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Fully-developed conjugate heat transfer in porous media with uniform heating

D.J. Lopez Penha a,⇑, S. Stolz a, J.G.M. Kuerten a,c, M. Nordlund d, A.K. Kuczaj d, B.J. Geurts a,b

a Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
b Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
d Philip Morris International Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland

a r t i c l e i n f o

Article history:
Received 25 January 2012
Received in revised form 2 July 2012
Accepted 25 August 2012
Available online 11 October 2012

Keywords:
Porous medium
Incompressible fluid
Conjugate heat transfer
Fully developed flow
Nusselt number
Direct numerical simulation

a b s t r a c t

We propose a computational method for approximating the heat transfer coefficient of fully-developed
flow in porous media. For a representative elementary volume of the porous medium we develop a trans-
port model subject to periodic boundary conditions that describes incompressible fluid flow through a
uniformly heated porous solid. The transport model uses a pair of pore-scale energy equations to describe
conjugate heat transfer. With this approach, the effect of solid and fluid material properties, such as vol-
umetric heat capacity and thermal conductivity, on the overall heat transfer coefficient can be investi-
gated. To cope with geometrically complex domains we develop a numerical method for solving the
transport equations on a Cartesian grid. The computational method provides a means for approximating
the heat transfer coefficient of porous media where the heat generated in the solid varies ‘‘slowly’’ with
respect to the space and time scales of the developing fluid. We validate the proposed method by com-
puting the Nusselt number for fully developed laminar flow in tubes of rectangular cross section with
uniform wall heat flux. Detailed results on the variation of the Nusselt number with system parameters
are presented for two structured models of porous media: an inline and a staggered arrangement of
square rods. For these configurations a comparison is made with literature on fully-developed flows with
isothermal walls.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Porous media are known for their complex network of intercon-
nected pores, which often displays large variations in its length
scales (Bear, 1988; Dullien, 1979). Technological applications of
porous media specifically exploit this intricate network to, for
example, trap particles moving in the fluid (Hinds, 1999) or to en-
hance the transfer of heat between the fluid and the solid walls
(Kaviany, 1995). To optimally design for such technologies it is
necessary to have a detailed understanding of the transport prop-
erties of mass, momentum and energy in porous media. In this pa-
per we develop a computational method for performing pore-scale
(i.e., microscopic) simulations of fluid flow and conjugate heat
transfer. We solve transport equations subject to periodic bound-
ary conditions in a representative elementary volume of the porous
medium under consideration. Using these detailed results we then
compute, in a ‘‘first principles’’ approach, the bulk heat transfer
coefficient—as is used in the volume-averaged (i.e., macroscopic)
description of energy transport (Kaviany, 1995).

Most practical models for transport phenomena in porous med-
ia adopt a macroscopic description of averaged flow quantities, as a

full microscopic treatment is computationally too demanding
(Brenner and Edwards, 1993). Macroscopic balance equations are
derived from their microscopic counterparts using a spatial filter-
ing technique which introduces a ‘‘coarsening’’ length-scale
(Whitaker, 1999). This up-scaling technique has the beneficial ef-
fect of reducing the overall size of the computational problem by
allowing for a description which requires less degrees-of-freedom
per unit of physical volume. However, filtering also introduces a
closure problem, as several terms in the macroscopic balance
equations need to be modeled before a solution can be obtained
(Whitaker, 1999). For the macroscopic energy equation in particu-
lar, one such important term describes the net rate of heat transfer
between the subfilter-scale solid and fluid components (Quintard
et al., 1997). It is generally modeled as a simple expression involv-
ing the phase-averaged temperatures and a heat transfer coeffi-
cient (Quintard et al., 1997; Kuwahara et al., 2001). Finding a
suitable value for the heat transfer coefficient is important for an
accurate description of macroscopic energy transport, and requires
detailed knowledge of the underlying pore structure, flow charac-
teristics, and material properties. To determine the heat transfer
coefficient—and similarly for other bulk parameters—microscopic
simulations can be performed using a representative elementary
volume (REV) that accurately describes the geometry of the porous
medium (Kaviany, 1995). Several examples of this detailed
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approach can be found in Quintard et al. (1997), Kuwahara et al.
(2001), Nakayama et al. (2002, 2004), and Sahraoui et al. (1994).

An approach to computing the heat transfer coefficient that in-
volves the solution of fundamental equations of transport subject
to periodicity constraints on a REV has been presented in Kuwaha-
ra et al. (2001). In this approach, a transport model is used to sim-
ulate fully-developed flow of an incompressible fluid heated by
isothermal walls. This flow corresponds to the physical configura-
tion where the fluid is being heated by a solid with a much higher
volumetric heat capacity and thermal conductivity (Tiselj et al.,
2001). In this paper we propose an extension to this model to in-
clude solid heat conduction, thereby creating a thermal link be-
tween the two phases for supporting conjugate heat transfer. By
allowing for conjugate heat transfer we allow for a description in
which a change in the heat transfer coefficient can now be attrib-
uted to a change in the solid and fluid material properties, i.e., the
volumetric heat capacity and thermal conductivity. A transport
model is developed which simulates hydrodynamically and ther-
mally fully-developed flow in a REV. To solve the transport equa-
tions we adopt a numerical solution strategy that uses a
generalized immersed boundary method on a Cartesian grid, which
greatly simplifies the simulation of heat and fluid flow in geomet-
rically complex domains. The novelty of the proposed transport
model and simulation strategy is twofold. Firstly, the proposed
transport model integrates conjugate heat transfer in the porous
media context using the immersed boundary method. This trans-
port model has not been put into practice except for problems of
heat transfer in (turbulent) fully developed wall-bounded channel
flow (see, e.g., Tiselj et al., 2001; Bejan, 1993; Incropera and
DeWitt, 1990). Secondly, application of the developed simulation
strategy allows for the direct computation of the heat transfer coef-
ficient (Nusselt number) of porous media on the basis of the pore-
scale flow, and can thus be used for macroscopic, engineering
investigations.

We determine the heat transfer coefficient of an incompressible
fluid flowing through a uniformly heated porous solid. The govern-
ing equations for fluid flow are the incompressible Navier–Stokes
equations with a modification to accommodate for ‘‘immersed

boundaries’’ (Mittal and Iaccarino, 2005). We use an immersed
boundary method by including a source term into the momentum
equation to approximate the no-slip condition on the solid–fluid
interface (Lopez Penha et al., 2011). This source term allows us
to directly enforce the boundary condition through the governing
equations (Mittal and Iaccarino, 2005). As a consequence, we can
avoid the cumbersome process of generating a body-conforming
grid. This technique provides a simple and effective way to approx-
imate the flow of fluid through a geometrically complex domain.
For the thermal coupling, we consider a general advection–diffu-
sion equation for the fluid phase and a diffusion equation with a
constant volumetric heat source for the solid phase. This heat
transfer problem can be interpreted as an idealization of a setting
where the heat generated in the solid varies ‘‘slowly’’ with respect
to the space and time scales of the developing flow field.

The proposed computational method will be validated by simu-
lating fully developed laminar flow in tubes of constant cross sec-
tion. Results on the Nusselt number will be compared with various
analytical and numerical results from literature for tubes of
rectangular cross section. We will demonstrate that the transport
model—in the limit of a large, solid phase thermal conductivity—
produces fully developed flow at a constant wall heat flux. The
numerical method is shown to be, at best, second-order accurate
for flow domains where the solid–fluid interface can be aligned
with the grid lines of the Cartesian grid. It is otherwise first-order
accurate for both the hydro-and thermodynamics.

As an application to porous media, we will simulate fully-devel-
oped flow in two structured models of porous media: an infinite
array of square rods in an inline and a staggered arrangement.
Nusselt number computations will be presented for a range of Rey-
nolds numbers and ratios of the solid-to-fluid thermal conductiv-
ity. We will demonstrate that for sufficiently small Reynolds
numbers the Nusselt number is constant. By increasing the Rey-
nolds number the Nusselt number will increase monotonically.
For the ratio of solid-to-fluid thermal conductivity Rk < 100 the
Nusselt number varies significantly (while keeping the Reynolds
number constant). As for the ratio Rk P 100, the Nusselt number
remains constant with a change in Rk. These changes are all

Nomenclature

a mean gradient of pressure
Asf solid–fluid interface
cp volumetric heat capacity = qCp

Cp specific heat capacity at constant pressure
ex unit vector along the x-axis
E total energy
f forcing function for the immersed boundary method
hsf heat transfer coefficient
Lref reference length
Nu Nusselt number = hsfLref/kf

n unit normal vector
p pressure
Pr Prandtl number = mcp,f/kf

qsf net rate of interphase heat transfer
Q volumetric heat source
Rcp volumetric heat capacity ratio = cp,s/cp,f

Rk thermal conductivity ratio = ks/kf

Re Reynolds number = urefLref/m
T temperature
t time
u, v, w velocity components in the x, y and z directions
uref reference velocity
V representative elementary volume ¼ Vs [ Vf

x, y, z components of the coordinate axes

Greek symbols
a mean gradient of temperature
� relaxation time for the immersed boundary method
C phase-indicator function
k thermal conductivity
r vector differential operator
m kinematic viscosity
/ porosity ¼ V f =V
q density

Superscripts and subscripts
( )⁄ dimensionless quantity
(�) periodic variable field
()f property of the fluid phase
()s property of the solid phase
()ref reference quantity
h if volume average over the fluid phase
h is volume average over the solid phase
h if intrinsic volume average over the fluid phase
h is intrinsic volume average over the solid phase
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attributed to a shift in the dominant physical mechanisms of heat
transfer. We will also compare our results to literature on fully-
developed flows with isothermal walls.

This paper is organized as follows: in Section 2 we describe the
transport model used for simulating fully-developed flow in
porous media. The numerical method for solving the governing
transport equations is described in Section 3. In Section 4 we
compute the Nusselt number for both the inline and staggered
arrangements of square rods. A summary of the results and the
conclusions is provided in Section 5. In Appendix B we validate
the proposed computational method using rectangular tubes.

2. Periodic model for microscopic heat transport

To understand the bulk behavior of macroscopic energy trans-
port, i.e., the behavior away from entrance or exit areas, we realize
a closure of the heat transfer coefficient using a model for micro-
scopic energy transport subject to periodic boundary conditions;
hereafter referred to conveniently as the ‘‘periodic transport mod-
el’’. In this approximation, we model the porous medium under
consideration as an infinite, three-dimensional array, with a repre-
sentative elementary volume (REV) (Bear, 1988; Dullien, 1979) of
the porous medium functioning as the repeating pore pattern
(see Fig. 1). The characteristic size L of the REV is small compared
to the macroscopic size of the full system. It is also considered
large compared to the characteristic size of the microscopic struc-
tures it contains, as to not have the periodic conditions signifi-
cantly influence the bulk behavior of the flow. The computational
domain V is taken to be of the same size as the REV and is occupied
by a fluid phase V f and a solid phase Vs. We simulate in V fully-
developed flow of an incompressible fluid through a uniformly
heated porous solid. Using the detailed solution the heat transfer
coefficient can then be obtained in terms of the material properties
and the flow conditions.

In this section we discuss in detail the periodic transport model.
As a starting point we consider the microscopic balance equations
for fluid and energy transport in V, and then rewrite them in terms
of spatially periodic field variables, i.e., velocity, pressure and tem-
perature. We will assume steady transport, and the direction of
forced convection to be solely parallel to the x-axis. All results pro-
duced can be generalized to unsteady flows and to arbitrary flow
directions.

2.1. Incompressible fluid flow

Consider the motion of an incompressible, Newtonian fluid un-
der a constant volumetric flow rate. This motion is governed by the
Navier–Stokes equations (Bird et al., 2002), expressed here in
dimensional form:

r � u ¼ 0; ð1aÞ
@u
@t
þr � ðuuÞ ¼ �rpþ mr �ruþ f ; ð1bÞ

valid for the coordinate x ¼ ðx; y; zÞT 2 V. The symbols in the equa-
tions represent: fluid velocity vector u = (u, v, w)T, pressure p � P/
qf divided by the fluid mass-density qf, kinematic viscosity m, and
vector differential operator r � (@/@x, @/@y, @/@z)T. We will use
the source term:

f � �1
�
Cu; ð2Þ

to approximate the no-slip boundary condition, i.e., u = 0, along the
solid–fluid interface, Asf, by ‘‘penalizing’’ the entire domain Vs (Lo-
pez Penha et al., 2011). It is a way of implementing the boundary
condition dynamically through the governing equations, and pro-

vides an alternate way of solving a boundary value problem (Mittal
and Iaccarino, 2005). Numerically, this approach is convenient for
the simulation of flows in complex domains as (1) is now extended
to include the solid domain Vs. The positive parameter � can be
interpreted as a relaxation time that governs the rate-of-return of
u to its equilibrium value of u = 0 in Vs. C(x) is a binary valued,
phase-indicator function, such that: C = 0 for x in the fluid domain
and C = 1 for x in the solid domain. For further details on this ap-
proach we refer to Lopez Penha et al. (2011).

Under the condition of a constant volumetric flow rate coupled
with a periodic porous medium, it is commonly assumed that in
the fully-developed state the velocity field is spatially periodic
(Moin and Kim, 1982). For example, along the x-axis, this results
in the condition:

uðxÞ ¼ uðxþ kL; y; zÞ; k 2 Z; ð3Þ

Fig. 1. Representative elementary volume (REV) of a porous medium with
characteristic length L. The infinite array of REVs is used as a model for the porous
medium through which fully-developed flow is simulated. The size of the
computational domain V is taken equivalent to that of a single REV, where
fVf ;Vsg represent the total fluid and solid volume inside V, respectively. Volumes V1

and V2 are equivalent.

96 D.J. Lopez Penha et al. / International Journal of Heat and Fluid Flow 38 (2012) 94–106



Author's personal copy

with L the length of V along the x-axis (see Fig. 1). A similar condi-
tion holds for the velocity vector along the y and z axes, each with a
period equal to the dimension of V along their respective direction.
The pressure term p is decomposed into a linear component and a
spatially periodic component (designated by the tilde):

p ¼ axþ ~p: ð4Þ

The value of a, i.e., the mean gradient of pressure in the
x-direction, is selected such that the desired flow rate is achieved
(Lopez Penha et al., 2011).

All simulations will be performed on dimensionless equations,
and we select reference scales for length Lref, velocity uref, and kine-
matic viscosity m. In dimensionless form, (1) is expressed as:

r� � u� ¼ 0; ð5aÞ
@u�

@t�
þ r� � ðu�u�Þ ¼ �ðr�~p� þ a�exÞ þ

1
Re
r� � r�u� � 1

��
Cu�; ð5bÞ

where the asterisk is used to designate dimensionless quantities.
Eq. (5) represents a periodic model for fluid transport. The Reynolds
number is defined as Re = urefLref/m, and the unit vector in the direc-
tion of the x⁄-axis is represented by ex � (1,0,0)T. We solve (5), for
fu�; ~p�g, in time until a steady state is achieved, at which point
the flow is hydrodynamically fully developed.

2.2. Conjugate heat transfer

Consider the two-way transfer of heat between the solid and
the fluid domain, where the solid is being heated throughout by
a constant source of energy. The governing energy equations, writ-
ten with respect to temperature T, are given in their dimensional
form by (Bird et al., 2002):

cp;f
@Tf

@t
þr � ðucp;f Tf Þ ¼ r � ðkfrTf Þ for x 2 Vf ; ð6aÞ

cp;s
@Ts

@t
¼ r � ðksrTsÞ þ Q for x 2 Vs; ð6bÞ

where the subscripts {f, s} designate fluid and solid properties,
respectively. As for the remaining symbols: cp � qCp is the volumet-
ric heat capacity, Cp is the specific heat capacity at constant pres-
sure, k is the thermal conductivity, and Q is a constant volumetric
heat source. All material properties are assumed constant within
each phase. Along the solid–fluid interface Asf, the following condi-
tions for continuity of temperature and continuity of heat flux are
effective at all times t:

Tf ¼ Ts and kfrTf � nfs ¼ ksrTs � nfs; ð7Þ

with nfs the unit outwardly directed normal away from the fluid
phase.

To apply streamwise periodicity, we—in a similar treatment as
for p—separate the periodic component of T such that (Lu and
Hetsroni, 1995):

Tf ¼ axþ eT f and Ts ¼ axþ eT s; ð8Þ

where feT f ; eT sg represent the periodic components. The mean gradi-
ent of temperature, a, is given by:

a ¼ ð1� /ÞQ
cp;f huif

; ð9Þ

where / � V f =V is the porosity and huif is the average velocity in V
[refer to Eq. (A.4)]. Eq. (9) is determined by performing a balance of
energy in V (see Appendix A). Substituting the decompositions into
(6), a periodic model for energy transport is obtained:

cp;f
@eT f

@t
þr � ðucp;f

eT f Þ ¼ r � ðkfreT f Þ � aucp;f ; ð10aÞ

cp;s
@eT s

@t
¼ r � ðksreT sÞ þ Q : ð10bÞ

Across the solid–fluid interface, the fields feT f ; eT sg must now
satisfy:eT f ¼ eT s ð11Þ

and

kf ðreT f þ aexÞ � nfs ¼ ksðreT s þ aexÞ � nfs: ð12Þ

These conditions are directly derived from (7) and (8). It is evi-
dent from (12) that the assumed linear component of the temper-
ature only induces transport of heat across parts of the interface
that are not perpendicular to ex.

To nondimensionalize the energy equations we will select
convenient scales of reference for the variables {cp, k, T, Q}. For
the material properties, we select the fluid as the reference
phase, such that cp,ref � cp,f and kref � kf. As for the reference tem-
perature and volumetric heating rate, these are selected such
that the constant, nondimensional value of a can conveniently
be simplified to

a� ¼ ð1� /Þ
hu�if

: ð13Þ

To realize this, we know from (9) that:

a ¼ ð1� /ÞQ
cp;f huif

¼ Q ref

cp;f uref

� �
ð1� /ÞQ �

hu�if
¼ arefa�; ð14Þ

where Q = QrefQ
⁄. As T� ¼ ðaref Lref=TrefÞa�x� þ eT �, we select aref � Tref/

Lref such that after its substitution into (14):

a� ¼ Lref Q ref

Tref cp;f uref

� �
ð1� /ÞQ �

hu�if
: ð15Þ

Taking as reference Qref � Q, such that Q⁄ = 1, and taking the
dimensional term between parentheses equal to unity, yields for
the choice of Tref � LrefQ/(cp,furef) the desired result in (13). In
dimensionless form, (10) can now be written as:

@eT �f
@t�
þ r� � u�eT �f� �

¼ 1
Re Pr

r� � r�eT �f � a�u�; ð16aÞ

Rcp

@eT �s
@t�
¼ 1

Re Pr
r� � Rkr�eT �s� �

þ 1; ð16bÞ

where the Prandtl number is given by Pr � m cp,f/kf, and the ratio of
solid-to-fluid material properties by Rcp � cp;s=cp;f and Rk � ks/kf. As
for the continuity of heat flux across the solid–fluid interface, its
dimensionless form is given by:

r�eT �f þ a�ex

� �
� nfs ¼ Rk r�eT �s þ a�ex

� �
� nfs: ð17Þ

From (16) we infer that the steady state temperature fields

feT �f ; eT �sg are independent of Rcp .
Using the computed velocity field from (5), we solve (16) for the

steady-state temperature. The ‘‘total’’ temperatures fT�f ; T
�
sg are

said to be thermally fully developed under a uniform heating rate.
Given fT�f ; T

�
sg, the heat transfer coefficient is computed by a

straightforward post-processing of the temperature field. This is
the topic of the following subsection.

Note that the proposed transport model is not valid in the lim-
iting case Re ? 0. We apply a constant volumetric flow rate, which
yields a constant average velocity huif. Changing the Reynolds
number implies changing the kinematic viscosity of the fluid. In
the limit Re ? 0, the viscosity m ?1. As a consequence, when Re
approaches zero, we are dealing with an unphysical ‘‘infinite’’ vis-
cosity fluid [the parameter a, through Eq. (9), remains constant as
Re ? 0].

Many of the concepts previously discussed are analogous to
those for fully-developed flow in tubes of constant cross section.
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For a review of flows under constant wall heat flux or constant wall
temperature we refer to Bejan (1993) and Incropera and DeWitt
(1990).

2.3. Heat transfer coefficient

In a macroscopic description of heat transfer in porous media,
empiricism is often applied to describe the microscopic coupling
between the solid and fluid phases (Kaviany, 1995). In this ap-
proach the heat transfer coefficient appears as an effective trans-
port parameter in a model for the net rate of interphase heat
transfer. Before we demonstrate how to evaluate the heat transfer
coefficient from microscopic simulations, we briefly recall its defi-
nition from a closure problem in the volume-averaged energy
equations [for a more detailed treatment we refer to Kaviany
(1995) and Slattery (1972)].

In general, the derivation of a macroscopic description requires
averaging the corresponding microscopic equation over a relevant
phase fV f ;Vsgwithin the representative elementary volume VðxÞ of
a porous medium (Kaviany, 1995; Whitaker, 1999); with x the cen-
troid of V. For a quantity wf associated with the fluid phase, the
phase volume average is defined as the integral over the fluid
(Kaviany, 1995),

hwf if ðx; tÞ �
1
V

Z
Vf

wf dV ¼ /hwf i
f ðx; tÞ; ð18aÞ

where hwfif is the intrinsic phase volume average and /ðxÞ ¼ V f =V is
the porosity. Similarly, for a quantity ws associated with the solid
phase, the phase volume average is

hwsisðx; tÞ �
1
V

Z
Vs

ws dV ¼ ð1� /Þhwsi
sðx; tÞ: ð18bÞ

Applying phase volume-averaging to the governing energy
equations [Eq. (6)] yields after some manipulation (Kaviany, 1995):

cp;f
@hTf if
@t
þhr�ðucp;f Tf Þif ¼r�hkfrTf if þ

1
V

Z
Asf

kfrTf �nfs dA;

ð19aÞ

cp;s
@hTsis
@t
¼r�hksrTsisþ

1
V

Z
Asf

ksrTs �nsf dAþð1�/ÞQ ; ð19bÞ

where we have made use of the theorem for the volume average of
a divergence (Slattery, 1972; Howes and Whitaker, 1985). The inte-
gral terms in (19) represent the net rate of interphase heat transfer
within V,

qsf �
Z

Asf

kfrTf � nfs dA ¼ �
Z

Asf

ksrTs � nsf dA: ð20Þ

The last equality holds as nfs = �nsf (with nsf the unit outwardly
directed normal away from the solid phase), and due to the conti-
nuity of heat flux across the interface [Eq. (7)]. The value of qsf is
negative if there is a net stream of energy out of the fluid. As qsf

is expressed in terms of microscopic temperature gradients, a clo-
sure model must be sought that approximates qsf using macro-
scopic gradients. A commonly used model involves the heat
transfer coefficient, hsf, as an effective transport parameter (Kaviany,
1995):

qsf � hsf Asf ðhTsis � hTf if Þ: ð21Þ

The role of hsf is to describe the rate at which heat is exchanged
between phases. It is dependent on many system properties,
including: flow conditions, material properties, and geometry (Bird
et al., 2002). Its value can be computed from (21) if microscopic
information is available on the distribution of temperature inside
VðxÞ.

We approximate the macroscopic transport of heat by limiting
ourselves to periodic structures (Fig. 1b), where hsf and / are as-
sumed constant in space. The value of hsf is computed through
(21) using the solution {Tf, Ts} of (10). To compute hTsis � hTfif,
the fields {Tf, Ts} are averaged over their respective phases. The
net rate of interphase heat transfer, qsf, is in equilibrium with
the total power output of the source term, and qsf ¼ QVs ¼
Qð1� /ÞV.

To determine the dependency of hsf on the properties of the sys-
tem, we compute its dimensionless form, i.e., the Nusselt number
(Nu), which is commonly defined using the reference scale
hsf,ref � kf/Lref (Bejan, 1993; Incropera and DeWitt, 1990):

Nu ¼ hsf Lref

kf
: ð22Þ

Expressed in terms of the dimensionless variables:

Nu ¼
qsf

Asf hTsis � hTf if
� � Lref

kf
¼ ð1� /ÞV�Re Pr

A�sf hT
�
s i

s � hT�f i
f

� � : ð23Þ

Using (16), we can now determine the dependency of Nu on the
Reynolds number, Prandtl number, and on the ratio of solid-
to-fluid thermal conductivity Rk.

With the description of the transport model complete, we will
proceed with its solution strategy. We propose a strategy that
can treat porous media with complex inner structures.

3. Solution strategy

The numerical method for solving the governing transport
equations is briefly described in this section. An algorithm is
developed based on a uniform Cartesian grid and a finite-volume
method. For convenience, the algorithm is described using two
spatial dimensions; the extension to three dimensions is
straightforward.

3.1. Unified energy formulation

Before we discuss the details of the solution strategy we will, for
numerical convenience, formulate the energy equations in a way
that simplifies their discretization process later.

In line with (5), where a single equation of (mass and momen-
tum) transport is valid throughout V, we will adopt a similar for-
mulation for the energy [Eq. (16)]:

rcp

@eT
@t
þr � ½ð1� CÞurcp

eT � ¼ 1
RePr

r � rkreT� �
� arcp ð1� CÞuþ C;

ð24Þ

with space-dependent material properties

rcp ðxÞ ¼ ½1� CðxÞ� þ RcpCðxÞ ð25aÞ
rkðxÞ ¼ ½1� CðxÞ� þ RkCðxÞ: ð25bÞ

For simplicity of notation we have dropped the asterisk. The

temperature T ¼ axþ eT now satisfies: T = Tf for x 2 V f and T = Ts

for x 2 Vs. A unified formulation has the numerical advantage of
using a single discretization stencil throughout the computational
domain. This, coupled with a continuous grid across V, provides a
simple and elegant method for solving the governing transport
equations. At the same time, it also avoids the use of complex do-
main decomposition strategies.

The equation proposed in (24) is in its strong form not well
posed, as it is not valid on the interface Asf due to a jump in the
material properties. However, this equation is still convenient for
implementation purposes, and we will develop a discretization
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scheme that preserves the flux of energy across jumps in material
properties, i.e., a scheme that is consistent with (17).

In (24), we have made use of the function C(x) to identify the
location of each phase in space. The inclusion of (1 � C) as a
multiplier in the advective terms prevents ‘‘residual’’ advective-
transport of heat in the solid domain and across its surface. In
the solid domain there is a residual velocity field juj 	 1 due to
the source f (Lopez Penha et al., 2011), and as a consequence the
advective terms are made to vanish completely in this domain.

3.2. Cartesian grid representation

To construct a computational domain we cover V with a uni-
form Cartesian grid (see Fig. 2a). For general domains, the grid
will not be aligned with the surface of the solid bodies. To sim-
plify the enforcement of the no-slip boundary condition on the
surface, we choose to locally reshape the surface such that it
coincides with the grid lines; thus forming a ‘‘pixelated’’ domain
(see Fig. 2b). In this way, each grid cell is identified with a phase,
i.e., being either a ‘‘solid cell’’ or a ‘‘fluid cell’’ (Lopez Penha et al.,
2011). Several approaches can be taken to reshape the surface.
We choose to determine whether a grid cell is solid or fluid by
looking at its center-point value: if the center of a grid cell lies
within the solid domain, the grid cell is considered solid; other-
wise, it is fluid. This technique is suitable for applications involv-
ing uncertainties in the surface location and shape. For example, a
realistic porous medium whose pore configuration can only be
obtained using computer imaging techniques, such as X-ray com-
puted tomography (Wildenschild et al., 2002). The available data
set usually comprises of two-dimensional arrays of gray-scale
pixels, representing cross-sectional cuts through the medium,
and whose spatial resolution (and contrast) largely determines
the ‘‘quality’’ of the solid surface (Wildenschild et al., 2002).

Each grid cell V ij ¼ ½xi�1; xi� 
 ½yj�1; yj� in the computational do-
main is numbered by indices i and j which count cell vertex posi-
tions along the horizontal and vertical directions, respectively (see
Fig. 3). The indices are taken from the set i 2 {1, . . . ,nx} and
j 2 {1, . . . ,ny}, and the dimensions of the rectangular cells are Dx
and Dy. A staggered layout of the field variables is adopted, with
the scalars f~p; eTgij located in the cell centers and the velocity com-
ponents {u, v}ij on the cell faces [we adopt the notation as in Verst-
appen and Veldman (2003)]. We identify grid cells according to
their phase using C:

Cij ¼
0; if xi�1

2
; yj�1

2

� �
2 V f

1; if xi�1
2
; yj�1

2

� �
2 Vs;

8><>: ð26Þ

where the coordinate (xi�1/2, yj�1/2) is located at the center of cell V ij.
Using C it is also possible to define new ‘‘functions’’ that identify
cell faces. We will define two convenient pairs of functions (see
Fig. 3). The first pair identifies cell faces, vertical and horizontal, that
have on either of its sides a solid cell, i.e., for vertical faces
(i = constant)

CðiÞij �maxfCij;Ciþ1;jg; ð27aÞ

and for horizontal faces (j = constant)

CðjÞij �maxfCij;Ci;jþ1g: ð27bÞ

It is for the faces {C(i), C(j)}ij = 1 that the source term f activates,
and drives the velocities {u, v}ij to zero. On all other faces the
source term vanishes. The second pair of functions identifies cell
faces that form part of the interface Asf, i.e., faces that border both
a solid and a fluid cell. For the vertical and horizontal faces we
define

IðiÞij �
0; if Cij ¼ Ciþ1;j

1; if Cij – Ciþ1;j

�
and IðjÞij �

0; if Cij ¼ Ci;jþ1;

1; if Cij – Ci;jþ1;

�
ð28Þ

respectively. With (28) we can compute an approximation to the to-
tal interfacial area:

Asf �
X

i;j

DyIðiÞij þ DxIðjÞij : ð29Þ

For cases where the actual geometry is aligned with the grid the
value of Asf is exact.

Eqs. (5) and (24) are solved using a finite-volume method and
an explicit time-integrator (Lopez Penha, 2012). For integrating
in time we use a second-order scheme that closely resembles the
two-step Adams–Bashforth method Verstappen and Veldman

(a) REV. (b) Cartesian grid representation.

Fig. 2. Representative elementary volume V and its representation on a uniform Cartesian grid. Grid cells are identified as ‘‘solid cells’’ (colored gray) or as ‘‘fluid cells’’.

Fig. 3. Grid cells with a staggered arrangement of the field variables.
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(2003), as this method is low-cost and has a large region of stabil-
ity. To avoid excessive constraining of the time step for numerical
stability, we treat the source term f, in (5), in an implicit way. As for
the spatial discretization, it is generally first-order accurate. Spe-
cific details concerning the discretization process can be found in
Lopez Penha (2012).

4. Fully developed laminar flow in structured porous media

This section is dedicated to the simulation of fully developed
laminar flow in two spatially periodic models of porous media,
i.e., an inline and a staggered arrangement of square rods (see
Fig. 4). These domains represent models for fibrous porous media
and have been studied in great detail in Kuwahara et al. (2001),
Nakayama et al. (2002, 2004), Sahraoui et al. (1994), and Kuwahara
et al. (2000), where fully-developed flows have been simulated
using constant wall temperature. For both porous media we will
study the effects of the Reynolds number and Rk on the Nusselt
number. We also compare the results with those presented in
(Kuwahara et al., 2000, 2001; Nakayama et al., 2002, 2004).

4.1. Inline arrangement of square rods

4.1.1. Limiting case of a large thermal conductivity ratio
As a basic model for a porous medium we consider an inline

arrangement of infinitely extending square rods, with a cross sec-
tion of the representative elementary volume V as illustrated in
Fig. 4a. The volume V, of dimension H 
 H 
 H, has a porosity of
/ = 1 � (D/H)2 = 3/4 (taking D = H/2). Depth is created in V by
extruding the cross section along the z-axis over a length H. As-
sume the direction of flow is along the x-axis with a constant mac-
roscopic velocity huif > 0 such that the volumetric flow rate in V is
given by huifH2 (Lopez Penha et al., 2011). Taking as reference
scales Lref = H and uref = jhuifj, the fully-developed temperature T
is completely determined by the Reynolds number, the Prandtl
number and by the material properties. As for the material proper-
ties, since the volumetric heat capacity ratio Rcp does not influence
the steady state heat transfer, see (16), we only need to investigate
the role of Rk. This independency on Rcp has been verified numeri-
cally. We consider first the limiting case of a ‘‘large’’ thermal
conductivity ratio Rk = 104, along with Pr = 1, and a constant volu-
metric flow rate such that the dimensionless velocity hu if = 1. The
value of a = (1 � /)/huif = 1/4, and the Reynolds number will vary
over the range 0.01 6 Re 6 200. By selecting a sufficiently large
Rk we can make a direct comparison between our approach to com-
puting the Nusselt number and that presented in Nakayama et al.
(2002, 2004) for a constant wall temperature. With this choice of
properties the temperature T will be uniform throughout each
rod, but such that subsequent rods downstream have increasing
temperatures. In a comparison between approaches we can

therefore not expect the Nusselt number predictions to be similar,
but like for fully-developed flow in tubes at constant heat flux or
wall temperature (Bejan, 1993; Incropera and DeWitt, 1990), they
are expected to be of the same order. Numerical experiments have
shown that the selected value of 104 is an approximate lower limit
for the classification of ‘‘large’’, as subsequent larger values have
shown to have no effect on the value of the Nusselt number. We
compute the temperature field T by solving for its periodic compo-
nent eT in V [see Eq. (24)].

We approximate V on a uniform Cartesian grid using three grid
resolutions nx 
 ny 
 nz, including: a coarse 32 
 32 
 4, a medium
64 
 64 
 4, and a fine 128 
 128 
 4 grid. The grid spacings are
D x = 1/nx, Dy = 1/ny, and Dz = 1/nz. Along the z-axis we maintain
a grid resolution of nz = 4 as the flow field is essentially two-
dimensional, and is therefore completely independent of z. At a
porosity of / = 3/4 the surface of the solid domain can always be
aligned with the grid lines. For example, at a grid resolution of
32 
 32 
 4, the length D can be expressed as D = H/2 = 1/2 = Dx
ND, where ND represents the total number of grid cells spanning

Fig. 4. Cross sections of representative elementary volumes V for two models of
porous media. The solid squares in the (x, y)-plane are extruded along the z-axis
over a length H to form a three-dimensional volume. The corner points of V are
located at the centers of the squares.
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Fig. 5. Contour lines of fully-developed velocity magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

in an inline
arrangement of square rods (/ = 3/4). The dashed lines represent the solid–fluid
interface. Direction of flow is along the x-axis and the grid resolution is
nx 
 ny = 64 
 64.
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the length D. Solving for ND gives, ND = 1/(2Dx) = nx/2 = 16, an inte-
ger value; therefore, setting the surface of the solid domain on the
faces of grid cells.

Using the medium sized grid, we present typical results for the
velocity and temperature fields {u, T} in Figs. 5 and 6, respectively,
for the Reynolds numbers Re 2 {1,100}. In Fig. 6 we also include
the intermediate Re = 10. These simulations were carried out using
a sufficiently small time step, Dt = 5 
 10�6, so as to maintain
numerical stability and to have a negligible velocity field in the
solid domain. In Fig. 5 the magnitude of velocity,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

, is pre-
sented in the (x, y)-plane. The dashed lines represent the solid–
fluid interface. With increasing Re the flow becomes more rectilin-
ear and resembles Poiseuille flow between two parallel plates
(Nakayama et al., 2002). The distribution of the fully-developed
temperature in Fig. 6 is strongly dependent on the Reynolds num-
ber. At Re = 1 the distribution of T is relatively constant along y,
whereas the distribution becomes parabolic at Re = 100 (cf. Bejan,
1993 on the distribution of T for fully-developed flow in a tube
with constant heat flux). Inertial forces at Re = 1 are small, and
the transport of heat by diffusion is dominant, resulting in the
monotonic increase of the temperature with x. As the Reynolds
number increases the advective component of transport becomes
dominant and deep troughs of large temperature variation develop
between the surfaces of opposing rods. For both cases of the Rey-
nolds number we notice a uniform temperature distribution within
each rod, with the downstream temperature being at a larger va-
lue. The temperature field T has been transformed such that
0 6 T 6 1 in order to emphasize the areas with large relative differ-
ences in temperature.

To measure the quality of the simulated flow field we compute
the Nusselt number on several refinements of the grid. Table 1 lists
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Fig. 6. Contour lines of fully-developed temperature T in an inline arrangement of
square rods. The temperature has been transformed such that 0 6 T 6 1. The
porosity / = 3/4, Rk = 104, and Pr = 1. Direction of flow is along the x-axis and the
grid resolution is nx 
 ny = 64 
 64.

Table 1
Nusselt number as a function of the Reynolds number and the spatial resolution for
the inline arrangement of square rods. The porosity / = 3/4, Rk = 104, and Pr = 1.

nx 
 ny 
 nz Re

0.1 1 10 100

32 
 32 
 4 8.14 8.18 8.91 10.63
64 
 64 
 4 8.23 8.26 8.99 10.72

128 
 128 
 4 8.26 8.29 9.03 10.75
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Fig. 7. Nusselt number for fully developed laminar flow in an inline arrangement of
square rods as a function of the Reynolds number (/ = 3/4, Pr = 1). The solid line
represents Rk = 104. All computations were carried out on the grid nx 
 ny = 64 
 64.
The dashed line represents Nusselt numbers at constant wall temperature (Nakay-
ama et al., 2002, 2004).
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the Nusselt number as a function of the Reynolds number and the
grid resolution. As the results on the medium grid are all within
�0.5% of the solution on the fine grid, we present all further results
using a grid resolution in the (x, y)-plane of nx 
 ny = 64 
 64.

Fig. 7 shows the Nusselt number for a range of Reynolds num-
bers. The solid line represents the limiting case of a large thermal
conductivity ratio, and the line increases monotonically with Re.
This increase in the Nusselt number represents the increase in effi-
ciency with which heat is extracted from the solid at higher Re.
That is, compared to a small Re, a larger Re requires a smaller
‘‘driving force’’ (hTs is � hTfif) to obtain a similar rate of interphase
heat transfer. Also presented in Fig. 7 are the Nusselt numbers
(dashed line) for fully-developed flow at constant wall tempera-
ture, as presented in Nakayama et al. (2002, 2004). A comparison
between the two lines reveals similar behavior for Re > 10 (advec-
tion dominant regime). This similarity becomes evident when we
consider the distribution of the local Nusselt number along the
surface of a single rod in Fig. 8c. The local Nusselt number, Nuh,
is defined using the local heat flux at the surface (see Fig. 8a):

Nuh ¼
�rkrT � nsf

hTsis � hTf if
; ð30Þ

and is positive if energy is transported from the solid into the fluid.
By taking the surface average of Nuh the Nusselt number Nu is ob-
tained. The distribution lines of Nuh for Re > 10 display similar fea-
tures to those presented in Kaviany (1995) and Sahraoui et al.
(1994). For example, as the flow becomes more rectilinear with
increasing Re the local Nusselt number increases along the top
and bottom surfaces. The opposite holds true for the left and right
surfaces (up-and downstream surfaces, respectively), showing a de-
crease in their contribution to the Nusselt number. Also noticeable
is a strong contribution to the overall heat transfer by the sharp cor-
ners on the upstream side of the rod.

A large difference in behavior is seen between the lines in Fig. 7
when Re < 10, where for Re ? 0 the dashed line increases before
leveling off at Nu � 12. This increase is attributed to the increase
in the local Nusselt number along the upstream side of the rod
through advection (Kaviany, 1995; Sahraoui et al., 1994). As for
the solid line, a continued decrease is seen prior to its leveling at
Nu � 8. This behavior is attributed to the influx of energy into
the solid, as is shown in Fig. 8b by the negative values of Nuh along
the downstream side of the rod (�90� < h < 90�). The fundamental
difference between the two approaches in Fig. 7 is the ‘‘applied’’
temperature condition along the solid–fluid interface. Under uni-
form heating of the solid there is a non-zero difference in temper-
ature between rods in the streamwise direction—a difference
which vanishes under constant wall temperature. It is this differ-
ence which for Re ? 0 drives the transfer of heat in the upstream
direction through the dominance of diffusive transport. A distinc-
tion can be made between a strongly diffusive regime Re 6 0.1,
where the Nusselt number is constant, and a transition regime
0.1 < Re 6 10, where the Nusselt number increases rapidly due to
a stronger contribution from the local velocity field to the extrac-
tion of heat.

4.1.2. Effect of varying the thermal conductivity ratio
To investigate the effect a change in the thermal conductivity

ratio has on the Nusselt number, we select Rk 2 {100, . . . ,104}. We
limit the selected values such that ks P kf. By experimenting with
a wide range of values for Rk we can investigate the significance
a spread in the ratio of the solid-to-fluid thermal conductivity
has on the rate of interphase heat exchange. Table 2 presents the
values for the Nusselt number at Re = 1. We observe that for
Rk P 100 there is almost no variation in the value of Nu. For
Rk < 100, however, a strong variation is seen, and Nu decreases

Fig. 8. Polar representation of the local Nusselt number (Nuh) distribution on the
surface of a single rod for the inline arrangement (/ = 3/4, Rk = 104, Pr = 1). Dash-dot
lines represent the lowest value of Re, with subsequent lines increasing in Re up to
the highest values represented with dashed lines.

102 D.J. Lopez Penha et al. / International Journal of Heat and Fluid Flow 38 (2012) 94–106



Author's personal copy

with decreasing values of Rk. We can argue for this distinction in
behavior by considering the dominant physical mechanism of the
system when Rk > 100 and when Rk < 100:

� For Rk > 100, the thermal conductivity of the solid is much larger
than that of the fluid. As energy diffuses more quickly through-
out the solid, the fully-developed temperature field Ts is likely
to be uniform in the interior of the domain, and a change in
Rk will unlikely alter this steady state much. Therefore, the Nus-
selt number is also not likely to be sensitive to a change in Rk.
Also, as a consequence of the large difference in thermal con-
ductivities, a high rate of heat transfer develops across the
solid–fluid interface due to a large thermal gradient in the fluid.
The Nusselt is therefore larger than for the case when Rk < 100.
� For Rk < 100, the rate of conduction in the fluid is now compara-

ble to that of the solid, and the temperature in the interior of the
solid is more likely to be nonuniform. As the thermal conductiv-
ities approach the same order of magnitude, the temperature
gradients across the interface diminish as the temperature field
T transitions smoothly from one phase to the other. Conse-
quently, the Nusselt number decreases with decreasing Rk.

Table 3 presents values of Nu at Re = 100 to investigate the ef-
fect of inertia on the variation of Nu with Rk. The behavior is similar
as for the case where Re = 1, but changes in Nu are stronger with
the variation in Rk. For example, whereas for Re = 1 the relative dif-
ference between the maximum and minimum values of Nu is
(8.26 � 5.03)/5.03 � 64%, for Re = 100 this difference is �91%.
Changing the Reynolds number has changed the dynamics of the
flow field, and therefore the advective contribution to heat trans-
fer. The contribution of inertia to the variation of Nu with Rk is
significant.

4.2. Staggered arrangement of square rods

Consider the staggered arrangement as presented in Fig. 4b, for
which V ¼ 2H 
 H 
 H (Lopez Penha et al., 2011). The porosity is
constant at / = 1 � (D/H)2 = 3/4. As reference scales we take Lref = H
and uref = jhuifj. Under a constant volumetric flow rate such that
huif = 1 (implying a = 1/4), and Pr = 1, we study the dependence
of Nu on the local Reynolds number and on Rk. The domain V is
approximated on a uniform Cartesian grid of fixed spatial resolu-
tion nx 
 ny 
 nz = 128 
 64 
 4.

Figs. 9 and 10 present simulation results for fully developed {u,
T}-fields at Re 2 {1,100} and Rk = 104. The velocity field is quite sym-
metric about the x = 1 plane for Re = 1, whereas it becomes more
complex at Re = 100 and remains symmetric only about the y = 1/
2 plane. Fig. 10 also indicates a strong dependence of the

temperature distribution on the Reynolds number. At Re = 1, the
distribution across the y-axis is approximately constant in the open
fluid area and parabolic, with small amplitude, between opposing
horizontal walls. The distribution at Re = 100 shows strong devia-
tions from the linear profile, ax, where deep troughs exist between
opposing walls. The contours of temperature at Re = 100 largely
coincide with the data in Kuwahara et al. (2000, 2001).

Variations of Nu with the Reynolds number are presented in
Fig. 11 for 0.01 6 Re 6 100. The solid line represents the values
for Rk = 104. For comparison we have included values of Nu for
the inline arrangement [dotted line with (�)-markers], as presented
in Fig. 7. Their behavior is similar, with a constant value of Nu for
Re 6 1, and algebraic growth for Re 1. Whereas the inline
arrangement grows more quickly up to Re � 10, the staggered
arrangement has a much higher growth rate for Re > 10. Also in-
cluded in Fig. 11 is the graph of Nu for constant wall temperature
[dashed line with (
)-markers], as presented in Kuwahara et al.
(2000). Initially, its behavior as compared to the solid line is differ-
ent (Re < 20). For Re P 20 they are almost identical. This behavior
can be motivated using similar arguments as for the inline
arrangement.

Table 4 presents values of the Nusselt number at Re = 1 for Rk-

2 {100, . . . ,104}. Similar to the inline arrangement, the Nusselt
number remains approximately constant for Rk P 100, and varies
significantly for Rk < 100.

In comparing both transport models, that for uniform heating
and uniform wall temperature (Kuwahara et al., 2000, 2001;

Table 2
Nusselt number of an inline arrangement of square rods at various values of Rk

(Re = 1, Pr = 1).

Rk

104 103 102 101 100

Nu 8.26 8.26 8.20 7.72 5.03

Table 3
Nusselt number of an inline arrangement of square rods at various values of Rk

(Re = 100, Pr = 1).

Rk

104 103 102 101 100

Nu 10.72 10.72 10.60 9.68 5.60
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Fig. 9. Contour lines of fully-developed velocity magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

in an
staggered arrangement of square rods (/ = 3/4). The dashed lines represent the
solid–fluid interface. Direction of flow is along the x-axis and the grid resolution is
nx 
 ny = 128 
 64.
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Nakayama et al., 2002, 2004), we can conclude that for both the in-
line and staggered arrangements these models are very similar for
Re P 10 (inertial regime) and Rk > 100.

5. Conclusions

A computational method was developed for approximating the
heat transfer coefficient of fully-developed flow in porous media.
We developed a periodic transport model for incompressible fluids
and conjugate heat transfer together with a numerical method for
solving the model equations. The proposed method can be used as
a computational aid to study the effects of pore-scale energy trans-
port on its macroscopic behavior for cases where geometrically
complex flow domains and interphase thermal coupling are
important.

Fully-developed flow through porous media with uniform heat-
ing in the solid was considered. Using a periodic, representative
elementary volume of the porous medium, we modeled the flow
of an incompressible fluid using a volume-penalizing immersed
boundary method. Volume penalization implements the no-slip
condition on the surface of solid domains through a source term
in the momentum equation, thereby simplifying the simulation
of fluid flow in complex domains. Thermal coupling between the
solid and fluid phase was realized using a unified energy formula-
tion, allowing for advective–diffusive transport of heat in the fluid
and diffusive transport with uniform heating in the solid. Using a
Cartesian grid representation of the physical domain a simulation
strategy was developed that is both easy to implement and utilize,
as it does not require a body-conforming grid and uses a single dis-
cretization stencil. With the proposed method we were able to
study the effect of system parameters on the heat transfer
coefficient.

The validity and accuracy of the method was determined by
performing simulations of fully developed flow in tubes of rectan-
gular cross section with uniform wall heat flux. Accurate results
were obtained for flow domains that were aligned with the grid,
showing second-order convergence of the field variables. Com-
puted Nusselt number predictions were accurate for very modest
grid resolutions, with a maximum relative error of �3% for flow
in a square tube with 16 
 16 grid points in the cross section.

We studied the effects of various system parameters on the
Nusselt number for both an inline and a staggered arrangement
of square rods. For the case of a large thermal conductivity ratio
Rk = 104, we computed the Nusselt number as a function of the
Reynolds number and compared the results with those obtained
using a model for constant wall temperature (Kuwahara et al.,
2000, 2001; Nakayama et al., 2002, 2004). The results agreed well
for Reynolds numbers Re P 10, with the inline arrangement show-
ing a maximal difference of �8% up to Re = 200. For the staggered
arrangement, the two models were almost identical for
10 < Re 6 100. In both applications, within the inertial regime
(Re P 10) there was no significant difference between the two
transport models on the behavior of the Nusselt number or its va-
lue. There was, however, a significant difference within the viscous
regime, Re < 10. Numerical experiments performed using different
values of Rk have shown for both the inline and staggered arrange-
ments that the Nusselt number was approximately constant for
Rk P 100 (under constant Re). For values of Rk < 100, the Nusselt
number varied significantly.

Current research is focusing on further improvements in the
simulation accuracy of transport processes in complex geometries.
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Fig. 10. Contour lines of fully-developed temperature T in a staggered arrangement
of square rods. The temperature has been transformed such that 0 6 T 6 1. The
porosity / = 3/4, Rk = 104, and Pr = 1. Direction of flow is along the x-axis and the
grid resolution is nx 
 ny = 128 
 64.
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Fig. 11. Nusselt number for fully developed laminar flow in a staggered arrange-
ment of square rods as a function of the Reynolds number (/ = 3/4, Pr = 1). The (�)-
markers represent Rk = 104 for the inline (dotted line) and staggered arrangements
(solid line). All computations were carried out on the grid nx 
 ny = 128 
 64. The
(
)-markers represent Nusselt numbers at constant wall temperature for the inline
(dotted line Nakayama et al., 2002, 2004) and staggered arrangements (dashed line
Kuwahara et al., 2000).

Table 4
Nusselt number of a staggered arrangement of square rods at various values of Rk

(Re = 1, Pr = 1).

Rk

104 103 102 101 100

Nu 9.03 9.03 8.97 8.41 5.35
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These improvements will generalize the applicability of the devel-
oped method to arbitrary porous media geometries (not necessar-
ily aligned with the grid), as the current Cartesian grid
representation has limitations for such cases when predicting the
heat transfer properties accurately.
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Appendix A. Deriving the value of a

To obtain a fully-developed state, the value of a is selected such
that the flow of heat out of the domain V must balance the influx
and the generation of heat in the domain. If such a balance is not
satisfied, the energy of the solid and the fluid subsystems will drift,
and a steady state cannot be obtained. A balance requires the time
rate-of-change of the total energy in V, i.e., Esf, to vanish:

dEsf

dt
¼ d

dt

Z
Vf

cp;f Tf dV þ
Z
Vs

cp;sTs dV

 !
� dEf

dt
þ dEs

dt
¼ 0: ðA:1Þ

We express the rate-of-change of total fluid energy as follows:

dEf

dt
¼
Z
Vf

cp;f
@

@t
ðaxþ eT f Þ dV ¼

Z
Vf

cp;f
@eT f

@t
dV

¼
Z
Vf

½�r � ðucp;f
eT f Þ þ r � ðkfreT f Þ� dV �

Z
Vf

aucp;f dV ; ðA:2Þ

where we have utilized (8) and the fact that in the steady state
da/dt = 0. The final step was carried out through the substitution
of (10a). Continuing from (A.2), we can rewrite the integrals to
obtain:

dEf

dt
¼
Z
@Vf

½�ðu � nfsÞcp;f
eT f þ kfreT f � nfs�dA� acp;f huifV; ðA:3Þ

where the divergence theorem was used to convert the integral
over V f of the advective and diffusive terms to an integral over its
surface @Vf . We have also simplified the volume integral of aucp,f

using the average velocity in V,

huif ¼
1
V

Z
Vf

u dV : ðA:4Þ

In (A.3), the surface integral of �ðu � nfsÞcp;f
eT f vanishes com-

pletely due to the periodicity of fu; eT f g and due to the no-slip con-
dition on the interface Asf � @Vs \ @V f . As for the integral of
kfreT f � nfs, its contribution is only through the integral over Asf.
As a consequence, (A.3) reduces to:

dEf

dt
¼
Z

Asf

kfreT f � nfs dA� acp;f huifV: ðA:5Þ

In a similar treatment, the rate-of-change of the total solid en-
ergy can be expressed as:

dEs

dt
¼
Z
Vs

cp;s
@eT s

@t
dV ¼

Z
Asf

ksreT s � nsf dAþ QVs: ðA:6Þ

We now solve for the value of a by invoking the energy balance:

dEf

dt
þdEs

dt
¼
Z

Asf

ðkfreT f �nfsþksreT s �nsf ÞdA�acp;f huifVþQVs¼0:

ðA:7Þ

Simplifications can be made by noticing that:Z
Asf

ðkfreT f � nfs þ ksreT s � nsf Þ dA ¼
Z

Asf

aðks � kf Þex � nfs dA

¼ �aðks � kf Þ
Z
Vs

r � ex dV ¼ 0: ðA:8Þ

The first equality is obtained by using the continuity of heat flux
at the interface [Eq. (12)] and the fact that nfs = �nsf. The second
equality is obtained by converting the surface integral into a vol-
ume integral over Vs using the divergence theorem. The final inte-
gral term now vanishes by noticing that the divergence of the
vector field ex(x) = (1,0,0)T is zero. The value of a can now be ex-
pressed as:

a ¼ ð1� /ÞQ
cp;f huif

; ðA:9Þ

where ð1� /Þ ¼ Vs=V. To maintain energy balance within V, a bal-
ance must occur between the total rate of energy produced in the
solid, QVs, and the total rate of energy advected ‘‘away’’ from V
by the fluid, acp;f huifV.

Appendix B. Fully developed laminar flow in rectangular tubes

To confirm the validity and accuracy of the computational mod-
el we simulate fully developed laminar flow in tubes of constant
cross section. Flow in tubes of various cross sections and thermal
wall boundary conditions are well documented in the literature,
see for example Bejan (1993) and Incropera and DeWitt (1990).
We specifically consider tubes of rectangular cross section with a
constant wall heat flux in the axial (flow) direction. In case of
fully-developed flow the wall temperature and bulk fluid temper-
ature increase linearly along the tube’s length (Bejan, 1993; Incrop-
era and DeWitt, 1990). We simulate this steady state by
representing a tube segment on a periodic computational domain.

Assume a computational domain V ¼ L
 ðH þ 2dyÞ 
 ðW þ 2dzÞ
that includes the tube wall, as shown in Fig. B.12. The inner tube
has a height H and width W, and L is the length of the tube segment
along the x-axis. The constant wall thickness along the y and z-axis
is given by dy and dz, respectively. The inclusion of a wall domain is
a mere numerical necessity for implementing wall boundary con-

Fig. B.12. Cross section of a rectangular tube of height H and width W in the
(y, z)-plane. Along the x-axis the cross section is constant. The computational
domain is constructed using a Cartesian grid of uniform spacing that includes both
the inner tube domain (white grid cells) and the outer wall domain (gray grid cells).
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ditions, i.e., no-slip velocity along the inner walls of the tube and a
constant wall heat flux. The actual ‘‘thickness’’ of this domain (in
terms of grid cells) is irrelevant, and is kept to a minimum as to in-
clude more grid cells into the fluid domain. We represent V on a
Cartesian grid of resolution nx 
 ny 
 nz, with uniform spacing
{Dx, Dy, Dz} in each direction. The wall thickness is expressed
numerically using the width of two grid cells, i.e., dy = 2Dy and
dz = 2Dz. The grid spacings are defined as: Dx = L/nx, Dy = H/
(ny � 4) and Dz = W/(nz � 4).

We solve the periodic transport model with the following refer-
ence scales: tube height Lref = H and average streamwise velocity
uref = jhuifj. To achieve a uniformly increasing temperature profile
within the tube wall (Bejan, 1993; Incropera and DeWitt, 1990),
i.e., where there is no variation of temperature in the wall normal
direction, we select a sufficiently large thermal conductivity ratio,
Rk = 104. We set Re = Pr = 1, and assume a constant volumetric flow
rate inside the tube such that huif = 1.

In Table B.5, simulation results for the Nusselt numbers are
compared with reference results from literature (Bejan, 1993; Incr-
opera and DeWitt, 1990) for three cases of the width-to-height ra-
tio W/H 2 {1,2,1}. For W/H =1, the flow inside the tube
resembles Poiseuille flow between two parallel plates (Batchelor,
2002). The Nusselt number, NuD, is computed using the hydraulic
diameter D � 4Ac=P as the reference length, where Ac and P are
the flow cross-sectional area and the wetted tube perimeter,
respectively. For flow in tubes with a constant wall heat flux it is
common to compute the heat transfer coefficient using the differ-
ence between the wall temperature and the bulk fluid temperature
(Incropera and DeWitt, 1990). We compute NuD at three different
spatial resolutions and quantify the accuracy of the results using
the relative error. In the streamwise direction we maintain a con-
stant resolution of nx = 4, as the cross section remains constant
downstream. It is evident from Table B.5 that the computed

Nusselt numbers converge rapidly for tubes that are aligned with
the grid. At fairly low spatial resolutions the errors are already be-
low 3%.
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Table B.5
Effect of grid resolution on the Nusselt number NuD (based on the hydraulic diameter
D) for fully developed laminar flow in rectangular tubes. Relative errors in % [relative
to Bejan (1993) and Incropera and DeWitt (1990)] are denoted by U(NuD). The width-
to-height ratios of the tubes are given by W/H 2 {1,2,1}.

W/H D/H NuD U(NuD) (%) nx 
 ny 
 nz

1 3.694 2.21 4 
 16 
 16
3.625 0.30 4 
 32 
 32
3.612 �0.06 4 
 64 
 64

1 3.614 – Bejan (1993)

2 4.170 1.21 4 
 16 
 32
4.133 0.32 4 
 32 
 64
4.125 0.12 4 
 64 
 128

4/3 4.12 – Incropera and DeWitt (1990)

1 8.275 0.49 4 
 16 
 4
8.243 0.10 4 
 32 
 4
8.237 0.02 4 
 64 
 4

2 8.235 – Bejan (1993)
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