1978; Friesz et al., 1993;
Meng, Yang, & Bell, 2001; Xu, Wei, & Wang, 2009; Zhang &
Lu, 2007); and mixed problems, which are a combination of
both (Cantarella, Pavone, & Vitetta, 2006). Based on demand,
NDPs can be grouped into fixed demand (Meng et al. 2001),
stochastic demand (Chen, Kim, Lee, & Kim, 2010; Waller & Zil-
iaskopoulos, 2001), and (stochastic) elastic demand (Ukkusuri
& Patil, 2009). Based on the way time is considered, NDPs
can be classified into static, in which stationary travel demand
and infrastructure supply is assumed (used in all but one of the
already-mentioned studies), or dynamic, which is rarely used
(Brands, van Berkum, & van Amelsfort, 2009; Waller & Zil-
iaskopoulos, 2001). Traditionally, the NDP is associated with
the minimization of the total travel time using infrastructural
investment decisions under a budget constraint. Additionally,
technical constraints (e.g., possible extensions) and outcome
constraints (e.g., related to equity) can be formulated. Most of
the previous works consider fixed demand, and use a static user
equilibrium to model the lower level.

There are also other design variables of networks that can
be considered as an NDP. Minimizing delay in signal tim-
ing control (e.g., Cantarella & Vitetta, 2006; Cantarella et al.,
2006; D’Acierno, Gallo, & Montello, 2012; Sadabadi, Zokaei-
Aashtiani, & Haghani, 2008) is such an example. Most of this
research is on calculating mutual consistent signal settings by
formulating them as a asymmetrical equilibrium assignment
problem in which the signal settings are locally optimized and
static traffic assignment (STA) is used. However, it is shown
that the resulting settings are in general not optimal and there-
fore perform less than solving a Stackleberg game in which the
upper level anticipates the behavior of the lower level (Ceylan
& Bell, 2004; Chen & Ben-Akiva, 1998). In addition, Chen
and Ben-Akiva (1998) also showed that incorporation of traf-
fic dynamics (i.e., using DTA) results in better solutions than a
control strategy based on average traffic flow (i.e., using STA).
However, almost all research on this subject when global opti-
mization is also considered still uses STA to model the lower
level.

In most cases, single-objective NDPs are studied in which
accessibility is optimized, where accessibility is expressed as
the total travel time in the traffic network (Gao et al., 2005;
Zhang & Lu, 2007). Different studies incorporated the invest-
ment costs within the objective function. Chiou (2005), Meng
et al. (2001), and Xu et al. (2009) optimized total travel time in
which the investment was translated in time using a conversion
factor, and in others travel time is translated into cost (Drezner &
Wesolowsky, 2003; Poorzahedy & Turnquist, 1982). Occasion-
ally other costs, like environmental costs (expressed in money),
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SOLVING A MULTI-OBJECTIVE NETWORK DESIGN PROBLEM 19

are added to the travel cost (Cantarella et al., 2006; Mathew &
Sharma, 2006).

In fewer cases, multiple-objective functions are used in the
upper level. Chen et al. (2010) use travel time and construc-
tion costs as two separate objective functions and used a GA.
Friesz et al. (1993) focused on minimizing the transport costs,
construction costs, vehicle miles traveled, and dwelling units
taken for rights-of-way and used a weighted sum approach in
combination with simulated annealing. Sharma, Ukkusuri, and
Mathew (2009) used a GA to minimize total travel time and the
higher moment for total travel time, that is, variance. Cantarella
and Vitetta (2006) considered travel time, walking time, and
CO emissions in their optimization using a GA. Most MO-NDP
studies consider the minimization of investment cost as a second
objective, as reported in Sharma et al. (2009).

For solving the NDP, different approaches are possible. Solv-
ing the NDP is normally difficult, because it is nonconvex and
nondifferentiable and has been proved to be NP-hard (Johnson,
Lenstra, & Rinooy Kan, 1978). Studies that did not reformulate
the problem therefore all use heuristics to solve it. Various stud-
ies are available in which heuristics are compared for solving
NDPs. In almost all studies GA outperformed other approaches
like hill climbing or descent algorithms, simulated annealing,
tabu search, add plus interchange algorithm, variable neigh-
borhood search algorithm, random search, and path relinking
(Cantarella et al., 2006; Drezner & Wesolowsky, 2003; Karoon-
soontawong & Waller, 2006; Santos, Antunes, & Miller, 2009;
Xu et al., 2009). Reformulating the NDP in such a way that
it can be solved efficiently is also an active research topic. By
reformulating is meant the adjustment or approximation of the
original optimization problem based on additional assumptions.
Within Chen and Bernstein (2004), Chiou (2005), and Cho and
Lo (1999), the original bilevel optimization CNDP is, for exam-
ple, converted into a single-level standard nonlinear optimiza-
tion problem by using sensitivity methods to be able to calculate
derivatives, which can be used to linearize the equilibrium con-
straints. Although these methods are of interest, reformulating
the original problem generally results in finding less performing
solutions and thus far is only possible in realistic cases when
STA is used. This is also shown in Meng et al. (2001), Chiou
(2005), Luathep, Sumalee, Lam, Li, and Lo (2011), and Ban,
Lui, Lu, and Ferris (2006), in which heuristic approaches find
better results in most cases.

In this research, the optimization problem is also formulated
as an MO-NDP, assuming a Stackleberg game in which DTM
measures are used to influence supply of infrastructure and the
externalities of traffic the objectives. The DTM measures con-
sidered are control measures that directly influence supply (e.g.,
rush-hour lanes, variable speed limit, ramp metering, and traf-
fic signals). Because traffic dynamics are important explana-
tory variables for the externalities of traffic and DTM mea-
sures are modeled as time dependent measures, a DTA model is
used to operationalize the lower level. However, as mentioned
earlier, solving this optimization problem is computationally
expensive, especially because a DTA model is used to solve

the lower level. This MO-NDP is used to compare the three
algorithms.

APPROXIMATION METHODS

The upper level of the bilevel optimization problem is of-
ten solved by using heuristics. Heuristics like Evolutionary
Multi-Objective Algorithms (EMOA) usually require a large
number of function evaluations (i.e., evaluation of objective
functions of possible solutions) that can become computation-
ally expensive, especially in large-scale, real-world applications
using DTA models. Because of the usage of a time-consuming
DTA model as in the presented MO-NDP to solve the lower
level optimization problem, it is often essential to use approxi-
mation methods to reduce the time needed to evaluate solutions
or the number of solutions being evaluated exact. Approxima-
tion methods estimate the outcome of a function evaluation on
the basis of previously observed objective functions of exact
evaluated (neighboring) individuals.

Different approximation methods are available, such as
functional approximation using kriging, radial basis functions
(RBF), RSM, and evolutionary approximation using clusters
and fitness inheritance (Fikse, 2010; Santana-Quintero, Ariaas
Motano, & Coello Coello, 2010; Shi & Rasheed, 2010). Fitness
inheritance and clusters are evolutionary approximation meth-
ods, which are specific for EA. The outcome of the function
evaluations of the different assessed solutions and mutual com-
parison determine the fitness of the solutions within an EMOA.
The method of fitness inheritance assigns fitness to a solution
by the average (or weighted average) of the fitnesses of its par-
ents. Clearly, also exact fitness function values are required to
obtain enough information. Ducheney, De Daets, and de Wulf
(2008) concluded that fitness inheritance methods can be used
for convex and continuous problems, which is not the case in
our MO-NDP. There is no generic approach that uses cluster-
ing, but this evolutionary approximation method refers to the
use of clustering techniques. In the adaptive fuzzy fitness gran-
ulation (AFFG) it is, for example, used to assign fitness to a
solution based on the fitness of solutions that are assigned to the
same cluster in solution space (Davarynejad, Ahn, Vrancken,
Van den Berg, & Coello Coello, 2010). The kriging, RBF, and
RSM methods are functional approximation methods in which a
new expression is constructed for the objective functions based
on previous data obtained from exact evaluations. These models
are also known as meta-models or surrogates. Based on research
by Fikse (2010) in which kriging, RBF, and RSM are compared
for MO-NDP, the RSM was selected as approximation method
for this research, because of its performance, simplicity, and
computational cost, and it does not require any tuning of param-
eters. This was also concluded in other research (Shi & Rasheed,
2010).

Two of the rare studies in which function approximation
is used within traffic and transport optimization problems are
research by Osorio (2011) and Chow (2010). Osorio used the
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20 L. WISMANS ET AL.

trust region optimization method, which uses RSM methods,
and which can be used for single-objective optimizations, to
optimize the fixed-time signal control problem. Chow developed
and applied the multi-objective radial basis function algorithm
for traditional NDP.

OPTIMIZATION PROBLEM AND FRAMEWORK

The MO optimization problem is formulated as the follow-
ing MO mathematical problem with equilibrium constraints
(MPEC):

min
S∈F

⎛⎜⎜⎜⎝
z1(S)
z2(S)

...
zI (S)

⎞⎟⎟⎟⎠ , subject to

(q(S), v(S), k(S)) ∈ �DT A (G (N , A (C(S))) , D) , (1)

in which S is a set of applications of strategic DTM measures
to be selected from a set of feasible applications F, and zi (S),
i = 1, . . . , I, is the ith objective function of the link flows
q(S), the link speeds v(S), and the link densities, k(S), ex-
pressed as zi (S) = fi (q(S), v(S), k(S)) . These objectives in
our case concern efficiency, climate, air quality, traffic safety,
and noise. Furthermore, the link flows, speeds, and densities
are assumed to follow from solving a dynamic user equilib-
rium problem, indicated by �DT A, for which the supply of
infrastructure is given by network G with nodes N and links
A (with corresponding characteristics C), and the (dynamic)
travel demand D. The link characteristics without any DTM
measures, which we denote by C0, include the outflow capacity,
the number of lanes, the free-flow speed, the speed at capacity,
and the jam density, and are all captured in a fundamental dia-
gram. The DTA model Streamline (Raadsen, Mein, Schilpzand,
& Brandt, 2010), which is a multiclass model with physical
queuing and spillback, is used to solve for this dynamic user
equilibrium.

The DTM measures defined in S are modeled as measures
that influence the characteristics C of the links where the mea-
sures are implemented. This means for example that if a vari-
able message sign (VMS) is used to change the speed limit,
the free-flow speed and capacity of the links connected with
this measure is changed. The characteristics C of links can
therefore vary over time depending on the settings of the DTM
measures, S. The impact of a measure depends on the actual
settings, for example, the green time for a certain direction on
a signalized intersection. Activation times and settings of the
DTM measures are discretized, so the upper level then becomes
a discrete optimization problem where for each time period a
certain DTM measure with a certain setting is implemented or
not. The set of feasible solutions, F, is assumed to be a dis-
crete set of possible applications of strategic DTM measures. If
we assume that there are B different DTM measures available

in the network, the application of the DTM measures in time
step t is defined by S(t) = (s1(t), ..., sB(t)) , where each sb(t),
b = 1, . . . , B, can have Mb different settings, which we simply
number from 1 to Mb. The set of feasible solutions can therefore
be written as F = {S|sb(t) ∈ {1, . . . , Mb},∀t = 1, . . . , T } ,

such that there are
(∏

b Mb
)T

possible solutions. The set of
applications of the DTM measures for all time periods is de-
fined by S = (S(1), ..., S(T )) and forms a possible solution for
the optimization problem.

The set of solutions X∗ = {
S∗

1 , .., S∗
n

}
, is the outcome of

our MO MPEC problem (1) and consists of all solutions for
which the corresponding objectives cannot be improved for any
objective without degradation of another and is known as the
Pareto optimal set. However, MO-NDP is an NP-hard problem,
for which heuristics are needed to find a (near) optimal solution
within acceptable computation time. In this research, the exact
Pareto optimal set is not known; hence we aim at finding such
a subset. Mathematically, the concept of Pareto optimality is as
follows. If we assume two solutions S1, S2 ∈ F, then S1 is said to
strongly dominate S2 (also written as S1 � S2) if zi (S1) < zi (S2)
for all i. Additionally, S1 is said to cover or weakly dominate S2

(written as S1 � S2) if zi (S1) ≤ zi (S2) for all i.

SOLUTION APPROACHES

Multi-Objective Genetic Algorithm SPEA2+

The used SPEA2+ is a multi-objective GA developed by
Kim, Hiroyasu, and Miki (2004). This algorithm is based on
the SPEA2 approach, which was originally developed by Zit-
zler, Laumans, and Thiele (2001). Within the algorithm, the
fitness assignment depends on the level of dominance and fit-
ness sharing based on density to maintain population diversity
and carried out in three steps. First, the strength of each solution
is determined, representing the number of solutions it domi-
nates. Second, the raw fitness of each solution is determined by
summation of the strengths of its dominators. Third is determi-
nation of the fitness by incorporation of density information in
the raw fitness value, which assigns a lower fitness to solutions
in a highly populated area. The density of a solution is measured
in the objective space as a decreasing function of the distance
to the kth nearest neighbor. This density information forms the
way fitness sharing is designed. SPEA2+ contains elitism by
the preservation of good solutions in the environmental selec-
tion step. This is a deterministic step in which an archive is
maintained containing the best solutions, based on their fitness,
considered so far. Within the SPEA2+ approach, two archives
are maintained. In one archive the distances between solutions
within the solution space, while in the other archive the distances
between solution within the objective space are used to truncate
the Pareto optimal set if its size exceeds the predefined maxi-
mum size. These archives contain solutions used for the mating
selection, which is done using neighborhood crossover, which
crosses over solutions close to each other in the objective space.

intelligent transportation systems vol. 18 no. 1 2014
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SOLVING A MULTI-OBJECTIVE NETWORK DESIGN PROBLEM 21

Here is the algorithm in steps; for more information, we refer
to Kim et al. (2004):

Step 1: Initialization: Set population size Np, which is equal to
the archive size Na, the maximum number of generations G,
and generate an initial population OA0. Set g = 0, DA0 = ∅
and Q0 = ∅.

Step 2: Fitness assignment: Combine archive OAg, DAg, and
children Qg, forming Rg = OAg ∪ DAg ∪ Qg, and calculate
fitness values of solutions by strength values and density
information.

Step 3: Environmental selection: Copy all nondominated so-
lutions in Rg to new archives OAg+1 and DAg+1. If
size of OAg+1 and DAg+1 exceeds Na, then reduce
OAg+1 by truncation using distances in the objective space
and DAg+1 by truncation using distances in the solu-
tion space; otherwise if less than Na, then fill OAg+1

and DAg+1 with best solutions out of Rg based on their
fitnesses.

Step 4: Termination: If g ≥ G or another stopping criteria is
satisfied, then set X∗ to the set of solutions part of DAg+1

with fitness value smaller than 1 (nondominated solutions)
and determine the size of nondominated solutions N; note
that N ≤ Na .

Step 5: Mating selection: If truncation procedure is used, select
DAg+1 as mating pool of parents Pg+1, and otherwise if not,
select OAg+1 as mating pool of parents Pg+1.

Step 6: Variation: Apply neighborhood crossover and mutation
operators to the mating pool Pg+1 to create offspring Qg+1.

Set g = g + 1 and go to Step 2.

Response Surface Methods

The RSM is introduced by Box and Wilson (1951) and was
originally intended as a guideline to design experiments. In this
case we fit a regression model using a pure quadratic polynomial
(single and quadratic terms), which is also recommended in
other studies (Fikse, 2010; Osorio, 2011; Shi & Rasheed, 2010):

z̃i (S) = α0 +
T∑

j=1

B∑
k=1

α( j−1)∗T +k S j
k +

T∑
j=1

B∑
k=1

αT B+ ( j−1)∗T +k S j2
k

By fitting a regression model, a least-squares problem is
solved using the exact evaluated solutions as input and results
in the estimates for the parameters α. To be able to solve the
least-squares problem (finding a unique solution), the number
of exact evaluated solutions that form the input should be at
least equal to the number of parameters α to estimate. How-
ever, to avoid overfitting, the number of exact evaluated so-
lutions should be larger. In addition, because the MO-NDP is
not specifically interested in one part of solution space, the
model is used for global approximation, and to avoid fast con-
vergence to local optima, diversity of exact evaluated solu-
tions that are used for fitting the regression model is relevant.

This type of model use is easy to understand and can be es-
timated rapidly even with a large number of exact evaluated
solutions.

Algorithms Using RSM

The surrogate model estimated by RSM methods can be
used in different ways in combination with EMOA. The main
differences depend on the level of confidence in the estimated
surrogate model. The surrogate model can be used as a pree-
valuation to determine the solutions that should be evaluated
exactly, as fitness evaluation in which the estimates are used
as exact values, or as design of experiments in which the sur-
rogate model is used to define solutions that should be exactly
evaluated. These possible options are part of the algorithms
compared.

Within the first approach (SPEA2+ pre evaluation FA), the
surrogate model is used as a preevaluation within the SPEA2+
algorithm to determine which “children” are interesting to eval-
uate exactly. In addition, the children that are situated in less
dense areas are also included to evaluate exactly because these
solutions can improve the surrogate model and because the er-
ror of the approximation of these solutions is relatively high. If
the algorithm tends to converge the preevaluation is neglected,
which means that the algorithm becomes a regular SPEA2+
algorithm. The advantage of this approach is that it still uses
the full characteristics of the original heuristic and is not fully
dependent on the quality of the surrogate model. However, it is
possible that only a limited number of solutions are not exactly
evaluated and therefore the acceleration is limited. Within the
second approach (FA optimized SPEA2+), the surrogate model
itself is optimized using a SPEA2+ algorithm and the resulting
solutions are exactly evaluated to determine the Pareto optimal
set and used to update the approximation set. The advantage of
this algorithm is that the surrogate model is fully used, which
in theory can result in the largest acceleration possible. How-
ever, this also means that the quality of the surrogate model
is determinative for the Pareto optimal set found and can re-
sult in erroneously not considering solutions in certain parts
of the solution space. Within the third approach (FA seeded
SPEA2+) the algorithm of the second approach is only used in
the first h steps, after which the algorithm continues as a regu-
lar SPEA2+ algorithm. In this algorithm the surrogate model is
used to obtain a seeded starting population. The advantage is that
it combines the second approach with the original heuristic as-
suming that the largest acceleration is found in the first steps and
therefore avoids fast convergence to suboptimal solutions. How-
ever, this also means that only in the first steps is acceleration
possible.

All algorithms use a Latin hypercube sample (LHS) opti-
mized for correlation as a starting population. This LHS is
used as input (approximation set) for estimating the surro-
gate model. In all algorithms this approximation set is updated
based on new solutions exactly evaluated. Within the SPEA2+
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22 L. WISMANS ET AL.

Figure 1 Developed and tested algorithms combining GA and RSM.

preevaluation FA and seeded SPEA2+ new solutions are added
if these provide information for low dense areas in the solution
space. Within the FA optimized SPEA2+ the approximation
set consists of all exact evaluated solutions. This approxima-
tion set is combined with the Pareto optimal set known thus
far, forming the training set to estimate the surrogate model
(Figure 1).

Performance Measures

In order to compare the three algorithms, we used differ-
ent complementary performance measures presented in Table 1
and illustrated for the bi-objective case in Figure 2. These mea-
sures are the S-metric, size of dominated space, the C-metric,
coverage of two sets, and the spacing metric (Wismans et al.
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SOLVING A MULTI-OBJECTIVE NETWORK DESIGN PROBLEM 23

Table 1 Overview of performance measures used.

Performance measure Explanation

Spacing metric Let X ′ = (S′
1, S′

2, ..., S′
N ) ⊂ X be a set of solutions. The function SMO (X ′) determines how evenly the solutions of set X ′ are

distributed in the objective space. Because also the distribution in the solution space is of interest, we also define SMS (X ′).

SMO (X ′) = 1
d̄

√
1
N

N∑
n=1

(dn − d̄)2, with d = 1
N

N∑
n=1

dn .

dn is the Euclidean distance between each solution and its nearest solution. In function SMO (X ′) this distance is measured in
the objective space, while in function SMS (X ′) this distance is measured in the solution space. The smaller the value of
SMO (X ′), the better the distribution of the solutions in X ′ in the objective space and the smaller the value of SMS (X ′), the
better the distribution of the solutions in X ′ in the solution space. The spacing metric only focuses on the spread across the
solutions part of the considered set, which means that a certain set which is not near the true Pareto optimal set or only
contains a specific part of this set still performs well on this metric.

C-metric Let X ′, X ′′ ⊂ X be two sets of solutions. The function CTS (X ′, X ′′) determines the coverage of two sets of the ordered pair
(X ′, X ′′), which means the level in which the solutions X ′ weakly dominates X ′′.

CTS (X ′, X ′′) = |{S′′∈X ′′ ;∃S′∈X ′:S′�S′′}|
|X ′′|

The value CTS (X ′, X ′′) = 1 means that all solutions in X ′′ are covered by the solutions in X ′. The opposite,
CTS (X ′, X ′′) = 0 represents the situation where none of the solutions in X ′′ are covered. The C-metric focuses on the
ability to attain the global trade-offs, which means that a set of solutions which dominates most of the solutions of another
set found better solutions. However, this measure does not incorporate to what extent these solutions are better (i.e. are an
improvement for all objectives).

S-metric Let X ′ = (S′
1, S′

2, . . . , S′
N ) ⊂ X be a set of solutions. SSC (X ′) equals the size of the space coverage. It is formed by the

(hyper)volume enclosed by the union of the polytopes formed by the intersection of the following hyperplanes arising out
of every single solution along with the axis in the objective space. For the minimization problem, the origin and therefore
the axis are moved to a point representing the opposite of a utopian point, defined by w(zmax

1 (Si ), zmax
2 (S j )), which means

the upper bound of each objective. Because the true maximum values of the objective functions are not known, we choose
a conservative point, based on the evaluated solutions. In the two-dimensional case, each polytope represents a rectangle
defined by this point w(zmax

1 (Si ), zmax
2 (S j )) and (z1(Si ), z2(Si )). The hypervolumes are calculated based on the

Hypervolume by slicing objectives (HSO) algorithm introduced by While et al. (2006). The larger the value of SSC (X ′),
the better the space coverage. The S-metric also focuses on the ability to attain the global trade-offs, which means a set of
solutions performs better if its space coverage is larger. This measure does not take into account the number of solutions
which are dominated. Therefore it is possible that a certain set of solutions performs better on the S-metric although most
of its solutions are dominated by the other set of solutions.

Figure 2 Performance measures.

2012; Zitzler, Thiele, Launmanss, Fonseca, & Grunert da Fon-
seca, 2003).

CASE

Description of Case

A case study is used to compare the algorithms using the
formulated performance metrics and the results of these ap-
proaches concerning the found Pareto optimal solutions for the
multi-objective optimization of externalities. For providing a
clear demonstration, a simple transport network is hypothe-
sized, consisting of a single origin–destination relation with
three alternative routes. One route runs straight through a city
with urban roads (speed limit of 50 km/h); the second route is
via a ring road using a rural road (speed limit of 80 km/h); the
third route is an outer ring road via a highway (speed limit of
120 km/h). Travel demand varies with time over the simulation
period. A 3-hour morning peak was simulated between 6 a.m.
and 9 a.m. The travel demand (maximum of 6,300 pcu/h in the
morning peak; see Figure 3 for profile) consists of passenger
cars and trucks (10% of total demand).
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24 L. WISMANS ET AL.

Figure 3 Representation of network.

Within the network, there are three measures available,
namely, two traffic lights and a VMS used to change speed lim-
its. The first traffic light is split into two measures because the
two signaled directions are in this case independent. In total, six
time intervals for the DTM measures are distinguished, equally
divided into 30-minute slices, which means t ∈ {1, ..., 6} . The
possible settings, and ways these are modeled by changing link
characteristics, are given in Table 2. The representation of a
solution in the GA is a vector of all sb(t). The constraints con-
cerning the possible applications are therefore incorporated in
the representation.

Although the network is small, it incorporates important el-
ements like urban and nonurban routes when using DTM mea-
sures to optimize the externalities. Moreover, these objectives
were modeled in a realistic manner incorporating traffic dynam-
ics. In addition, these possible settings in this case study already
result in 4.05×1021 possible solutions. Because the evaluation of
one solution means solving the lower level DTA problem, which
requires approximately one minute of CPU time, it would take
7.7 × 1015 years in order to assess all possible solutions.

Parameter Settings

In the comparison of the approaches, the total number of
solutions exactly evaluated is a fixed number of 5,100 solutions
(initialization inclusive). The analysis is therefore focusing on
how well the algorithms perform given the same available com-
putation time (approximately 85 hours on a single computer),
because the exact evaluation of a solution is by far the most
computationally expensive step in all approaches. For all algo-
rithms we used the same genetic operators, namely, uniform

crossover and mutation in which the initial mutation rate is 0.2
and decreases with 95% within the first 10 generations. Only
small mutations occur, as we assume that mutation results in
shifting the DTM application one up or down; that is, if sb(t)is
selected for mutation, its value after mutation becomes either
sb(t) − 1 or sb(t) + 1. All approaches are repeated eight times,
and the archive size was set to be equal to the population size of
100 solutions. In all algorithms the deterministic environmental
selection procedure of the SPEA2+ algorithm was used in every
iteration to select the 100 Pareto optimal solutions.

Objective Functions

Based on an extensive literature review (Wismans, van
Berkum, & Bliemer, 2011), for each objective i an objective
function fi is defined, where the input stems from the DTA
model. Efficiency is defined in terms of the total travel time
in the network. Climate is represented by the total emission of
CO2. The emission calculations are based on the ARTEMIS
traffic situation-based emission model (INFRAS, 2007), which
means dependent on the level of service of traffic flows. Finally,
noise is calculated as the average weighted sound power level,
in which emissions are based on a load- and speed-dependent
emission function (RMV, 2006). The weights of noise emissions
depend on the level of urbanization. The objective functions
used, which all should be minimized, are listed in Table 3.

RESULTS

The results of the comparison are discussed in this section.
First, we discuss to what extent the algorithms are missing

Table 2 Overview modeling DTM measures.

sb(t) Characteristic C (sb(t)) C0

Traffic light 1 s1(t) ∈ {1, ..., 11} Outflow capacity C (s1(t)) ∈ {500, 600, ..., 1400, 1500} C = 1000
s2(t) ∈ {1, ..., 11} Outflow capacity C (s2(t)) ∈ {500, 600, ..., 1400, 1500} C = 1000

Traffic light 2 s3(t) ∈ {1, ..., 11} Outflow capacity C (s3(t)) ∈ {500, 600, ..., 1400, 1500} C = 1000

VMS s4(t) ∈ {1, ..., 3} Free-flow speed, C (s4(t)) ∈
{(

80
0.05

)
,

(
100

0.025

)
,

(
120

0

)}
C =

(
120

0

)
capacity increase
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SOLVING A MULTI-OBJECTIVE NETWORK DESIGN PROBLEM 25

Table 3 Overview of measures and objective functions used.

Objective Measure Remark

Efficiency Total travel time (h) Because fixed demand is assumed,
minimizing total travel time is
equal to minimizing vehicle lost
hours.

z1 =
∑

a

∑
t

∑
m

qam (t)�a

vam (t)
(2)

Climate Total amount of CO2 emissions (grams) Calculation based on traffic situation
based emission model ARTEMIS.

z3 =
∑

a

∑
t

∑
m

∑
d

qam (t)δad ECO2
md (vam (t)) �a (3)

Noise Weighted average sound power level at the
source (dB(A))

Calculation based on the standard
calculation method (RMV, 2006)
used in The Netherlands.

z5 = 10 log

⎛⎜⎜⎝
∑
a

∑
w

δaw�a10
L̄w−ηw

10∑
a

∑
w

δaw�a

⎞⎟⎟⎠ , with L̄w = 10 log

⎛⎜⎝
∑
a

∑
t

δaw�a�t
∑
m

10
Lm (vam (t))

10

T
∑
a

δaw�a

⎞⎟⎠ ,

where Lm (vam (t)) = αm + βm log

(
vam (t)

vref
m

)
+ 10 log

(
qam (t)
vam (t)

)
(4)

with

Variable Explanation

z1 Objective function efficiency (= total travel time) (h)
z3 Objective function climate (= total amount of CO2 emissions) (grams)
z5 Objective function noise (= weighted average sound power level at source) (dB(A))
qam (t) Vehicle type m inflow to link a at time t (vehicles)
vam (t) Average speed of vehicle type m on link a at time t (km/h)
ECO2

md (·) CO2 emission factor of vehicle type m, depending on average speed
(grams/(vehicles-km))

Lm (·) Average sound power level for vehicle type m, depending on the average speed (dB(A))
L̄w Weighted average sound power level on network part with urbanization level w (dB(A))
�a Length of link a (km)
δad Road type indicator, equals 1 if link a is of road type d, and 0 otherwise
δaw Urbanization level indicator, equals 1 if link a has urbanization level w, and 0 otherwise
ηw Correction factor for urbanization level w (dB(A)))
wa Level of urbanization around link a
αm , βm Parameters dependent of vehicle category for noise calculations
vref

m Reference speed dependent of vehicle category

relevant parts of the efficient frontier. Then the performance
of the algorithms is discussed using the performance measures
presented earlier, in the fifth section.

Figure 4 shows the Pareto optimal solutions of one randomly
chosen application for each algorithm. The results show that
the algorithms find similar Pareto optimal fronts and objectives
efficiency and climate in this case are strongly aligned. However,
both objectives are opposed to the objective noise. Optimizing
efficiency aims at avoiding congestion using full capacity of
the available routes, which is also good for minimizing CO2

emissions. Optimizing noise aims at lowering the driving speeds
as much as possible and also avoiding traffic using the urban
routes.

Figure 4 also shows that the different algorithms do find
solutions in similar parts of the objective space. Analyzing the
found minima (i.e., absolute minima and average minima of rep-
etitions) of the three objective functions concerning efficiency,
climate, and noise shows that the differences compared to the

regular SPEA2+ algorithm are less than 1%. The differences
in found maxima for climate and noise are also less than 1%.
For efficiency the differences for SPEA2+ preevaluation FA
is less than 1%, for FA seeded SPEA2+ less than 1.5%, and
for FA optimized SPEA2+ less than 1.6%. Therefore, the use
of approximation methods within the proposed algorithms does
not result in missing relevant parts of the Pareto optimal set. To
compare the algorithms in more detail the different performance
measures are analyzed.

The average performance of the algorithms after the algo-
rithms are terminated (after 5,100 exactly evaluated solutions),
is presented in Table 4. The results show that the differences
between the algorithms are small. The SPEA2+ preevaluation
FA performs slightly better than the SPEA2+ algorithm and
the other algorithms slightly less well. The similar performance
also means that the use of approximation methods does not re-
sult in bad performance, because of wrong decisions based on
the estimated surrogate model.
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26 L. WISMANS ET AL.

Figure 4 Pareto optimal solutions.

One of the reasons the algorithms perform similarly is be-
cause the results are converging, meaning that all algorithms,
and also the regular SPEA2+ algorithm, do not find new solu-
tions resulting in major improvements in the last generations.
The time given in this test case is enough for all algorithms to find
a reasonably good performing set of solutions. Therefore, it is
also of interest how the performance of the algorithms develops
over the number of solutions exactly evaluated. In Figure 5 the

Table 4 Overview of performance algorithms.

C-metric∗ Spacing Spacing
S-metric X′,X′ ′ X′ ′,X′ metric (obj) metric (sol)

SPEA2+ 2.03E+11 0.00 0.00 0.37 0.20
SPEA2+ pre

evaluation
FA

2.03E+11 0.19 0.10 0.36 0.20

FA seeded
SPEA2+

2.00E+11 0.14 0.17 0.44 0.22

FA optimized
SPEA2+

2.01E+11 0.14 0.18 0.55 0.16

∗X′′ is set of solutions SPEA2+.

development of the S-metric and C-metric is shown. In these fig-
ures the performance is presented dependent on the exact evalu-
ated solutions. For the C-metric the regular SPEA2+ is used as
the reference case—for example, after 500 exact evaluated solu-
tions the SPEA2+ preevaluation FA dominates on average 59%
of the solutions of regular SPEA2+ and regular SPEA2+ dom-
inates on average 8% of the solutions of SPEA2+ preevaluation
FA. The development of both performance measures shows that
all three algorithms using function approximation show better
results at least till 1,500 solutions are exactly evaluated. This
means that with less exact evaluated solutions the algorithms us-
ing RSM methods already found good solutions. However, the
algorithms are not capable of maintaining their head start. This
can be explained because the quality of the surrogate model
determines the quality of the decisions taken based on this
surrogate model. The surrogate model does push the search
in good directions at the start, but after a certain number of
generations the contribution of the surrogate model in guiding
the search diminishes. In addition, after some generations the
quality of this surrogate model does not improve anymore, al-
though more solutions are exactly evaluated and used as training
set. The results show that when using these RSM methods, the
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SOLVING A MULTI-OBJECTIVE NETWORK DESIGN PROBLEM 27

Figure 5 Development C-metric and S-metric.

optimization tends to converge more quickly, possibly to a local
optimum or a less performing set of solutions. This also depends
on the level of confidence in the estimated surrogate model in the
various algorithms. Therefore, these methods are mainly of in-
terest if a limited number of exact evaluations can be done or can
be used as a prephase in a hybrid approach. To avoid premature
convergence, two algorithms proceed with regular SPEA2+ in
which the FA seeded SPEA2+ has difficulties to find further im-
provements, whereas the SPEA2+ preevaluation FA performs
at least similarly in these generations to the regular SPEA2+
algorithm. This results in a slightly better performance of the
SPEA2+ preevaluation FA than the regular SPEA2+ algorithm
after the final generation.

CONCLUSIONS AND FURTHER RESEARCH

DTM measures are traditionally used to optimize efficiency,
but can also be used to optimize externalities, which are ob-
jectives that can no longer be neglected. These DTM measures
can be used on a strategic level to influence a transport system
optimizing the objectives over the long term. This optimization
problem can be formulated as the dynamic MO-NDP in which
DTM measures are used to influence supply of infrastructure and

efficiency and externalities are the objectives. The dynamic MO-
NDP is solved as a bilevel optimization problem in which in the
upper level the objectives concerning efficiency and externali-
ties are optimized and in the lower level the road users optimize
their own objectives (i.e., minimizing travel times). Solving this
dynamic MO-NDP is challenging to solve and computationally
expensive because it requires the use of heuristics and a DTA
model. A possible solution for accelerating the search is com-
bining function approximation methods with heuristics. In this
research three different algorithms using RSM in combination
with the SPEA2+ are compared with regular SPEA2+ to de-
termine whether these are viable. The algorithms proposed are
especially of interest for larger real-scale networks, because in
that case solving the lower level optimization (i.e., application
of DTA model) needs large computation times. Being able to re-
duce the number of exact evaluations can result in significantly
lower computation times. However, the number of decision vari-
ables influences the possibilities because the training set needs
to be large enough to estimate the surrogate model. Further re-
search on using these algorithms for larger networks is therefore
needed.

The comparison of the algorithms shows that the use of
RSM methods does find solutions in similar parts of the objec-
tive space as regular SPEA2+ and therefore does not result in
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28 L. WISMANS ET AL.

missing relevant parts of the Pareto optimal set. The average per-
formance of the algorithms after the algorithms are terminated
on the performance measures is similar in that the SPEA2+ pre
evaluation FA performs slightly better than regular SPEA2+.
The development of the performance measures shows that the
algorithms using RSM methods accelerates the search at the
start considerably. With less exact evaluated solutions, already
good solutions are found. However, the algorithms using these
RSM methods tend to converge more quickly, possibly to a lo-
cal optimum, and therefore loose their head start, because these
algorithms depend largely on the quality of the surrogate model.
Therefore, these methods are of interest if a limited number ex-
act evaluations can be done and a reasonable performing set of
solutions is already satisfactory or can be used as a prephase in a
hybrid approach as proposed in the SPEA2+ preevaluation FA.
Although the algorithms using RSM methods all used SPEA2+
as a base case, the methods can also be used for other EA as
well with possibly similar advantages and deficiencies, depend-
ing of the quality of the solutions proposed by these algorithms.
Further research on comparing and testing the approaches with
other algorithms is therefore of interest.

Because the quality of the surrogate model is determinative
for the acceleration of the search, research is needed on this sub-
ject. Further acceleration can possibly be established by incor-
porating further knowledge of road transport systems within the
solution approach (e.g., intelligent reduction of solution space
or incorporation of this knowledge into the surrogate model).
Another option, not investigated here, is using neighborhood
search as in Chow (2010) when the algorithm tends to converge
or using other approximation methods like fitness granulation
(Davarynejad et al., 2010). Finally, because the algorithms are
tested on a single case, further research is needed using other
and more complex networks.
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