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Abstract
Calculating the coupling losses in cable-in-conduit conductor (CICC) joints requires a large
amount of numerical effort, which is why the numerical system is often reduced by grouping
strands together. However, to better understand the loss behaviour, and eventually the stability
mechanism in such joints, a full-sized model working on the level of individual strands is
more desirable. For this reason, the numerical cable model JackPot-AC has been expanded to
also simulate the coupling losses in a CICC joint. This model has been verified with AC loss
measurements on a mock-up joint, which was subjected to an applied harmonic field at
different angles. The mock-up joint consisted of two sub-sized CICCs connected by a copper
sole. For additional verification the AC loss of one of these conductors and the copper sole
was also measured separately. The results of the simulation agree with the measurements, and
the model therefore proves to be a useful analytical tool for examining the coupling loss in
CICC joints.

(Some figures may appear in colour only in the online journal)

1. Introduction

The twin-box lap-type joint is a type of joint that is recognized
for its proven reliability and its suitable assembly, which
is why they will be used for the ITER PF coils [1, 2].
However, measurements on sub-sized and full-sized joints
for coils have also shown signs of thermal instability when
subjected to operating conditions similar to ITER scenarios.
These operating conditions involve transient fields within
the intended operating range of the coil. It was then that
the instabilities were observed as flux jumps in pick-up
coil measurements [3, 4]. Due to the transient background
field, coupling currents in the strands repeatedly initiated
local quenches. Understanding this quench behaviour may
contribute in predicting the stability of the whole coil.

Many attempts have been made in the past to estimate
the stability of CICC joints by numerical methods in relation
to the power dissipation and temperature margin [5–9]. In
addition, it is recognized that current imbalance among
the strands of a cable can also trigger instability. Since
current imbalance is inevitable in a joint, much effort has

been spent on predicting this phenomenon with numerical
models [10–12]. However, it has proven particularly difficult
to simulate full-size ITER-type CICC joints, as they contain
many hundreds of superconducting strands. The numerical
cable model JackPot-AC was already capable of simulating
the interstrand coupling losses in sub-sized CICCs with up
to 250 strands and 60 cable intersections [13], and it has
recently been upgraded to also simulate the power dissipation
in ITER-sized CICCs. The key to this upgrade involves the
implementation of the multi-level fast multipole method to
cope with the large number of mutual couplings between
strand sections [14, 15]. This relieved the considerable
computational effort and created the opportunity for a
coupling loss model for a full-size ITER CICC joint. Before
the full-sized model is established, a sub-sized model has
undergone verification by a mock-up joint. This paper
describes the details of that verification. The next step is to
connect the joint model to a thermohydraulic model to assess
the temperature distribution and margin, but this connection
will be reported elsewhere.
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Figure 1. Schematic representation of a 2D rectangular object
modelled with the PEEC method.

2. Simulation of the copper sole

The decision on how to model the copper sole of a joint
depended heavily on how it could be integrated within the
cable model of JackPot-AC. The JackPot-DC model used a
finite element (FEM) model, because this has the advantage
of allowing different shapes of the sole [16]. However, FEM
is not used in JackPot-AC, because it is nearly impossible to
include the mutual inductances between strand elements and
joint elements. For this purpose, boundary element models or
method-of-moments-type models [17] are more suitable. Such
models can solve electromagnetic problems on meshes similar
to an FEM mesh, but do not require air around the object to
be included in the model. The drawback of this method is
that it requires extensive implementation efforts, which is why
a more straightforward technique is used for the simulation
of the joint box. This simulation technique is known as the
partial element equivalent circuit (PEEC) method [18]. This
method works very well for rectilinear objects and is also easy
to implement.

To explain how the PEEC method works, figure 1 shows
an object in 2D that is modelled with PEEC. Voltages are
calculated on an orthogonal grid across the object, and these
nodes are connected with resistors. The value of these resistors
is determined by the length and the cross section of the current
path between two voltage nodes, as shown in figure 1. The
expansion to a 3D model is done in a similar way.

The mutual inductive couplings take place only between
those current paths which are parallel to each other. This saves
a considerable number of calculations and values to be stored.
Between two rectilinear blocks i and j with parallel currents,

the mutual inductance is calculated as

Mij =
µ0ui · uj

4πSiSj

∫
Vi

∫
Vj

1
|ri − rj|

dvj dvi, (2.1)

where Vi and Vj are the block’s volumes, ri and rj are vectors
pointing to locations inside the blocks, ui and uj are vectors
pointing in the direction of the current flow, and Si and Sj
the areas perpendicular to this current flow. Equation (2.1) is
rewritten to

Mij =
1
Si

∫
Vi

ui · Aij dvi, (2.2)

where

Aij(ri, rj) =
µ0

4πSj

∫
Vj

uj

|ri − rj|
dvj. (2.3)

If the right-hand side of equation (2.3) is multiplied by the
current flowing in object j, its result is the magnetic vector
potential at location ri due to that current. Equation (2.3)
can be solved analytically [19], which reduces the number of
volume integrals needed to calculate the mutual inductance
from two to one. The solution of this can be found numerically
by using, for instance, a Gaussian quadrature or the Simpson
rule in three dimensions. Equations (2.2) and (2.3) can also
be used to calculate the self-inductance of a block, since the
analytical solution of Aij does not contain singularities.

Although the calculation of the mutual inductance is
already reduced to one volume integral, the PEEC approach
requires it to be solved for a large number of couplings.
This still requires a considerable computation time. Some
simplifications are allowed if the distance between blocks is
large enough. For instance, simplification of equation (2.2) to

Mij =
Vi

Si
ui · Aij(ri,c, rj), (2.4)

takes away the remaining volume integral. In equation (2.4),
ri,c is the location of the centre of volume i. For blocks
separated even further, equation (2.3) can eventually be
approached with

Aij(ri,c, rj,c) =
µ0

4πSj

Vjuj

|ri,c − rj,c|
. (2.5)

This does not speed up the computation as much as
equation (2.4) but the latter notation has a particular benefit
for implementing the multi-level fast multipole method
(MLFMM) [14, 15, 20].

To investigate the effect of the simplifications, the mutual
inductance is calculated between two equally sized cubes
at different distances from each other. Figure 2 shows the
configuration and the results. The current density is assumed
to be equal everywhere inside the cubes, and the direction of
the current flow is perpendicular to the faces indicated with
the arrows. The distance is increased in steps equal to the
width of the cubes, and the result at distance zero represents
the self-inductance of one cube. A four-point 3D Gaussian
quadrature formula is used for the solution of the integral
in equation (2.2). Of course, for d/wx = 0, which gives
the self-inductance of a block, the result for equations (2.4)
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Figure 2. (a) Configuration for the calculation of the mutual
inductance and (b) the results for (wx, wy, wz) = (1, 1, 2) cm.

Figure 3. Voltage nodes (circles) and current paths (straight lines)
in the cross section of the copper sole as simulated with JackPot-AC.

and (2.5) is undefined because of a division by zero. Based
on these results, JackPot-AC uses equation (2.1) for the
calculation of the self-inductances and equations (2.4) and
(2.5) for the calculation of the mutual inductances between
the PEEC blocks.

The notation of the mutual coupling in equation (2.2) has
another advantage. If the background field Bext is expressed as
magnetic vector potential Aext, the coupling voltage Vext,i for
branch i in the circuit simply becomes

Vext,i =
1
Si

ui ·

∫
Vi

∂tAexti dvi. (2.6)

Figure 3 shows the spatial discretization of the copper
sole’s cross section. It consists of a set of nodes in an
orthogonal grid, where the nodes are removed from locations

Figure 4. Eddy current loss results from an FEM model of the
copper sole. The legend is in mW cm−3.

where the cables would otherwise be located. In addition, the
current paths to and from the removed nodes are also taken
away from the model to make sure that no sole currents will
flow through the cable locations.

The space between nodes in the longitudinal direction
of the joint is 1 cm, which is comparable with a typical
longitudinal discretization of a cable model in JackPot-AC.
This means that the PEEC bars have a relatively large aspect
ratio between their longitudinal and cross sectional dimension
ratio but this does not affect its behaviour, as is demonstrated
in section 3.

3. Determination of the sole’s RRR

To determine its RRR, the copper sole has been subjected
to eddy current loss measurements at liquid helium
temperature in a transverse applied AC magnetic field. This
experiment is then simulated with a finite element model in
Comsol Multiphysics c©, in which the resistivity parameter
was adjusted until the simulation results matched the
measurements. For completeness, two sets of measurements
were done with differently oriented applied AC fields, which
are denoted as parallel and series, see figure 4. These
denotations refer to the orientation in which the mock-up joint
with conductors is placed in the magnetic field. The result in
figure 4 was obtained with a harmonic background field in
‘series’ direction with a frequency of 0.2 Hz and an amplitude
of 0.2 T. The RRR in the simulations was adjusted to match
the simulated loss with the measurements, which resulted in
a RRR of 84. Only 1/8 of the object is simulated to benefit
from its threefold symmetry.

Figure 5 shows the results as a function of frequency.
Although the maximum frequency used in the measurements
was 0.2 Hz, higher frequencies were used in the simulations to
compare the behaviour of the JackPot sole with the FEM sole.
The results of these models match well with the measurements

3
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Figure 5. Measurement and simulation results for eddy current losses in the copper sole in a background field with 0.2 T amplitude. The
background field is in (a) ‘parallel’ direction and (b) ‘series’ direction.

in both orientations of the background field. Even at higher
frequencies, the JackPot sole model follows the FEM model’s
result quite well. This demonstrates the validity of the JackPot
sole model.

4. Coupling between the cable and sole models

JackPot-AC can already simulate the coupling losses in a
CICC subjected to an applied AC field [13]. Since the
current paths of the cables and joints never cross each
other by definition (see section 2), the mutual coupling
between currents in the joint and the sole are solved with
equations (2.4) and (2.5). However, the electrical coupling
of the cable model with the copper sole requires special
attention, since the modelled sole is obviously not shaped for
a cable with a round cross section. For a single cross section,
this connection is accomplished in the following three steps,
see figure 6.

The first step determines which of the sole’s voltage
nodes will have a connection with the cable. This is done
by considering the dimensions of the PEEC boxes for the
z-oriented currents. Note that these dimensions are different
for the different orientations of the currents, see figure 1. A
box node is only in contact with the cable if the cable overlaps
with that box. Once all nodes contacting the cable have been
identified, the cable periphery is allocated to a proportional
distribution, see figure 6(a). The second step identifies the
strands that are in contact with the cable periphery. When
combining the results from these two steps, it is possible to
identify which strands are in contact with the voltage nodes in
the sole. The third and last step involves giving the value of the
conductance between strands and the sole in the cross section.
This value is determined by their contact area with the cable
periphery [21]. A single contact resistivity parameter, ρsj in
� m2, is used for calculating their conductance values.

5. Simulation of a cable in a copper sleeve

For the verification of the model, the mock-up joint was
manufactured from two sub-sized CICCs that were connected
by a copper sole, which has the scaled dimensions of an

Figure 6. Illustration of the numerical procedure for connecting
strands with the sole’s voltage nodes.

ITER PF coil joint. The conductors were used before in an
experiment to analyse parametric variation of NbTi CICCs
where they were denoted as ‘NbTi #5’ [22, 23]. The conductor
sections used for this experiment were compacted in copper
sleeves with a 2.5 mm thick wall, which deviates from the
ITER PF joint design. One separate sleeved conductor section
was also subjected to AC loss measurements for additional
verification. Since the influence of the copper sleeve on
the measurements cannot be ignored, they were included
in the simulations as well. To this end, the sleeves were
simulated by placing a single layer of voltage nodes regularly
around the conductors, where each node is connected to
their neighbours with resistor-inductance paths. Like the sole
model described in section 2, the sleeve model has been
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Figure 7. (a) One conductor used for the mock-up joint, before its assembly with a copper sleeve and (b) cross section of this conductor
after assembly.

Figure 8. (a) Measured and simulated frequency response of the conductor in figure 7 and (b) simulated strand currents versus frequency in
the centre cross section of the cable.

verified with an equivalent FEM simulation. The electrical
connection between the cable and the sleeve is performed with
the same procedure as described in section 4.

Figure 7 shows the cable and the copper sleeve before and
after assembly. Figure 7(a) reveals that the cable untwisted
towards the end of the de-sleeved section. For this reason
we chose the average value along the cable length for the
final-stage twist pitch. Furthermore, the Ni plating had been
completely removed from strands at the cable surface, but
since the strand bundle was held tightly together with stainless
steel wires during removal, the plating is expected to be
present between the strand contacts. As such, it is also
assumed that the contact resistivity properties are different for
strand-to-strand contacts and strand-to-sleeve contacts.

The conductor was measured in a homogeneous AC
magnetic field with an amplitude of 0.2 T, ranging in
frequency from 0.01 to 0.16 Hz. The usual procedure for
obtaining contact resistivity parameters is to fit them with
interstrand resistance values from real samples. However,
as such data was not available for the particular conductor

used in this experiment, the interstrand resistances measured
on other conductors were used instead. Previous interstrand
resistance and coupling loss simulations were carried out
of five sub-sized CICCs consisting of 36 strands, each
cable with a different type of strand coating [13]. For the
interstrand contact resistance parameter, the value obtained
for the sub-sized CICC with Ni plating is used, whereas for
the contact resistance between strands and the sleeve, the
one without plating (bare copper) is used. In addition, the
final-stage twist pitch in the simulation was determined as
twice the nominal value given for this conductor due to the
untwisting.

Figure 8 shows the results of both the measurements and
the simulation. For the sake of convenience, figure 8(a) also
shows the measured result where an offset of 0.9 J/cycle
has been subtracted from the measurements. This is the
constant factor in a polynomial fit of the measured data, which
represents the hysteresis loss in the strands at low frequency.
Although the AC loss for a CICC is usually given per unit
superconductor volume, this is not done here. The reason is
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Figure 9. The mock-up joint assembly.

Figure 10. Measured and simulated AC loss of the joint versus
frequency, under different angles of the applied AC field.

that, in this way, it is easier to distinguish the loss components
of the sole, cables and the whole joint. Had the displayed loss
been divided by the superconducting strand volume, the offset
would have been 95 mJ/(cycle cm3).

The measured loss shows saturation at about 140 mHz,
whereas the saturation in the simulation appears to be at a

much higher frequency and amplitude. It is unlikely that this
is the result of strands being driven into saturation—this effect
is not taken into account in the simulations—because the
strand currents are too low for that, see figure 8(b). For now,
the reason behind the difference between the measured and
simulated loss at higher frequencies remains unknown.

6. Simulation of the mock-up joint

Figure 9 depicts the assembly of the mock-up joint.
Similar to the cable measurements described in section 5,
the measurement on the joint was also carried out in a
homogeneous applied AC field with an amplitude of 0.2 T
and a frequency ranging from 0.01 to 0.16 Hz. Figure 10
shows the results for both the parallel and series background
field orientations. This time, no offset has been subtracted
from the measured data to account for hysteresis loss. The
reason is that, already at low frequencies, the field is starting
to be screened from the inside of the conductor, see figure 11.
This alters the overall hysteresis loss in the conductors, which
makes it incorrect to assume it is constant over the frequency
range used.

A remarkable observation is that the simulated joint
loss matches the measured results better than the simulated
conductor loss of section 5. The explanation is that the
interstrand coupling loss in the joint is only a small component
of the overall loss. On the other hand, the eddy current loss
can be simulated much better than the coupling losses, and
they are more dominant in the results. This is illustrated in
figure 12, which shows the contributions from the power
dissipation due to the cable interstrand coupling loss; the
coupling contacts between the cable and the copper sleeve and
the Joule heating in the sole separately.

Figure 12 also shows that the loss in the interstrand
contact resistances and the strand-to-sleeve resistances is
almost equal. However, contrary to the other loss components,
the power in the contact between the cables and sleeves is
dissipated in a small layer, leading to a particularly high
power density. Analysis of what the effect of this would be
on the local temperature distribution inside the cable requires

Figure 11. Simulated magnetic field at the location of strands in the central cross section of the upper conductor at a frequency of 50 mHz
in (a) parallel background field and (b) series background field.
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Figure 12. Different sources of the simulated coupling loss versus frequency in (a) parallel background field and (b) series background
field.

Figure 13. Strand currents in the centre of one of the cables at (a) 20 mHz in the parallel background field and (b) 60 mHz in the series
background field.

the implementation of a thermohydraulic model and is still
ongoing.

Another feature which the model allows us to analyse is
the distribution of strand currents. Figure 13 illustrates this for
the two different AC field orientations, each at one frequency.
The result for the ‘parallel’ applied AC field is biased to a
positive current due to the coupling currents flowing between
the cables. The currents in the opposite conductor attached to
the joint (not shown here) are biased to a negative current.
Another observation is that both orientations show that strand
currents change rapidly along short lengths and change slowly
over much longer lengths. This indicates that the current
transfer mostly takes place between strands that are in contact
with the copper sleeve, due to the lower strand-to-sleeve
contact resistances compared to the interstrand resistances.

7. Conclusions

The numerical model for calculating interstrand coupling
losses in cable-in-conduit conductors (CICCs), JackPot-AC,
has been expanded with an effective copper sole model.
Similar to the cable model, the copper sole model is a
network of resistors, self-inductances, mutual inductances and
voltage sources controlled by an externally applied field,
which facilitates its integration with JackPot-AC. To verify

the model, a mock-up joint (scaled to the present ITER
PF joint design) has been manufactured on which AC loss
measurements have been carried out with two orientations of
the applied AC field. The model uses, besides the geometry
of the joint components and the cable twist pitches, three
input parameters for the computation, which are: the cable
interstrand contact resistance; the contact resistance between
strands and the copper sole resistivity.

The model is able to reproduce the measurement results
with good accuracy and allows to extract information about
the electrical behaviour of the joint that is not revealed
by the measurements. The simulation of this particular
case demonstrates that a considerable amount of energy is
dissipated in the copper parts of the joint due to eddy currents.
In addition, a high energy density is found in the contacts
between the cable and the copper sole, which may lead
to a local rise of temperature. After implementation of the
thermohydraulic part, the model provides a solid basis for
detailed optimization of CICC joints.
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