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Abstract In high precision equipment, the use of compliant mechanisms is favourable as
elastic joints offer the advantages of low friction and no backlash. If the constraints in a com-
pliant mechanism are not carefully dealt with, even small misalignments can lead to changes
in natural frequencies and stiffnesses. Such unwanted behaviour can be avoided by applying
exact constraint design, which implies that the mechanism should have exactly the required
degrees of freedom and non-redundant constraints so that the system is kinematically and
statically determinate. For this purpose, we propose a kinematic analysis using a finite ele-
ment based multibody modelling approach. In compliant mechanisms, the system’s degrees
of freedom are presented clearly from the analysis of a system in which the deformation
modes with a low stiffness are free to deform while the deformation modes with a high stiff-
ness are considered rigid. If the Jacobian matrix associated with the dependent coordinates
is not full column or row rank, the system is under-constrained or over-constrained. The rank
of this matrix is calculated from a singular value decomposition. For an under-constrained
system, any motion in the mechanism that is not accounted for by the current set of degrees
of freedom is visualised using data from the right singular matrix. For an over-constrained
system, a statically indeterminate stress distribution is derived from the left singular matrix
and is used to visualise the over-constraints. The analysis is exemplified for the design of a
straight guiding mechanism, where under-constrained and over-constrained conditions are
visualised clearly.

Keywords Exact constraint design · Kinematically indeterminate motion · Statically
indeterminate stress distribution

1 Introduction

In high precision equipment, friction and backlash limit the achievable performance. Com-
pliant mechanisms are mechanisms in which the mobility is realised from the deflection of
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flexible elements rather than from kinematic joints. These elastic joints allow motion with
almost zero friction and no backlash which is favourable for high accuracy. Flexible multi-
body modelling provides an efficient tool for analysing compliant mechanisms and can be
utilised in the conceptual design phase of these mechanisms. At this phase, there is no need
for very detailed and complex models that are time-consuming to analyse.

To obtain a predictable, deterministic behaviour, the principle of exact constraint design
[3, 15] should be taken into consideration. In an over-constrained system even rather small
misalignments may cause unwanted changes in natural frequencies and stiffnesses [13].
Recognising and repairing an under-constrained or over-constrained condition in a com-
plicated system is not a trivial task. For this purpose, the designer can rely on his or her
intuition or apply design rules and mathematical methods such as Grübler’s mobility crite-
rion for mechanisms [8], which is, e.g. discussed by Bottema [5]. Several authors provide
a mathematical framework which is usually valid for a specific class of systems. Besseling
[2] exploited the linear algebra theory of vector subspaces and matrices for the presentation
of the classical linear theory of structures and proposed a framework for the assessment of
kinematical and statical indeterminacy. Pellegrino and Calladine [14] study a “kinematic
matrix” that relates small displacements of joints and elongations of connecting bars, and its
transpose which is the “equilibrium matrix” relating the loads in the joints and the tension
in the bars. Considering the null spaces of these matrices, they determine kinematically and
statically indeterminate modes of pin-jointed assemblies. Similarly, Angeles and Gosselin
[1] consider mechanisms with open and closed loop kinematic chains coupled by either rev-
olute or prismatic pairs. The number of degrees of freedom of the chain is computed from
the null space of a suitably defined Jacobian matrix.

Applying these analyses to compliant systems with elastic joints is not always straight-
forward. In this paper, we propose a flexible multibody modelling approach which is im-
plemented in the SPACAR software package [10]. This flexible multibody approach is based
on a non-linear finite element method, in which for each element a fixed number of defor-
mation modes are defined. Typical flexible members of compliant mechanisms are wire and
sheets flexures. These flexures may be considered as one-dimensional structures which can
be correctly modelled by beams. Due to the definition of physically meaningful deforma-
tion modes and the sound inclusion of the non-linear geometrical effects at the element level
[11], only a rather small number of elastic beam elements are needed to model typical elas-
tic components accurately. In the kinematic analysis, the nodal coordinates and deformation
mode coordinates are explicitly classified into constrained, dependent, and independent co-
ordinates and deformations. The stiffnesses of the flexures are such that they allow motion
in directions with low stiffness whereas the motion is constrained in directions with a rel-
atively large stiffness. For the kinematic analysis, this is taken into account by considering
the deformation modes with a high stiffness to be rigid, i.e. having constrained deformation
mode coordinates. The deformation modes with low stiffnesses are allowed to deform, so
the associated deformation mode coordinates are dependent or independent. Then it appears
that in order to satisfy exact constraint design the Jacobian matrix associated with the de-
pendent coordinates must be square and full rank: otherwise the system is under-constrained
and/or over-constrained. Singular value decomposition [7] is an elegant mathematical and
numerical technique to compute the rank of a matrix.

The modelling approach is briefly summarised in the next section. In Sect. 3, it is outlined
how over-constrained and under-constrained systems can be analysed. This procedure is
applied to the example of a straight guiding mechanism in Sect. 4. Exact constraint designs
are verified with kinematic analyses. Section 5 summarises the conclusions.
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2 Finite element modelling

2.1 Spatial finite elements

In this paper, compliant mechanisms are modelled with a flexible multibody system ap-
proach. The formulation is based on a non-linear finite element approach. In this finite el-
ement approach, the multibody system is modelled as an assembly of rigid body structures
interconnected through a variety of connections such as flexible hinges and beams. The lo-
cation of each element k is described relative to a fixed inertial coordinate system by a set
of nodal coordinates x(k), valid for large displacements and rotations. Translational and ro-
tational coordinates are used to describe the positions of the end nodes and the orientation
of orthogonal base vectors or triads, rigidly attached to the element nodes.

Essential is the definition of physically meaningful deformation modes of the element.
The deformation modes are specified by a vector of discrete deformations ε(k) that are in-
variant for rigid body motions of the element [9]. The number of deformations is equal to
the number of nodal coordinates minus the number of degrees of freedom of the element as
a rigid body. The deformations are explicitly described as non-linear deformation functions
of the nodal coordinates

ε(k) =DDD (k)(x(k)). (1)

A rather simple spatial element is the (slider) truss element, which represents a (straight)
connection between two nodes p and q whose position is described by the Cartesian po-
sition vectors xp and xq . A rotation about the element axis pq does not appear in the de-
scription of the element position. Hence, the element has six nodal coordinates and five rigid
body degrees of freedom, giving rise to a single deformation mode ε

(k)

1 , associated with the
elongation of the element, i.e.

ε
(k)

1 = D (k)

1 (x(k)) = l(k) − l
(k)

0 , (2)

where l(k) = ‖xq − xp‖ is the distance between the nodal points xp and xq and l
(k)

0 is the
reference length of the element.

To model the wire and sheet flexures that are often used in compliant mechanisms, the
spatial beam element is well-suited. The location of this element is described by the positions
of the end nodes p and q , as well as their orientations. Then there are twelve independent
nodal coordinates and six rigid body degrees of freedom, so that six independent deforma-
tion modes can be defined. For the spatial flexible beam, one deformation mode ε1 is taken
to describe the elongation, ε2 for torsion, and four modes ε3–6 for the bending deforma-
tions of the element. For readability, the superscripts (k) indicating the element number are
omitted. Expressions for these deformation modes are [11, 13]:

ε1 = ε̄1 + (2ε̄2
3 + ε̄3ε̄4 + 2ε̄2

4 + 2ε̄2
5 + ε̄5ε̄6 + 2ε̄2

6)/(30l0) + ct ε̄
2
2/(2l3

0), (elongation)
ε2 = ε̄2 + (−ε̄3ε̄6 + ε̄4ε̄5)/ l0, (torsion)
ε3 = ε̄3 + ε̄2(ε̄5 + ε̄6)/(6l0),

ε4 = ε̄4 − ε̄2(ε̄5 + ε̄6)/(6l0),
(bending in xz-plane)

ε5 = ε̄5 − ε̄2(ε̄3 + ε̄4)/(6l0),

ε6 = ε̄6 + ε̄2(ε̄3 + ε̄4)/(6l0),
(bending in xy-plane)

(3)
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Fig. 1 Deformations ε2–ε6 of the spatial beam element (reprinted from [4])

with

ε̄1 = l − l0,

ε̄2 = l0(e
p
z · eq

y − ep
y · eq

z )/2,

ε̄3 = −l0el · ep
z ,

ε̄4 = l0el · eq
z ,

ε̄5 = l0el · ep
y ,

ε̄6 = −l0el · eq
y ,

(4)

where l = ‖xq − xp‖ is again the distance between the nodal points xp and xq , l0 is the
reference length of the element and el = (xq − xp)/ l is the unit vector directed from node
p to node q . The term with the torsional constant ct accounts for torsion–elongation cou-
pling [13]. Figure 1 illustrates five of these deformation modes and most of the unit vectors
in the expressions. The elements account for geometrically non-linear effects due to interac-
tion between deformation modes. Consequently, the expression for the beam elongation ε1

is more complicated than (2) for the truss elements, as additional terms take into account the
additional elongation of the beam axis caused by torsion and bending. The additional terms
in ε2 measure extra torsion of the beam caused by its bending. Furthermore, the additional
terms in the expressions for the bending deformations account for the effect of asymmetri-
cal bending caused by a twist of the beam. Consequently, accurate models can be obtained
with a relatively small numbers of elements even for the case when large deflections are
considered [11, 13].

A single beam element as visualised in Fig. 1 is well-suited to model a sheet flexure,
which is relatively thin in one direction, i.e. the y-direction in the figure. When used in
a compliant mechanism, the sheet flexure is meant to deform relatively easily by out-of-
plane bending and torsion, i.e. the deformations ε5,6 and ε2 for this beam element. It should
provide support in other directions as the stiffnesses for in-plane bending and elongations are
much higher, i.e. for the deformations ε3,4 and ε1. Clearly, the definitions of the deformation
modes match perfectly with the deformations that are relevant to describe the behaviour of
the sheet flexure. This is also true for a wire flexure, which is thin in two directions. It will
deform easily in torsion and all bending directions (ε2–6), while only the stiffness for the
elongation (ε1) is high.
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2.2 Kinematic analysis and the degrees of freedom

For the entire multibody system, the assembly of finite elements is realised by defining a
global vector x of all nodal coordinates. The discrete deformation functions of the elements
constituting the multibody system can then be described in terms of the components of
vector ε yielding the non-linear vector function

ε =DDD(x), (5)

which represents the basic equations for the kinematic analysis. Kinematic constraints can
be introduced by putting conditions on the nodal coordinates, denoted with x(o) for support
coordinates, as well as by prescribing the deformations ε(o) to be zero for rigid bodies. In
this paper, all kinematic constraints are assumed to be holonomic.

An important notion in the kinematic and dynamic analysis of mechanical systems is
that of degrees of freedom (DOFs). The number of kinematic degrees of freedom is the
smallest number of coordinates ndof that describe, together with the fixed, time-independent
kinematic constraints, the configuration of the multibody system in a continuous way. We
call them independent or generalised coordinates q which can be either absolute generalised
coordinates, denoted x(m), as well as relative generalised coordinates, denoted ε(m), i.e.

q =
[

x(m)

ε(m)

]
. (6)

In accordance with the above specified constraints and the choice of generalised coordinates,
the vectors x and ε can now be partitioned as

x =
⎡
⎣x(o)

x(c)

x(m)

⎤
⎦ and ε =

⎡
⎣ε(o)

ε(m)

ε(c)

⎤
⎦ , (7)

where the superscript o denotes invariant nodal coordinates or deformations having a fixed
prescribed value, the superscript c denotes dependent nodal coordinates or deformations and
the superscript m denotes independent (or generalised) nodal coordinates or deformations.

By differentiating (5) to time and using the chain rule, it appears that the velocities ẋ and
ε̇εε must obey

ε̇εε =DDD ,xẋ, (8)

where the notation DDD ,x indicates partial differentiation of the deformation functions with
respect to the nodal coordinates x.

2.3 Equilibrium equations

Forces f can be applied to the nodal points and are dual to the velocities ẋ. Generalised stress
resultants represent the loading state of each element and are assembled in the vector σ .
These generalised stress resultants are dual to ε̇εε. The unknown stress resultants and reaction
forces are computed from the equilibrium equations [12]

DDDT
,xσ = f. (9)
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3 Over-constrained and under-constrained systems

In the previous section, it was assumed that the ndof independent or generalised coordinates
describe, together with the constraints, the configuration of the system. This aspect will be
addressed in more detail next.

3.1 Kinematically indeterminate or under-constrained system

With the partitioning of (7) for x and ε, (8) for the velocities can be written as
⎡
⎢⎣

ε̇εε(o)

ε̇εε(m)

ε̇εε(c)

⎤
⎥⎦ =

⎡
⎣DDD (o,o)

,x DDD (o,c)
,x DDD (o,m)

,x
DDD (m,o)

,x DDD (m,c)
,x DDD (m,m)

,x
DDD (c,o)

,x DDD (c,c)
,x DDD (c,m)

,x

⎤
⎦

⎡
⎣ ẋ(o)

ẋ(c)

ẋ(m)

⎤
⎦ , (10)

in which the derivative function DDD ,x is split in components where subsets of the deformation
functions are differentiated with respect to a part of the nodal coordinates. The indicated
submatrix

D(c) =
[
DDD (o,c)

,x
DDD (m,c)

,x

]
(11)

is the Jacobian matrix associated with the dependent coordinates x(c). It relates the velocities
of the dependent coordinates ẋ(c) with the constrained deformations ε̇εε(o) and velocities of the
generalised coordinates ε̇εε(m), ẋ(m) as

D(c) ẋ(c) =
[
ε̇εε(o)

ε̇εε(m)

]
−

[
DDD (o,m)

,x
DDD (m.m)

,x

]
ẋ(m), (12)

where the term with ẋ(o) = 0 has been omitted. If the inverse of the Jacobian matrix D(c)

exists, the velocities ẋ(c) can be computed from the constraints ε̇εε(o) = 0 and the velocities of
the generalised coordinates ε̇εε(m), ẋ(m). For the existence of this inverse, the Jacobian matrix
must be square. This implies that the dimension of x(c) is equal to the sum of the dimensions
of ε(o) and ε(m), so

n(c)
x = n(o)

ε + n(m)
ε , (13)

where n(c)
x is the number of dependent coordinates x(c) and n(o)

ε , n(m)
ε are the number of

constrained and independent deformation modes, respectively. The number of dependent
coordinates n(c)

x is the total number of coordinates nx minus the numbers of constrained
coordinates n(o)

x and independent generalised nodal coordinates n(m)
x :

n(c)
x = nx − (n(o)

x + n(m)
x ). (14)

Then it follows that D(c) is square if the number of all kinematic degrees of freedom ndof =
n(m)

x + n(m)
ε satisfies

ndof = nx − (n(o)
x + n(o)

ε ), (15)

so the number of degrees of freedom equals the number of nodal coordinates x minus the
number of absolute and holonomic constraints, x(o) and ε(o). This is in agreement with, e.g.
Grübler’s mobility criterion for mechanisms [5].

Equation (15) is a necessary condition for the existence of D(c)−1 as it results in a square
matrix D(c). It is not a sufficient condition as D(c) must also be regular, or equivalently
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the matrix D(c) should be full rank. For any square or rectangular matrix, the rank can be
determined from its singular value decomposition which for D(c) can be written as

D(c) = U�VT , (16)

in which U is an orthogonal m× m matrix, V is an orthogonal n × n matrix and matrix � is
an m × n diagonal matrix with non-negative real numbers on the diagonal, denoting m the
number of rows in D(c) and n the number of columns. The inverse of D(c) exists if the matrix
is square, i.e. m = n, and all singular values are positive.

If some of the singular values are zero, or more generally, if D(c) is not full column
rank, it can be seen from (12) that there is a non-zero solution for ẋ(c) that satisfies the
constraint ε̇εε(o) = 0 while the velocities of the generalised coordinates ε̇εε(m), ẋ(m) are also
zero. That means the system is kinematically indeterminate or under-constrained. Matrix
D(c) is column rank deficient if there are more columns than rows, i.e. n > m. In addition,
zero singular values increase the column rank deficiency. By combining the singular value
decomposition (16) with (10), it can be seen that each column in V accompanying one of the
zero singular values and the columns that are in excess of the rows in D(c) specify a vector
of velocities ẋ(c) which represents the motion of a kinematically indeterminate mode.

3.2 Statically indeterminate or over-constrained system

For the solution of the equilibrium equations (9), the nodal force vector f and the vector of
generalised stress resultants σ are also partitioned in accordance with (7) as

f =
⎡
⎣ f(o)

f(c)

f(m)

⎤
⎦ and σ =

⎡
⎣σ (o)

σ (m)

σ (c)

⎤
⎦ . (17)

With this partitioning (9) is written as

⎡
⎢⎣

DDD (o,o)T
,x DDD (m,o)T

,x DDD (c,o)T
,x

DDD (o,c)T
,x DDD (m,c)T

,x DDD (c,c)T
,x

DDD (o,m)T
,x DDD (m,m)T

,x DDD (c,m)T
,x

⎤
⎥⎦

⎡
⎣σ (o)

σ (m)

σ (c)

⎤
⎦ =

⎡
⎣ f(o)

f(c)

f(m)

⎤
⎦ . (18)

The matrix in the left-hand side is the transpose of the derivative function DDD ,x in (10).
Hence, the transpose D(c)T can also be recognised as the indicated submatrix which gives an
expression for the generalised stress resultants σ (o) and σ (m) as

D(c)T

[
σ (o)

σ (m)

]
= f(c) −DDD (c,c)T

,x σ (c). (19)

If the inverse of D(c) exists, then also the inverse of its transpose D(c)T exists and the gen-
eralised stress resultants σ (o) and σ (m) that are dual to the relative constraints ε(o) and inde-
pendent deformation mode coordinates ε(m) can be computed from the nodal forces and the
other generalised stress resultants in the right-hand side of (19). In the case D(c)T is not full
column rank, a non-zero solution of the generalised stress resultants σ (o) and σ (m) exists for
which the nodal forces f(c) and generalised stress resultants σ (c) are zero. This indicates a
statically indeterminate or over-constrained system.
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Table 1 System properties depending on the number of rows m, the number of columns n, and the rank of
matrix D(c)

m = n rank(D(c)) = m = n statically determinate kinematically determinate

rank(D(c)) < m = n statically indeterminate kinematically indeterminate

m > n rank(D(c)) = n < m statically indeterminate kinematically determinate

rank(D(c)) < n < m statically indeterminate kinematically indeterminate

m < n rank(D(c)) = m < n statically determinate kinematically indeterminate

rank(D(c)) < m < n statically indeterminate kinematically indeterminate

Note that the column rank of D(c)T equals the row rank of D(c). Matrix D(c) is row defi-
cient if there are more rows than columns, i.e. m > n, or there are zero singular values. From
(16), the singular value decomposition of D(c)T follows immediately as

D(c)T = V�T UT . (20)

By combining this singular value decomposition with (18), we recognise that each column
in U accompanying one of the zero singular values and the columns that are in excess of the
rows in D(c)T are a non-zero solution of the generalised stress resultants σ (o) and σ (m) that
represents a set of statically indeterminate stress resultants.

3.3 Kinematic analysis and visualisation

In Table 1, it is summarised that row and/or column rank deficiency of matrix D(c) implies
a statically and/or kinematically indeterminate system. Moreover, with each excess row or
column and with each zero singular value there is a column in the matrix U or V that de-
scribes the indeterminate mode. The kinematically indeterminate modes are found in the
right singular matrix V and can directly be used to visualise a motion of the system, i.e.
the motion resulting from a non-zero velocity ẋ(c). The statically indeterminate modes are
found in the left singular matrix U and give non-zero generalised stress resultants σ (o), σ (m).
Boer et al. [4] have shown how the stress distribution in the elements can be computed
from the generalised stress resultants. This analysis is well-suited to visualise the statically
indeterminate stress distribution that results from the singular value decomposition.

To illustrate this approach, we consider the system with twelve rigid trusses shown
in Fig. 2 [14]. Eight trusses 1–8 are supported in four support nodes A (−1,−1,0),
B (1,−1,0), C (1,1,0), and D (−1,1,0) in the z = 0 plane. They are interconnected in
the z = 1 plane in the nodal points E (0,−1,1), F (1,0,1), G (0,1,1), and H (−1,0,1).
Four trusses 9–12 connect these points also directly as shown in the figure. In the eight sup-
port and connection points, the trusses can rotate freely. As pointed out in Sect. 2.1, each
truss element connects two Cartesian nodal points and has only one deformation which is
its elongation ε

(k)

1 according to (2). Only Cartesian coordinates are needed to analyse this
system. There are n(o)

x = 4 × 3 = 12 support coordinates x(o) (in the z = 0 plane). The nodes
in the z = 1 plane give n(c)

x = 4 × 3 = 12 dependent coordinates x(c). There are n(o)
ε = 12

constrained deformations ε(o) counting the elongations ε
(1)

1 –ε
(12)

1 in all trusses. Hence, D(c)

is a square 12×12 matrix. According to (15), the number of degrees of freedom ndof is zero,
suggesting that the system is a structure and should not move.

For a singular value analysis of matrix D(c), we consider the definitions of the coor-
dinates and deformations of which the time derivatives appear in (12) in somewhat more
detail. No independent deformations and coordinates are defined, so the vectors ε(m) and
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Fig. 2 System with 12 rigid trusses, supported in the nodes x(o) (z = 0 plane) and connected in the nodes
x(c) (z = 1 plane). In (a), the numbers 1–12 indicate the truss element numbers and the letters A–H denote
the nodal points

x(m) are empty. The 12 constrained deformations are collected in vector ε(o) in the order of
the element numbers shown in Fig. 2(a). The dependent coordinates x(c) of the nodal points
are given in the left half of Table 2. For this system, (12) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 1
2

√
2 0 + 1

2

√
2 0 0 0 0 0 0 0 0 0

− 1
2

√
2 0 + 1

2

√
2 0 0 0 0 0 0 0 0 0

0 0 0 0 + 1
2

√
2 + 1

2

√
2 0 0 0 0 0 0

0 0 0 0 − 1
2

√
2 + 1

2

√
2 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

√
2 0 + 1

2

√
2 0 0 0

0 0 0 0 0 0 + 1
2

√
2 0 + 1

2

√
2 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

√
2 + 1

2

√
2

0 0 0 0 0 0 0 0 0 0 + 1
2

√
2 + 1

2

√
2

− 1
2

√
2 − 1

2

√
2 0 + 1

2

√
2 + 1

2

√
2 0 0 0 0 0 0 0

0 0 0 + 1
2

√
2 − 1

2

√
2 0 − 1

2

√
2 + 1

2

√
2 0 0 0 0

0 0 0 0 0 0 + 1
2

√
2 + 1

2

√
2 0 − 1

2

√
2 − 1

2

√
2 0

+ 1
2

√
2 − 1

2

√
2 0 0 0 0 0 0 0 − 1

2

√
2 + 1

2

√
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋE

ẏE

żE

ẋF

ẏF

żF

ẋG

ẏG

żG

ẋH

ẏH

żH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̇
(1)
1

ε̇
(2)
1

ε̇
(3)
1

ε̇
(4)
1

ε̇
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Table 2 Dependent coordinates
ẋ(c) of the system with 12 rigid
trusses, Fig. 2, and their
kinematically indeterminate
motion

Node Coordinates x(c) Velocity ẋ(c) from V

E ( 0,−1, 1 ) ( 0 ,−0.5, 0 )

F ( 1, 0, 1 ) (−0.5, 0 , 0 )

G ( 0, 1, 1 ) ( 0 , 0.5, 0 )

H (−1, 0, 1 ) ( 0.5, 0 , 0 )

in which the square 12 × 12 Jacobian matrix D(c) can be recognised. The matrix clearly
relates changes in the dependent nodal coordinates of nodes E–H and elongations of the
trusses.

The smallest singular value of matrix D(c) appears to be zero indicating that the system
has both one statically indeterminate mode and one kinematically indeterminate mode. The
motion associated with the latter follows from the last column of the right singular matrix
and is given in the right half of Table 2. Apparently, the square of the four trusses in the
z = 1 plane can deform as is visualised in Fig. 2(b). Note that the motion of the system
is illustrated by assuming the velocity ẋ(c) is applied for some finite time. The constraint
equations for the elongations are then not necessarily satisfied. A more accurate analysis
of the motion would require a non-linear simulation which is not needed to illustrate the
motion of this unconstrained mode.

The last column of the left singular matrix U represents the statically indeterminate stress
resultants, which are the longitudinal stress resultants (normal forces) in the trusses. All
values are non-zero and equal to ± 1

6

√
3, where half of the stress resultants show a negative

sign and the other half are positive. The graph in Fig. 2(a) shows these stress resultants
where the different colours indicate the positive and negative stress resultants. The over-
constrained condition can be avoided by allowing the elongation in one of the trusses. Note
that the exact value of the stress resultants does not have a physical meaning as the vector
with the stress resultants can be multiplied by any positive or negative constant to obtain
another set of stress resultants representing a statically indeterminate mode.

4 Exact constraint design of a compliant mechanism

Next, it will be shown how the proposed analysis can be applied for the exact constraint
design of a compliant mechanism. A system is exactly constrained if it is both kinematically
and statically determinate. According to Table 1, this implies that D(c) should be square
(m = n) and non-singular. This kinematic exact constraint design approach is detailed in this
section. As an example a straight guidance mechanism is considered in which some rigid
part should move in one translational direction while all other motions must be suppressed.

4.1 Straight guidance mechanism

A typical approach for the design of the straight guidance mechanism is to assemble it from
parts that confine one or more degrees of freedom each. To achieve an exact constraint de-
sign, no degree of freedom should be confined more than once and the desired translational
motion of the system should not be constrained. In the concept of Fig. 3(a) five wire flex-
ures are applied. The longitudinal stiffness of the wire flexure is relatively high, while the
stiffnesses for bending and torsion are rather small. So, each wire flexure restricts only one
degree of freedom being the translation along its longitudinal axis. The straight guidance
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Fig. 3 Two concepts for a one degree-of-freedom (1-DOF) straight guiding mechanism (reprinted from [15]).
In (a), the solid arrow indicates the free movement. In (b), the cylinder represents the vertically moving part.
The supports are at the holes. The dashed arrows indicate directions of constrained movements. The fifth
folded sheet flexure at the lower back of the mechanism is hardly visible and its constraint is not shown in the
figure

can be achieved with any combination of five wire flexures that are not aligned with the
direction of the intended motion and that do not confine the same degree of freedom more
than once.

A folded sheet flexure also restricts one degree of freedom as will be detailed in the next
subsection. So, five folded sheet flexures can also be used for the straight guidance as shown
in Fig. 3(b). The cylindrical rigid body is attached to all five folded sheet flexures, thus
leaving only one degree of freedom for the motion of the cylinder if the flexures are aligned
correctly.

4.2 Kinematic analysis of wire flexures and folded sheet flexures

For the kinematic analysis of a system, the compliant parts are modelled such that the elastic
deformations with low stiffness are allowed to vary, whereas the other deformations are sup-
pressed. In the system with five wire flexures, Fig. 3(a), each of the wire flexure supports is
modelled with one beam element. One end of the beam is fully supported, which means that
all translational and rotational coordinates are fixed (x(o)). The wire flexure allows bend-
ing in either direction as well as torsion around its longitudinal axis. The relatively large
longitudinal stiffness disallows elongation ε1 of the element. So, there is one constrained
deformation (ε(o)) in each element and the other five deformations are defined to be depen-
dent (ε(c)). For the coordinates at the free end of the wire flexure, one constraint equation
must be satisfied leaving five independent coordinates.

In the system of Fig. 3(a), there are five wire flexures that are combined to define the
motion of one rigid body. As each wire flexure adds one constraint for the translational and
rotational coordinates of the motion of its free end, the combination of all five wire flexures
leaves one degree of freedom if the constraints are independent. Matrix D(c) must be square
as can be verified easily. The number of rows equals the number of constrained and inde-
pendent deformations. In each wire flexure, the elongation is fixed, so there are five rows.
The number of columns equals the number of dependent coordinates. These coordinates are
translational and rotational coordinates of the moving rigid body. If the intended translation
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Fig. 4 Constrained translation and internal mode of a single folded sheet flexure

is defined as the independent coordinate x(m), then five dependent coordinates remain and
D(c) is indeed square.

Modelling the system with the folded sheet flexures, Fig. 3(b), is somewhat more com-
plicated. A support with a folded sheet flexure as shown in Fig. 4(a) consists of two sheet
flexures in series. As was already mentioned in Sect. 2.1, out-of-plane bending and torsion
are allowed for each sheet flexure while the stiffnesses for bending in the plane of the sheet
and elongation are high. For the kinematic analysis, one beam element is used for each
sheet in the flexure. Taking the local z-axis of the beam element in the plane of the sheet
as illustrated in Fig. 1, the constrained deformations are the elongation ε1 and the bending
deformations ε3,4 in the in-plane z-direction. The torsion ε2 and bending deformations ε5,6

in the out-of-plane y-direction are the other three deformations that are allowed to vary.
Combining two sheets, there are six deformations in the folded sheet flexure that are not
suppressed. It is not correct to define all these deformations to be dependent deformations
as that would suggest that there are no constraints for the six coordinates of the free end.
As shown in Fig. 4(a), the folded sheet flexure imposes one constraint being a translation of
the connection line between the sheets. There is also an internal deformation mode, which
is a rotation around the axis of this connection line. Figure 4(b) illustrates that this inter-
nal mode can occur even if both ends of the folded sheet flexure are fixed. This double
clamped folded sheet flexure has a statically indeterminate stress distribution as well. This
is illustrated in Fig. 4(c) where the bending stress distribution in the beams is shown. At the
clamped ends, the stresses have opposite signs which indicates that the over-constraint is
due to this in-plane bending mode.

The constrained and internal modes of the folded sheet flexure can be accounted for
by taking one of the bending deformations as an independent deformation, thus leaving
five dependent deformations. In this way for the coordinates at the free end of the folded
sheet flexure, one constraint equation has to be satisfied leaving five independent coordinates
similar as for a single wire flexure. In addition, each folded sheet flexure exhibits one internal
independent deformation mode.

Combining five folded sheet flexures as in the system of Fig. 3(b) leaves one independent
coordinate for the cylindrical rigid body to which all flexures are attached, if the five con-
straints are independent. Also in this case, matrix D(c) must be square. In each folded sheet
flexure, there are six constrained deformations and one independent deformation, so there
are 35 rows in total. Counting the dependent coordinates, we observe that in each flexure
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Fig. 5 Alternative straight guiding mechanism: An over-constrained and under-constrained design with five
folded sheet flexures. The fixed supports are at the five unconnected ends of the folded sheet flexures

the six coordinates of translation and rotation of the connection between the sheets are de-
pendent. Furthermore, the rigid connection of all flexures has one independent coordinate,
leaving five dependent coordinates. So, D(c) has 35 columns and is indeed square. It can be
verified numerically that D(c) is non-singular for the configuration shown in Fig. 3(b). The
actual size of matrix D(c) may be larger if there are more nodal points used to model the
translating rigid part. As this part is rigid, there is also a constrained deformation for every
extra nodal coordinate, so D(c) remains square.

A drawback of the design in Fig. 3(b) is its asymmetry. A symmetric design can offer ad-
vantages, e.g. to reduce position errors of the moving rigid part due to temperature changes.
Furthermore, two folded flexures on one side offer a lower support stiffness compared with
three folded flexures on the other side.

A more symmetric design is presented in Fig. 5. With five folded sheet flexures, the
symmetry at the lower end is improved by changing the position and orientation of one of
the folded sheet flexures. However, this does not increase the support stiffness, and even
worse, a kinematic analysis reveals immediately that this design is both under-constrained
and over-constrained. As the constrained degrees of freedom of both lower flexures are
parallel, these constraints are not independent, thus allowing the kinematically indetermi-
nate motion shown in Fig. 5(a). The statically indeterminate bending stress distribution in
Fig. 5(b) is similar to Fig. 4(c) from which it is concluded that the over-constraint is due to
the constrained in-plane bending mode of the sheets.

With six-folded sheet flexures, the symmetric design of Fig. 6 is realised. As the extra
flexure adds an extra constraint, this design is over-constrained. The statically indeterminate
stress distribution shown in the figure indicates an in-plane bending stress in all sheet flex-
ures, again similar to the single flexure in Fig. 4(c). At this stage, the designer can decide to
continue with the over-constrained design, accepting the risk that this may cause unwanted
behaviour, e.g. caused by misalignments due to manufacturing inaccuracies [13]. If an exact
constraint design must be realised, this can be accomplished by allowing a bending motion
in one of the sheets or its support. Alternatively, a purely torsional deformation in the rigid
body can be released.
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Fig. 6 Alternative straight
guiding mechanism: An
over-constrained design with six
folded sheet flexures. The fixed
supports are at the six
unconnected ends of the folded
sheet flexures

5 Conclusions

This paper has demonstrated that a finite element based multibody dynamics methodology
can be used effectively to analyse the constraints and degrees of freedom in compliant mech-
anisms. In the kinematic analysis, all deformations associated with a high support stiffness
are taken to be invariant. Based on a clear notion of the system’s relative and absolute con-
straints as well as the degrees of freedom, the Jacobian matrix associated with the dependent
coordinates D(c) is established. Rank deficiency of this matrix is detected using a singular
value decomposition. Column rank deficiency indicates that the system is under-constrained.
The kinematically indeterminate modes are found in the right singular matrix and can di-
rectly be used to visualise the motion associated with these under-constrained modes. Row
rank deficiency of the Jacobian matrix D(c) indicates an over-constrained system. In this
case, one or more statically indeterminate stress distributions are derived from generalised
stress resultants in the left singular matrix and are used to visualise the over-constraints.
In this way, the presented analysis and visualisation not only detect under-constrained and
over-constrained conditions, but also offer insight in the nature of the under-constrained and
over-constrained modes. In this paper, the approach is demonstrated with straight guiding
mechanisms. It paves the path toward a systematic approach to realise systems satisfying
exact constraint design [6].
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