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� We attempt to quantify the same background properties reported by routine visual analysis, and in
addition, compare the quantitative output to that of the human reviewer.
� Five properties are quantified: alpha rhythm frequency, reactivity, anterio–posterior gradients, asym-
metries, and diffuse slow-wave activity.
� Quantitative analysis as an assistive tool can improve consistency and inter-rater reliability in reporting
of the EEG background pattern.

a b s t r a c t

Objective: Visual interpretation of EEG is time-consuming and not always consistent between reviewers.
Our objective is to improve this by introducing guidelines and algorithms to quantify various properties,
focussing on the background pattern in adult EEGs.
Methods: Five common properties were evaluated: (i) alpha rhythm frequency; (ii) reactivity; (iii) ante-
rio–posterior gradients; (iv) asymmetries; and (v) diffuse slow-wave activity. A formal description was
found for each together with a guideline and proposed quantitative algorithm. All five features were
automatically extracted from routine EEG recordings. Modified time-frequency plots were calculated
to summarize spectral and spatial characteristics. Visual analysis scores were obtained from diagnostic
reports.
Results: Automated feature extraction was applied to 384 routine EEGs. Inter-rater agreement was calcu-
lated between visual and quantitative analysis using Fleiss’ kappa: j = {(i) 0.60; (ii) 0.35; (iii) 0.19;
(iv) 0.12; (v) 0.76}. The method is further illustrated with three representative examples of automated
reports.
Conclusions: Automated feature extraction of several background EEG properties seems feasible. Inter-
rater agreement differed between various features, ranging from slight to substantial. This may be related
to the nature of various guidelines and inconsistencies in visual interpretation.
Significance: Formal descriptions, standardized terminology, and quantitative analysis may improve
inter-rater reliability in reporting of the EEG background pattern and contribute to more efficient and
consistent interpretations.
� 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

For almost a century the electroencephalogram (EEG) has been
an important and invaluable technique in clinical neurology. Appli-
cations include the differential diagnosis of developmental disor-
ders, sleep analysis, and the diagnostic process in epilepsy.
Despite tremendous advances in computing power and the avail-
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ability of digital recordings, the gold standard for the interpreta-
tion is still visual analysis. Perhaps the very large variability in
EEG patterns, both in physiological and in pathological conditions,
limit efforts to automate the diagnostic process. At the same time,
the human brain is an expert in visual analysis, including the rejec-
tion of artefacts and detection of transients. The processes involved
are indeed not trivial to replace by computer analysis (Halford,
2009).

In general, EEG analysis in clinical neurology consists of two
parts: analysis of the background pattern and detection of tran-
sients (Schomer and Lopes da Silva, 2010; van Putten, 2009). The
background pattern can be defined as the mean statistical charac-
ed by Elsevier Ireland Ltd. All rights reserved.
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Table 1
Summary of EEGs described by visual analysis. Descriptions obtained from diagnostic
reports.

Alpha rhythm peak frequency
Normal for age Deviating from norm
303 (90%) 33 (10%)

Reactivity
Substantial Moderate Low or absent
301 (90%) 26 (8%) 9 (3%)

Anterio–posterior gradient
Normal range Moderate differentiation Abnormal or deviant
286 (74%) 73 (19%) 25 (7%)

Asymmetries
None At least one
295 (77%) 89 (23%)

Diffuse slow-wave activity
Normal EEG patterns Diffuse slow waves
347 (90%) 37 (10%)
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teristics of the EEG, and includes features such as the posterior
dominant rhythm, reactivity, frequency distribution over the scalp,
and the presence or absence of asymmetries. Transients refer to
relatively rare events, and include both physiological and patho-
logical waveforms, such as lambda waves, wicket waves or spike-
wave discharges.

An accurate interpretation of both the background pattern and
the transients is of high importance for correct diagnostics. Unfor-
tunately, various studies have shown that a large inter- and intra-
observer variability still exists between reviewers. Depending on
the reported feature or decision outcome, the inter-rater agree-
ment (Kappa coefficients) range from slight (0.09) to substantial
(0.94) (Haut et al., 2002; Benbadis et al., 2009; Gerber et al.,
2008; Azuma et al., 2003). One of the main reasons for this is a lack
of consistency in describing the properties accurately. Azuma et al.
(2003) showed that by conforming to a set of general guidelines,
inter-rater variability could be reduced significantly (Azuma
et al., 2003). For many of the EEG properties mentioned however,
formal guidelines do not exist or fall short of being used. In addi-
tion to this, EEG reports lack consistent terminology to describe
the severity of an abnormality.

Apart from improving inter-rater reliability in reports, possibil-
ities exist with computational methods to increase reviewer effi-
ciency and to find characteristics that are hard or even
impossible to detect by visual analysis alone. Substantial progress
has been made with quantitative methods in the fields of seizure
and spike detection (van Putten, 2003; van Putten et al., 2005;
Kurtz et al., 2009; Halford, 2009; Wilson and Emerson, 2002), but
little exists for describing the EEG background pattern quantita-
tively. Given that background properties provide essential infor-
mation to the clinician, the use of quantitative tools may be
advantageous in assisting with the analysis.

In this paper, we address two issues related to the reviewing of
EEGs in a clinical environment. First, we propose guidelines for
describing background properties to improve consistency and re-
duce inter-rater variability. Secondly, by building methods around
these guidelines, we introduce quantitative algorithms to measure
five of the most commonly reported background properties. The
guidelines are kept simple (but feasible) to maximize consensus
between reviewers, and the quantitative values are designed intu-
itively to allow for interpretation in a useful manner. We evaluate
our work by comparing reports generated with the quantitative
techniques against EEG reports from visual interpretation, and also
show two examples where quantitative analysis is used to identify
abnormal background patterns.
1 A more general name is the posterior dominant rhythm, as in pathological
situations the peak frequency may be outside the alpha frequency range. Here, we
will further denote it as the alpha rhythm.
2. Methods

2.1. Data

The dataset for this study was obtained from the department of
Clinical Neurophysiology of the Medisch Spectrum Twente (MST).
The recordings were made over a period of five years, and for each
EEG a standard 20–30 minute recording protocol was used. Elec-
trode impedances were kept below 5 kX to reduce polarization ef-
fects, and standard EEG caps were used with 19 Ag–AgCl
electrodes placed according to the international 10–20 system.
The recordings were made at a sample rate of 250 Hz using a com-
mon reference (Brainlab, OSG BVBA). Technicians annotated eyes
open, eyes closed, hyperventillation and photic stimulation events
during all recordings.

From the MST database, we selected recordings that were origi-
nally made as part of epilepsy investigations. A total of 384 records
were used for evaluation, and the patient group consisted of 214
males and 170 females with ages ranging from 18 to 90 years.
For each recording, a diagnostic report written prior to the con-
struction of the proposed guidelines was available. These reports
were written by one of two board certified neurologists, and they
were used to compare interpretations between visual- and quanti-
tative analysis. In order to compare the interpretations, the free
text reports were carefully read and all background properties
were categorized by the authors based on a designated set of out-
comes for each property. Recordings were excluded if their reports
had missing information about any of the properties considered in
this study. Table 1 shows the outcomes and summarizes the data-
set as described by the reports.

2.2. Preprocessing

An independent component analysis filter was used to reduce
the influence of eye blink artifacts on the described features. After
calculating the independent components, each was compared to a
electrooculogram (EOG) channel recorded together with the EEG. If
one of the components showed a substantial correlation with the
EOG channel (>0.3), it was removed by setting all its values to zero.
The remaining components were projected back to their channel
space by applying the inverse transform. No other artifact detec-
tion or reduction was performed.

2.3. EEG features

We focus on five common background properties: (i) the alpha
rhythm1 and its peak frequency; (ii) reactivity; (iii) anterio–
posterior gradients; (iv) asymmetries; and (v) the presence or
absence of diffuse slow-wave activity. Each of these properties is dis-
cussed in the subsections to follow. Other reported background
properties include beta activity, lambda waves, changes during
hyperventilation, and driving responses during photic stimulation.
These properties were however not investigated.

Each subsection below starts with an outline of a property, fol-
lowed by a proposed guideline to evaluate or describe it, and then
followed by a quantitative analysis approach to evaluate the prop-
erty in a computational manner. Depending on the quantitative
feature calculated, either a common reference, Laplacian, or
bi-polar montage was used. Annotations were extracted in an
automated manner to determine eyes open and eyes closed states,
and segments during hyperventilation and photic stimulation were
ignored. Detailed descriptions of the quantitative algorithms are
presented in Appendix A.
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2.3.1. Alpha rhythm frequency
The alpha rhythm was the first rhythmic activity measured in

the brain and has been shown to have diagnostic value in diseases
ranging from depression (Segrave et al., 2010; Spronk et al., 2011)
and schizophrenia (Knyazeva et al., 2008; Jin et al., 2006) to Alzhei-
mer’s disease (Ishii et al., 2010; Lee et al., 2010) and visual percep-
tion (Babiloni et al., 2006; Sewards and Sewards, 1999). The alpha
rhythm is most visible over the posterior regions during a relaxed
state of wakefulness when the eyes are closed, and its frequency
follows a downward gradient from the posterior region anteriorly
when measured over the scalp (Segalowitz et al., 2010). Its peak
frequency increases with age until maturation is reached, which
typically occurs during adolescence or young adulthood (van der
Stelt, 2008; Marcuse et al., 2008; Segalowitz et al., 2010). Thereaf-
ter it remains constant, or in some cases, decreases slowly with
ageing (Lodder and van Putten, 2011). Decreasing alpha rhythm
frequencies with ageing have been suggested to relate to mental
deterioration (Gaál et al., 2010).

In various handbooks, it is stated that a posterior dominant
rhythm of less than 8 Hz during wakefulness in an adult is abnor-
mal (Levin and Lüders, 2000). In healthy individuals, even in the
seventh and eighth decade, the mean is maintained at or above
9 Hz (Obrist, 1976). In a previous study, we found this also to be
true in a dataset of 1215 normal EEGs (Lodder and van Putten,
2011). For children however, alpha peak frequencies can be normal
below 8 Hz.

Guideline 1: The alpha rhythm frequency is defined as the peak
frequency in a spectrogram taken over the posterior region during
the eyes-closed state. For a guideline to take age dependency of the
peak frequency into account, we propose to use the mean trend
over age for normal EEGs, as noted by van der Stelt (2008), Segalo-
witz et al. (2010), Aurlien et al. (2004), and Lodder and van Putten
(2011). Table 2 provides a reference derived from the mean trend
approximated by Lodder and van Putten (2011), and we consider
the alpha rhythm to deviate from the norm (i.e., too slow or fast)
if the peak frequency differs by more than 1.8 Hz from the refer-
ence value for a given age.

Automated analysis: To find the alpha rhythm frequency with an
algorithmic approach, a method previously described in Lodder
and van Putten (2011) is used (summarized in Appendix A.2).
Using a common reference montage, the technique identifies dom-
inant frequency components between 3 and 18 Hz in the occipital
region. This is done by fitting a curve to the log spectrum of local-
ized segments of the EEG when the eyes are closed:

Plogðf Þ � Pfitðf Þ ¼ Ppk1ðf Þ þ Ppk2ðf Þ þ Pbgðf Þ ð1Þ

Peak parameters from the localized segments are clustered to-
gether based on frequency similarity, and an alpha rhythm esti-
mate is obtained by finding the mean frequency of the largest
cluster. If there are no dominant peaks in the EEG spectra, the
method assumes that an alpha rhythm is not present. After esti-
mating the alpha rhythm peak frequencies, they are categorized
using Guideline 1 and Table 2 as reference.
Table 2
Reference to accepted normal alpha rhythm peak frequencies over age. From 0 to 15
years, the peak frequency is strongly related to age.

Age Frequency (Hz)

0–1 yrs 5.3 ± 1.8
2–3 yrs 6.8 ± 1.8
4–5 yrs 7.9 ± 1.8
6–7 yrs 8.7 ± 1.8
8–15 yrs 9.5 ± 1.8
16–50 yrs 9.9 ± 1.8
>51 yrs 9.1 ± 1.8
2.3.2. Alpha rhythm reactivity
Reactivity is known as an attenuation of rhythmic activity,

occurring mostly in the alpha band, when the brain receives an
external stimulus after an idle state (Schomer and Lopes da Silva,
2010). The stimulus can range from eyes opening to auditory input
or pain. Reactivity becomes weaker during drowsiness as com-
pared to a fully awake state, and the level of suppression varies
with age (Gaál et al., 2010). Although having less diagnostic value
than other background properties, the reactivity is known to be
lower in demented patients (van der Hiele et al., 2007; Babiloni
et al., 2010). Furthermore, it is believed that lower reactivity re-
flects a reduction of neuronal interconnectivity and a weaker level
of neurotransmission, which may be seen in EEGs of the elderly
(Gaál et al., 2010). In previous studies by Logi et al. (2011), Dou-
glass et al. (2002), and Ramachandrannair et al. (2005), the prog-
nostic value of reactivity in comatosed patients was also
explored with positive results.

Although reactivity is most commonly associated with the sup-
pression of alpha power, a formal definition to quantify it with a
scale of normality was not found in existing literature. Most stud-
ies compare the alpha power in an idle state to that of a non-idle
state, as done for example by van der Hiele et al. (2007), Könönen
and Partanen (1993), and Partanen et al. (1997).

Guideline 2: To categorize reactivity, we compare the difference
in alpha power over the occipital region between an idle (relaxed,
eyes closed) and non-idle (eyes open) state. Suppression of more
than 50% alpha power is considered substantial, between 10%
and 50% as moderate, and anything less as low or absent.

Automated analysis: Using the alpha frequency obtained by the
technique described in Section 2.3.1, reactivity is calculated by
comparing the difference in alpha power between eyes-open and
eyes-closed states. The states are determined by evaluating anno-
tations in the EEG. Using a narrow band around the alpha rhythm
peak frequency, reactivity is calculated as

QREAC ¼ 1� PEO

PEC
; ð2Þ

where PEO is the mean occipital power in a 0.5 Hz frequency band
when the eyes are open and PEC the mean occipital power in that
band when the eyes are closed. The reactivity is classified as sub-
stantial when QREAC > 0.5, moderate for 0.1 < QREAC < 0.5, and low
or absent if QREAC < 0.1.

2.3.3. Alpha power anterio–posterior gradient
Rhythmic activity from a normal wake brain should be distrib-

uted with an anterior-to-posterior gradient over the scalp: higher
frequency beta activity with low voltages more prominently over
the frontal regions fading posteriorly, and slower waves (e.g., alpha
and mu rhythm) with higher voltages over the parietal and occip-
ital lobes (Schomer and Lopes da Silva, 2010). Drowsiness and
sleep causes attenuation of the alpha rhythm and slowing of the
background rhythm, together with more prominent alpha and the-
ta activity anteriorly. Medication (e.g., benzodiazepines) and
anaesthesia (e.g., propofol) can also play a large role in the distri-
bution of rhythmic activity, making it important to evaluate the
gradient within clinical context to avoid misinterpretation. Abnor-
malities in the gradient can point to disorders such as schizophre-
nia and dementia (Knyazeva et al., 2008; Stevens and Kircher,
1998).

In the EEG reports reviewed, the anterio–posterior gradient de-
scribed was mainly on alpha band activity. To have clinical rele-
vance, our proposed guideline therefore also focusses on the
alpha power distribution.

Guideline 3: Using a Laplacian montage, the gradient is catego-
rized as ‘within normal range’ if the alpha power distribution is
most prominent over the posterior region, ‘moderate differentia-
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tion’ when it becomes evenly distributed over the scalp, and
‘abnormal or deviant’ if more power is present anteriorly than
posteriorly.

Automated analysis: Based on the center-of-gravity feature in van
Putten (2008), the mean power in the alpha band during an eyes-
closed state is calculated and a normalized anterio–posterior
power ratio is found:

Q APG ¼
Pant

Pant þ Ppos
: ð3Þ

Here, Pant and Ppos represent the mean alpha power over the
anterior and posterior regions respectively (see Appendix A.3).
Using this ratio, the alpha power gradient is considered within nor-
mal range if QAPG is lower than 0.4, moderately differentiated be-
tween 0.4 and 0.6, and abnormal or deviant for values above 0.6.

2.3.4. Asymmetries
Asymmetry of the occipital alpha rhythm voltage is present in

about 60% of healthy adults (Maulsby et al., 1968). Only 17% of
healthy adults show voltage differences larger than 20%, and a
mere 1.5% show differences larger than 50% (Maulsby et al.,
1968). As a rule therefore, interhemispheric differences in ampli-
tude larger than 50% are considered abnormal (Levin and Lüders,
2000; Maulsby et al., 1968). A significant (>50%) voltage asymme-
try of the mu rhythm or temporal alpha activity are often observed
in healthy adults; a presence of these findings should therefore be
interpreted with caution, as this is common in asymptomatic per-
sons (Ebersole and Pedley, 2003). Frequency asymmetries of 1 Hz
or larger also indicate pathology.

Guideline 4: Asymmetrical background patterns are found by
comparing rhythmic activity between the two hemispheres in cor-
responding channel pairs. Reported asymmetries should refer to
either a) a significant amplitude difference between corresponding
channels larger than 50%, or b) an abnormal frequency difference
(or absence) of rhythmic components in excess of 0.5 Hz (which,
for a frequency resolution of 0.5 Hz, indicates a difference of 1 Hz
or more).

Automated analysis: Using a Laplacian montage, EEG channels
are paired based on symmetrical opposites over the left and right
hemispheres:

CfL;Rg ¼ ffFp1; Fp2g; fF7; F8g; fF3; F4g; fT3; T4g;
fC3;C4g; fT5; T6g; fP3; P4g; fO1;O2gg: ð4Þ

Using the same principle as described by van Putten (2008), a
spectral difference is calculated for each channel pair. If the EEG
shows spectral asymmetry, it will be reflected in the calculation:

Q ASYMðcfL;RgÞ; cfL;Rg 2 CfL;Rg: ð5Þ

In (5), each c{L,R} represents one of the channel pairs, and QA-

SYM(c{L,R}) finds a normalized value to quantify the spectral differ-
ence between two channels (see Appendix A.4). Using a
threshold of 0.5, the EEG is considered to have an asymmetry for
any pair that exceeds that value.

2.3.5. Diffuse slow-wave activity
Diffuse slow-wave activity is hardly present in healthy waking

adults (Ebersole and Pedley, 2003). Normal variants exist, although
in most cases its presence points to an abnormality that can result
from a number of causes. One common cause is diffuse cortical in-
jury such as anoxia (Cloostermans et al., 2011). Slow-wave activity
can also be the result of pharmacological effects such as sedatives
or anaesthetic medications (San-juan et al., 2010; Blume, 2006).

Guideline 5: Diffuse slow-wave activity results in increased
power over the theta and delta bands and decreased power in
the alpha and beta bands. Using this as a guideline, the EEG is
considered to contain diffuse slow-wave background activity if less
than one third of the power in a spectrogram resides above 8 Hz.

Automated analysis: Using the guideline above, the mean spec-
trum of the EEG is calculated and the power ratio between
Plow = {2 . . .8} Hz and Pwide = {2 . . .25} Hz is obtained Appendix A.5:

QSLOWING ¼ Plow=Pwide: ð6Þ

For QSLOWING > 0.6 (i.e., less than 40% of power above 8 Hz), too
much slow-wave activity is present and the EEG is categorized as
abnormal. EEGs with QSLOWING < 0.6 are considered to have suffi-
ciently fast rhythmic activity.

2.4. Evaluation

To evaluate the value of the proposed guidelines and quantita-
tive measures, a comparison was made between the described
properties from the EEG reports and the interpretations made by
automated analysis. As described above and also shown in Table 1,
each property was designated by either two or three categories,
depending on its relevance. To compare the proposed quantitative
measures against visual analysis, three measures were used: sensi-
tivity, specificity, and Fleiss’ kappa coefficient (Fleiss, 1971).

Although a common performance measure in quantitative anal-
ysis, sensitivity and specificity is defined for two-class problems. It
also assumes that the true labels are accurate in describing the
property at hand, and does not consider inter- and intra-rater var-
iability. Regardless, these measures can provide valuable informa-
tion relating to the development of quantitative analysis features.
Sensitivity and specificity are calculated for the three properties
with a dichotomous outcome: alpha rhythm frequency, reactivity,
and the presence or absence of asymmetries.

Given that our goal is to assist the reviewer with analysis of the
background pattern, measuring and maximizing the inter-rater
agreement between visual and quantitative analysis is of high
importantance. Fleiss’ kappa coefficient measures inter-rater
agreement in properties with multiple outcomes, and is therefore
chosen to achieve this.
3. Results

A dataset containing 384 adult EEGs was used to compare the
proposed guidelines and automated analysis to visual interpreta-
tions. Results from individual properties are provided in succeed-
ing subsections. Table 3 summarizes the agreement for each
property, and Section 3.6 gives three examples of how automated
analysis can assist in visual interpretation.

3.1. Alpha rhythm frequency

Using Guideline 1, substantial agreement (j = 0.60) was ob-
tained with visual interpretation in determining if the alpha
rhythm frequency was within normal range. The quantitative mea-
sure could detect abnormal alpha frequencies with high specificity
(0.96), although a lower sensitivity (0.64) was reached. The alpha
rhythm could not be identified for 48 of the EEGs with quantitative
analysis; either because none was present, or because there was
not a significant peak amplitude in the power spectrum. Visual
interpretation for these 48 EEGs also ranged from no alpha rhythm
observed to a weak but visible peak. The results for alpha rhythm
frequency and reactivity in Table 1 and Table 3 only reflect the
EEGs in which the rhythm was identified in both visual and quan-
titative analysis. The mean frequency difference between reported
and calculated peak frequencies was 0.42 Hz (SD ±0.66 Hz). The
peak frequency reported by visual analysis was often described
using a narrow frequency range (mean width 0.57 Hz) instead of



Table 3
Quantitative analysis compared to visual interpretation. Comparisons are made based on automated analysis and the outcome in EEG reports. For properties with a dichotomous
outcome, sensitivities and specificities are given in the third and fourth columns. Inter-rater agreement, calculated as kappa coefficients, are shown in the last column.

Background property Quantity Sensitivity Specificity Inter-rater agreement

Alpha rhythm frequency QALPHA 0.64 0.96 j = 0.60
Alpha rhythm reactivity QREAC – – j = 0.34
Anterio–posterior gradient QAPG – – j = 0.19
Asymmetries QASYM 0.16 0.97 j = 0.12
Diffuse slow-wave activity QSLOWING 0.78 0.98 j = 0.76

Fig. 1. Example 1: An automated EEG report with all background properties described as normal. (a) Quantitative values (Section 2.3) are provided together with an
automated free-text description. (b) EEG states (i.e., eyes-open, eyes-closed, hyperventillation etc.) are shown to place quantitative feature plots in correct context. (c) Time-
varying spectrum averaged across all channels. (d) Mean left-right symmetry, calculated by averaging Eq. (A.15) over all channels. (e) Time-varying anterio–posterior
distribution of rhythmic activity. Note the photic driving responses also visible in (c) and (e).
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a single value. In such cases, the frequency difference with quanti-
tative analysis was calculated using the center frequency of that
range.
3.2. Alpha rhythm reactivity

Using the calculated peak frequencies, reactivity was calculated
for the 336 EEGs with known alpha rhythms. Reactivity of the
rhythm after opening or closing the eyes was assigned to one of
three categories: substantial, moderate, and low or absent. Using
these categories, a fair agreement of j = 0.34 was reached.
3.3. Alpha band anterio–posterior gradient

The quantitative measure for an anterio–posterior gradient
showed the lowest agreement of all properties with visual inter-
pretation (j = 0.19). It should however be noted that it was the
most difficult property to categorize from the EEG free text reports
due to inconsistent terminology and an unclear border between
normal and deviating differentiation.

3.4. Asymmetries

Although it adds significant value to report in which region
asymmetries exist, our comparison focussed first on accurately



Fig. 2. Example 2: An EEG with all background properties described as normal by visual analysis except for asymmetries over temporal and parietal regions. QASYM shows two
channel pairs above threshold, indicating asymmetries found by quantitative analysis. By looking at the left-right symmetry plot, the asymmetry is also clearly presented to
the reviewer in a visual manner.
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identifying EEGs with abnormal asymmetries. The agreement be-
tween visual interpretation and automated analysis was low
(j = 0.12). The sensitivity and specificity for this property were
0.16 and 0.97 respectively. No distinction was made between slight
and severe asymmetries.

3.5. Diffuse slow-wave activity

To categorize the presence or absence of diffuse slow-wave
activity in the background pattern, our algorithm compared the
power in the alpha and beta bands to lower bands. As shown in
the last row of Table 3, this approach obtained substantial agree-
ment with visual interpretation (j = 0.76), high specificity (0.98),
and a moderate sensitivity (0.78).

3.6. Automated analysis assisting visual interpretation in practice

Some examples are given to illustrate the added value of auto-
mated analysis during an EEG review. Using quantitative analysis
performed with the described algorithms, automatically generated
reports for three EEGs are presented in Figs. 1–3. At the top of each
figure is a summarized outcome of the quantitative analysis writ-
ten in free text, and below are images to display various EEG prop-
erties over time. The images correspond to quantitative features
described in Section 2.3, with the exception of not reducing a fea-
ture to a single value by averaging over frequency or time. These
examples clearly illustrate the added benefit of a quantitative sys-
tem: outlining the background rhythm of the whole recording on a
single page in a clear and simple manner.

For the first example (Fig. 1), an EEG which was considered nor-
mal by both visual analysis and quantitative analysis is shown.
Fig. 1(b) shows the ‘‘assumed’’ states (i.e., eyes open, eyes close,
hyperventilation etc.) of the patient at each time point. This is ob-
tained by parsing the annotations made during recording. By using
Fig. 1(b) as context, the reviewer can easily compare changes in
properties in the figures below it when switching from states.
The second image row, Fig. 1(c), shows a spectrum of the EEG over
time, averaged over all channels. Reactivity of the alpha rhythm is
clearly visible when comparing the spectrum in Fig. 1(c) to the
eyes-open and eyes-closed states in Fig. 1(b). Fig. 1(d) shows the
average symmetry over all left-right channel pairs. For this figure,
an even symmetry was reported and as seen in the plots, the sym-
metry appears to be relatively equal. The last row, Fig. 1(e), shows
the anterio–posterior distribution of rhythmic activity. As expected
for a normal EEG and discussed in Section 2.3.3, higher frequency
beta activity is seen most prominently over the frontal regions fad-
ing posteriorly, and slower waves (e.g., alpha and mu rhythm)
more towards the posterior region.

For the second example (Fig. 2), the EEG background properties
were all described as normal, except for a right-dominant alpha



Fig. 3. Example 3: An EEG with several abnormalities reported by visual analysis: diffuse slow-wave activity, moderate to low reactivity and an abnormal anterio–posterior
gradient. The quantitative features QSLOWING, QREAC, and QAPG show that automated analysis comes to a similar conclusion. As visual assistance and an outline of the full
recording, plots show too much slow-wave activity and no reactivity in the power spectrum between eyes-open and eyes-closed states. Also, an abnormal distribution of
rhythmic activity in the bottom row is seen.

234 S.S. Lodder, M.J.A.M. van Putten / Clinical Neurophysiology 124 (2013) 228–237
asymmetry. This description was based on visual inspection. Quan-
titative analysis also found all background properties except for
asymmetries to be normal. For this EEG, visual inspection and
quantitative analysis produced the same outcome. The plots in
Fig. 2 also show that all properties appear normal, except for a
right-dominant asymmetry in the alpha band and a left-dominant
asymmetry in the lower bands.

The third example (Fig. 3) shows an EEG where multiple
abnormalities occur. Based on visual inspection, the report de-
scribed it as containing diffuse slow-wave activity, very low or
absent reactivity, and an abnormal anterio–posterior gradient.
Automated analysis described the EEG to have diffuse slow-wave
activity, moderate reactivity, and an abnormal or deviant ante-
rio–posterior gradient. Once again, the plots in Fig. 3 can assist
the reviewer by providing a time-varying summary of the back-
ground properties investigated. As an example, compare the
fourth row images of Figs. 2 and 3: As expected for normal dif-
ferentiation in Figs. 1 and 2, rhythms in the alpha and theta
bands appear posteriorly, whereas faster rhythms are more visi-
ble anteriorly. Fig. 3 however shows that all rhythmic activity
appear stronger towards the anterior, corresponding to the EEG
report that an abnormal or deviant anterior–posterior gradient
exists.
4. Discussion

Current methods of reviewing routine EEGs are based mostly on
visual analysis of the raw signals. Although this approach still
holds the highest specificity and sensitivity for finding abnormali-
ties, it is time consuming and requires extensive training. Apart
from this, visual analysis is susceptible to reviewer bias (Haut
et al., 2002; Benbadis et al., 2009; Gerber et al., 2008; Azuma
et al., 2003). Automated quantification techniques reduce the time
required for reviewing and improve consistency in reporting. They
can quantify various properties in EEG and even point out abnor-
malities if found. However, because external factors (e.g., medica-
tion or structural damage) may influence the EEG patterns, final
interpretation of the findings is always left to the reviewer.

For quantitative analysis of the background pattern, it is not al-
ways easy to define explicit guidelines. Properties such as anterio–
posterior gradients, reactivity and asymmetries are well known,
but categorizing them as normal, abnormal, or the degree of abnor-
mality, if applicable, is less trivial. Simpler features such as the al-
pha rhythm frequency and diffused slow-wave activity are better
defined, and as shown in Table 3, it becomes easier to find agree-
ment in descriptions. Azuma et al. (2003) showed how inter-rater
reliability was improved by having three reviewers agree to use the
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same guidelines (Azuma et al., 2003). It is also shown that consis-
tent terminology can improve clarity and enhance sharing capabil-
ities between clinicians, as well as add value to the reporting and
querying of data by storing reviews in an organized database (Aur-
lien et al., 2004).

Our study focusses on quantifying particular key features of the
background pattern as a contribution towards improved consis-
tency and inter-rater reliability. Based on the complexity of EEG
signals, strict or ‘‘narrow’’ definitions were avoided to prevent a
lack of consensus. Instead, an attempt was made to look for simple
guidelines that reviewers can follow to improve consistency when
discriminating between normal and abnormal behaviour. Five
properties were considered as they were the most common in re-
ports related to our study: (i) alpha rhythm peak frequency, (ii) al-
pha reactivity, (iii) anterio–posterior gradients, (iv) asymmetries,
and (v) the presence or absence of diffuse slow-wave activity. For
EEGs obtained under other circumstances, e.g., intensive care or
emergency units, other properties may have more relevance (Cloo-
stermans et al., 2011; Trevathan and Ellen, 2006; Kurtz et al.,
2009).

Previous quantitative analysis studies typically focussed on spe-
cialized features to point out a disease or abnormality in the brain
(John et al., 1994; Chabot and Serfontein, 1996; Hughes and John,
1999; Bares et al., 2012; Prichep et al., 1994; Calzada-Reyes
et al., 2011; Begić et al., 2011; Bjørk et al., 2011; Jiang et al.,
2011; Mishra et al., 2011). The difference between these and our
study, is that we attempt to quantify the same background proper-
ties reported by routine visual analysis, and in addition, compare
the quantitative output to that of the human reviewer. To our
knowledge, this has not been done before. Our quantitative algo-
rithms made use of the proposed guidelines and required little or
no input from the reviewer to perform its analysis. The outcome
was compared to reports from visual interpretation, and as shown
in Table 3, the agreement between computer-generated features
and visual interpretation ranged from slight to substantial. Possible
reasons for differences between visual and quantitative analysis
can be: (i) a too simplistic nature of the proposed guidelines; (ii)
inconsistencies in visual interpretation; (iii) artifacts that interfere
with automated analysis; or (iv) the quantitative features may lack
full support of the guidelines. Also, the thresholds used to catego-
rize the quantitative features were not optimized, and are merely
given to indicate how diagnostic classification can be imple-
mented. With ongoing work, more examples of abnormal back-
ground patterns will be collected and further optimization will
take place.

This study is a first step, only. We are well aware that the back-
ground pattern contains more features than the five discussed in
the current contribution, e.g., beta activity, mu- and theta-
rhythms, lambda waves or physiological transients such as wicket
waves. In addition, we quantify features from adult patients during
wakefulness. Therefore, the present computer analysis is far from
complete. However, its main purpose is to assist in the visual anal-
ysis of the EEG, without an attempt to be a replacement of the hu-
man EEG reader. The three examples in Section 3.6 show how the
current system already has a practical use in clinical settings, and
with an ongoing study we will focus on improving it further.

Given that the evaluation criteria remains constant, automated
analysis can reduce inter-rater reliability if used by the reviewer.
As also discussed by Anderson and Doolittle (2010), a reviewer will
be less likely to trust an algorithm if he does not understand how
its values are calculated. It is desirable to keep the logic of the
methods clear and transparent. The presented algorithms were de-
signed with a simple and intuitive approach in mind. Some of them
were not capable of accurately quantifying an intended property,
and improvements are therefore needed to further optimise the
system. A common dataset is also needed to construct a gold stan-
dard for evaluating new features. As this dataset develops, the
guidelines of defining the various properties should also improve.

In summary, current EEG analysis techniques can be improved
by supplying reviewers with quantitative measures to assist in
the review. In order to increase inter-rater reliability, a consensus
is needed to describe EEG properties and to characterize the sever-
ity of abnormalities. Five simple guidelines are proposed to de-
scribe the EEG background pattern. A quantitative analysis
toolkit is developed to describe these properties, and examples
show the value added assistance that it can have during a review.
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Appendix A. Quantitative features

A.1. Power spectrum

Let V(c,t) be a matrix representing a single EEG with c = {1..N}
channels over time t. First, the entire EEG is split into smaller seg-
ments of 5 s each:

Wðc; j; tsÞ : j 2 ½1 . . . M�; ts 2 ½0 . . . 5�; ðA:1Þ

with j referring to each segment and ts to the time in each segment.
Using the Welch transform with a 2 s window, zero padded to 2048
sample points and an overlap of 50%, the power spectrum of each
segment for each channel is calculated. Let this be represented by

Pðc; j; f Þ; c 2 ½1 . . . N�; j 2 ½1 . . . M�; f 2 ½fmin; fmax�: ðA:2Þ

Each entry in P(c, j, f) contains a discrete Fourier coefficient for
channel c, segment j, and at frequency f. The frequency resolution
is 0.122 Hz.

A.2. Estimation of the alpha rhythm

A technique described in Lodder and van Putten (2011) was
used to find estimates of the alpha rhythm peak frequency in the
EEGs. For a full description, refer to the original text.

This technique is based on finding the dominant frequency
components between 3 and 18 Hz in localized segments of the
EEG. The dominent frequencies are clustered together, and those
most persistent during the eyes closed states are considered to rep-
resent the alpha rhythm. Given that the alpha rhythm is most
prominent over the occipital region, channels O1 and O2 are used
with a common reference montage to estimate the peak frequen-
cies. First, the log spectrum of each segment is calculated:

Plogðf Þ ¼ log½Pðc; j; f Þ�; c 2 fO1;O2g; j 2 JEC ; ðA:3Þ

where JEC represents the indices of all segments in the eyes closed
state. Then, a curve consisting of two peak components and the
power-law background spectrum is fitted to Plog:

Plogðf Þ � Pfitðf Þ ¼ Ppk1ðf Þ þ Ppk2ðf Þ þ Pbgðf Þ; ðA:4Þ

Ppk1ðf Þ ¼ A1 exp
�ðf � f1Þ2

D2
1

 !
; ðA:5Þ

Ppk2ðf Þ ¼ A2 exp
�ðf � f2Þ2

D2
2

 !
; ðA:6Þ

Pbgðf Þ ¼ B� C logðf Þ: ðA:7Þ

The peak parameters are used to form clusters based on fre-
quency similarity, and by taking the average of the largest cluster,
the alpha rhythm frequency is estimated accordingly.
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A.3. Anterio–posterior gradient

Using a Laplacian montage for P(c, j, f), the mean power in the al-
pha band (8–12 Hz) is calculated as

Palphaðc; jÞ ¼ mean
f¼f8 ... 12g Hz

½Pðc; j; f Þ�; ðA:8Þ

Segments from the eyes closed state are used to quantify the ante-
rior–posterior gradient. A mean spectrum from these segments are
found using

PECðcÞ ¼mean
j2JEC

½Palphaðc; jÞ�; ðA:9Þ

with JEC representing the indices of all segments in the eyes closed
state. Using the following channels for the anterior and posterior re-
gions respectively:

Cant ¼ fFp1; Fp2; F7; F8; F3; Fz; F4g; ðA:10Þ
Cpos ¼ fT5; T6; P3; P4; Pz;O1;O2g; ðA:11Þ

the mean alpha power over each region is calculated as

Pant ¼mean
c2Cant

½PECðcÞ�; and ðA:12Þ

Ppos ¼mean
c2Cpos

½PECðcÞ�: ðA:13Þ

Following from this, a normalized ratio for the anterior-to-
posterior power is found:

Q APG ¼
Pant

Pant þ Ppos
: ðA:14Þ
A.4. Asymmetries

Left–right symmetry is calculated by comparing spectral power
between the two hemispheres. To increase robustness, power ra-
tios are first calculated in individual segments and then averaged
together. Using the channel pairs

CfL;Rg ¼ ffFp1; Fp2g; fF7; F8g; fF3; F4g; fT3; T4g;
fC3;C4g; fT5; T6g; fP3; P4g; fO1;O2gg; ðA:15Þ

a left-right ratio for each pair is calculated:

LRðcfL;Rg; j; f Þ ¼
PðcfRg; j; f Þ � PðcfLg; j; f Þ
PðcfRg; j; f Þ þ PðcfLg; j; f Þ

; cfL;Rg 2 CfL;Rg: ðA:16Þ

By calculating the mean of all segments:

LRAVGðcfL;Rg; f Þ ¼ mean
j¼f1 ... Mg

½LRðcfL;Rg; j; f Þ�
����

����; ðA:17Þ

and averaging over f = {0.5 . . .12} Hz, a single value is obtained to
quantify the symmetry for each channel pair:

Q ASYMðcfL;RgÞ ¼ mean
f¼f0:5 ... 12g Hz

½LRAVGðcfL;Rg; f Þ�: ðA:18Þ
A.5. Diffused slowing

Diffuse slow-wave activity is detected by finding a ratio in spec-
tral power from a low {2 . . .8} Hz band to a wider {2 . . .25} Hz
band. Using the common reference montage to calculate P(c, j, f),
the following channels are used to find the ratio:

CSLOWING ¼ fF7; F8; F3; F4; Fz; T3; T4; T5; T6;C3;C4;Cz;

P3; P4; Pz;O1;O2g: ðA:19Þ

Using only segments from the eyes closed state, the mean spec-
trum over all channels are found:
PECðf Þ ¼ mean
c2CSLOWING

mean
j2JEC

½Pðc; j; f Þ�
� �

; ðA:20Þ

with JEC referring to the indices of all segments in the eyes closed
state. The total power in the low and wide spectral bands are
calculated:

Plow ¼
X8Hz

f¼2Hz

PECðf Þ; ðA:21Þ

Pwide ¼
X25Hz

f¼2Hz

PECðf Þ; ðA:22Þ

and from these the slowing-ratio is found:

QSLOWING ¼ Plow=Pwide: ðA:23Þ
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