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n for the probability distribution
functions of forces in soft particle packings†

Kuniyasu Saitoh,* Vanessa Magnanimo and Stefan Luding
We study the microscopic response of force-chain networks in jam-

med soft particles to quasi-static isotropic (de)compressions by

molecular dynamics simulations. We show that not only contacts but

also interparticle gaps between the nearest neighbors must be

considered for the stochastic evolution of the probability distribution

functions (PDFs) of forces, where the mutual exchange of contacts

and interparticle gaps, i.e. opening and closing contacts, are also

crucial to the incremental system behavior. By numerically deter-

mining the transition rates for all changes of contacts and gaps, we

formulate a Master equation for the PDFs of forces, where the insight

one gets from the transition rates is striking: the mean change of

forces reflects non-affine system responses, while their fluctuations

obey uncorrelated Gaussian statistics. In contrast, interparticle gaps

react mostly affine in average, but imply multi-scale correlations

according to a much wider stable distribution function.
Fig. 1 (a) Sketch of the generalized force-chain network with contacts
(red lines) and virtual contacts (blue lines), where overlaps are defined
as positive and negative, respectively. The widths of red lines are
proportional to the strength of forces. (b) The PDFs of scaled overlaps,
Pf(x) (squares), Pf+df(x

affine) (triangles), and Pf+df(x0) (circles), for f � fJ
�3 �3
Quasi-static deformations of so particles, e.g. glasses, colloids,
emulsions, foams, and granular materials, have been widely
investigated because of their signicant importance in industry
and science. However, many challenges of describing their
macroscopic behaviors still remain due to disordered congu-
rations, complex dynamics, etc.1 At the microscopic scale,
mechanical responses of so particle packings are probed as a
reconstruction of force-chain networks,2,3 where complicated
non-affine displacements of particles cause the “recombina-
tion” of force-chains, i.e. opening and closing contacts.4 Once a
macroscopic quantity is dened as a statistical average in force-
chains, e.g. the stress tensor, elastic moduli, etc., its non-trivial
response to quasi-static deformations (i.e. non-affine response)
is governed by the change of the probability distribution func-
tion (PDF) of forces. Therefore, the PDFs in so particle pack-
ings have practical importance so that a lot of theoretical
studies (e.g. based on the stress ensemble,5 force network
, University of Twente, Drienerlolaan 5,
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ensemble,6 entropy maximization,7 and so on8,9) have been
devoted to determining their functional forms observed in
experiments10,11 and numerical simulations.12,13 In general, the
PDFs are asymmetric and cannot be described by conventional
distribution functions.14 Moreover, there is still much debate
about their tails15,16 as well as their shapes for small forces.17–19

In this study, we propose a new method for describing the
evolution of the PDFs of forces under quasi-static deformations.
¼ 1.2� 10 and df ¼ 1.2� 10 . The inset is the zoom-in to the PDFs
of virtual contacts. (c and d) Sketches of the DT around a single particle
(c) before compression and (d) after relaxation, where red solid and
blue dashed lines represent contacts and virtual contacts, respectively.
The circles are particles with centers placed on the Delaunay vertices.
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Employing the Delaunay triangulation (DT) for two-dimen-
sional packings (see Fig. 1(a)), we generalize the “overlap”
between particles (i and j) connected by a Delaunay edge as

xij h Ri + Rj � Dij, (1)

where Ri + Rj and Dij are the sum of radii and the Delaunay edge
length, respectively, so that not only contacts (xij > 0), but also
interparticle gaps or virtual contacts (xij < 0) can be included in
force-chain networks.‡We then apply quasi-static isotropic (de)
compressions to the packings, where the area fraction, f,
increases (or decreases) by df and the PDF of generalized
overlaps, eqn (1), captures the statistics of contacts and virtual
contacts aer opening or closing contacts. Our main result is
that we numerically calibrate a Master equation for the PDFs of
generalized overlaps, where transition rates of generalized
overlaps are symmetric and can be described by conventional
distribution functions. In addition, we nd that the transition
rates depend on both an applied strain step, df, and the
distance from the jamming point, f � fJ, through only one
scaling parameter, gh df/(f� fJ), where fJ is the area fraction
at jamming. The Master equation is able to describe all features
of the PDFs, e.g. their changes during compressions and
discontinuous “jumps”, i.e. restructuring around zero-overlaps,
which had been observed in a previous study.20 The application
perspective of our method is that it allows us to compute the
local energy density given by the second moment of particle
overlaps as a statistical approach to large scale problems. The
hydrostatic pressure and bulk modulus can be deduced from
the rst and second derivatives of the energy density, respec-
tively, where the derivatives are dened by the Master equation
(see the ESI†).

As a method, we use molecular dynamics (MD) simulations
of two-dimensional frictionless so particles. The normal force
between particles in contact (i and j) is given by fij ¼ kxij � h _xij
(xij > 0) with a spring constant, k, viscosity coefficient, h, and
relative speed in the normal direction, _xij. A global damping
force, fdi ¼ �hvi, proportional to the particle's velocity, vi, is also
introduced to enhance the relaxation, where the particles lose
their kinetic energy by means of inelastic contacts and global
damping. We randomly distribute a 50 : 50 binary mixture of N
particles with two kinds of radii, Ri > Rj (Ri/Rj ¼ 1.4), in a square
periodic box, where no particle touches others. We then rescale
every radius to make mechanically stable particle packings (our
method is similar to the one used in ref. 21§). In our simula-
tions, distances from jamming are determined by the known
scaling of averaged overlap,22,23 �x(f) x A(f � fJ). From our 10
samples of N ¼ 8192 particles, we estimate fJ ¼ 0.8458 + 10�4

with a critical amplitude, A ¼ (0.31 � 0.01)�s, where �s is the
mean diameter in a packing closest to the jamming point, f �
fJ ¼ 1.2 � 10�5. We also prepared 10 samples for small systems
(N ¼ 512, 2048) and 2 samples for the largest one (N ¼ 32 768),
while we only report the results of N ¼ 8192 since none of the
results depends on the system size (see the ESI†).

We apply an isotropic compression to the packings by
multiplying every radius by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ df=f

p
, where the area fraction

increases from f to f + df. At the same time, all the generalized
1254 | Soft Matter, 2015, 11, 1253–1258
overlaps, xij, change to xaffine
ij ¼ xij + (Dij/2f)df.{ However, the

particles are randomly arranged and their force balance is
broken by compression so that the system is allowed to relax to
a new mechanically stable state.k Aer relaxation, the overlaps
change to new values, x 0

ij s xaffine
ij , due to non-affine displace-

ments of the particles, where we observe four kinds of changes
(from xij to x 0

ij) as shown in Fig. 1(c) and (d): x12 > 0 and x13 <
0 change to x 0

12 > 0 and x 0
13 < 0, respectively, where they do not

change their signs and thus contacts are neither generated nor
broken. We name these changes “contact-to-contact (CC)” and
“virtual-to-virtual (VV)”, respectively. On the other hand, x14 <
0 and x15 > 0 change to x 0

14 > 0 and x 0
15 < 0, respectively, where a

new contact is generated and an existing contact is broken,
respectively. We call these changes “virtual-to-contact (VC)” and
“contact-to-virtual (CV)”, respectively.

The restructuring of the force-chains, attributed to the
changes CC, VV, VC, and CV, is well captured by the PDFs of the
generalized overlaps. Fig. 1(b) displays the PDFs of the overlaps
scaled by the averaged overlap before compression, xh xij/�x(f),
xaffine h xaffine

ij /�x(f), and x0 h xij0/�x(f), where we omit the
subscript ij from the scaled overlaps. As can be seen, the
difference between affine and non-affine deformations is clear.
The affine deformation just shis the PDF before compression
to the positive direction, while non-affine deformations
broaden the PDF in positive overlaps and reconstruct the
discontinuous “jump” around zero. Note that, however, the new
PDF in negative overlaps is comparable with that aer affine
deformation (see the inset in Fig. 1(b)).

To describe such non-affine evolution of the PDFs, we
introduce the Chapman–Kolmogorov equation,24

Pfþdfðx0
� ¼

ðN
�N

W ðx0|xÞPfðxÞdx  ; (2)

where W(x0|x) is a conditional probability distribution (CPD)

satisfying the normalization condition,
ð  N

�N

Wðx0|xÞdx0 ¼ 1. The

CPD is the probability of overlaps becoming x0 which were x

before compression (i.e. a distribution of x0 around a mean
value which depends on x). For example, the CPD for affine
deformation is a delta function, Waffine(x0|x) ¼ d(x0 � fa(x)),
where the mean value is given by a linear function of x, fa(x) ¼ x

+ Bag, with a coefficient, Ba¼ Dij/(2Af), which just shis the PDF
by Bag, i.e. Pf+df (x) ¼ Pf(x � Bag), as shown in Fig. 1(b).**

On the other hand, the CPDs for non-affine deformations
can be measured through scatter plots of the scaled overlaps,
see Fig. 2(a) and (b), where the four kinds of changes are
mapped onto four regions: (CC) x, x0 > 0, (VV) x, x0 < 0, (VC) x < 0,
x0 > 0, and (CV) x > 0, x0 < 0, respectively. In CC and VV, the scaled
overlaps aer compression distribute around mean values
which we describe by linear tting functions for x0,

fn(x) ¼ (an + 1)x + bn, (3)

where the subscripts, n ¼ c and v, represent the mean values in
CC and VV, respectively. If we introduce standard deviations of
x0 from fn(x) as vn, which are almost independent of x, the
systematic deviation from affine deformations can be
This journal is © The Royal Society of Chemistry 2015
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Fig. 2 (a and b) Scatter plots of overlaps, where the blue and red dots
are affine and non-affine responses to compression (x, xaffine) and (x,
x0), respectively. Here, df ¼ 4 � 10�5 and f � fJ ¼ 4 � 10�3 (g ¼ 0.01)
(a) and 1.2 � 10�4 (g ¼ 0.33) (b). (c) A sketch of deviations from an
affine deformation, where the blue and red solid lines represent fa(x)
(for small and large particles) and fn(x) (n ¼ c, v), respectively. (d) A
double logarithmic plot of ac against g, where df is ranged between 4
� 10�7 # df # 4 � 10�3, and different symbols represent different
distances from jamming, f � fJ, as given in the inset.

Fig. 3 Semi-logarithmic plots of the CPDs, where we fix x ¼ 1.6 (CC),
0.2 (CV), and �0.2 (VC), respectively, while we average WVV(x0|x) over
�20 # x # 0. The different symbols represent g, as given in the insets,
and the solid lines are given by eqn (4)–(7) (note the different hori-
zontal axis scales). The horizontal bars in CC and VV indicate the
widths of the distributions. The dotted line in VV is the Gaussian
distribution function, eqn (4).
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quantied by the coefficients, an, bn, and vn, as summarized in
Fig. 2(c). Note that the differences are always present, but not
visible if the applied strain is small or the system is far from
jamming, i.e. if g � 1 (Fig. 2(a)), while x0 deviates more from
fa(x) and data points are more dispersed if we increase g

(Fig. 2(b)). For example, Fig. 2(d) shows a double logarithmic
plot of ac against g, where all data collapse onto a linear scaling,
ac x Acg, with Ac ¼ 0.76 � 0.002. We also nd other scaling
relationships, av x 0, bcx Bcg, bvx Bvg, vc x Vcg, and vv x Vvg
with Bc ¼ 0.24 � 0.002, Bv ¼ 1.80 � 0.001, Vc ¼ 0.32 � 0.01, and
Vv ¼ 4.41 � 0.06, respectively, for g < 1 (see the ESI†), so that all
parameters characterizing the mean values and uctuations are
linearly scaled by g. Because av x 0 and Bv z Ba (x1.9 for small
and large particles), virtual contacts almost behave affine in
average, except for their huge uctuations (Vv[ Vc). In contrast to
CC and VV, the data of x0 in VC and CV are concentrated in narrow
regions (between the axes and the dashed lines in Fig. 2(c)),
whereas fa(x) linearly increases with x in VC and there are no data
of fa(x) in CV, i.e. the affine deformation gives closing contacts only.

We then determine the CPDs for non-affine deformations as
the distributions of scaled overlaps, x0, around their mean
values, fn(x). Fig. 3(a) shows the CPDs in CC, where all results
with a wide range of g are symmetric around fc(x) and collapse if
we multiply WCC(x0|x) and x0 � fc(x) by g and 1/g, respectively.
The solid line is the scaled Gaussian distribution function,

gWCC

�
x0|x

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pVc

2
p e�Q2=2Vc

2

; (4)
This journal is © The Royal Society of Chemistry 2015
with Q h [x0 � fc(x)]/g. Fig. 3(b) displays the CPDs in VV, where
all results are also symmetric around fv(x) and collapse as well,
aer the same scaling as for CC. The solid line here is a stable
distribution function,25

gWVV

�
x0|x

� ¼ 1

2p

ðN
�N

e�ðk|Vvz|
lþiUzÞdz ; (5)

withUh [x0 � fv(x)]/g, where z is a dimensionless wave number,
and the tting parameters are given by l ¼ 1.65 and k ¼ 0.62,
respectively, i.e. the CPD in VV is nearly the Holtsmark distri-
bution (l ¼ 3/2 and k > 0). Fig. 3(c) and (d) show the CPDs in CV
and VC approximated by exponential distributions,

gWCV

�
x0|x

� ¼ f1� ICCðxÞg e
L=qv

qv
; (6)

gWVC

�
x0|x

� ¼ f1� IVVðxÞg e
�L=qc

qc
; (7)

respectively, where L h x0/g and the dimensionless lengths are
given by qv ¼ 6.10 and qc ¼ 0.65 (qv [ qc), respectively.†† In

curly brackets on the right hand sides, ICCðxÞh1
2
erfc

�
� fcðxÞffiffiffi

2
p

vc

�

and IVVðxÞh
ð0
�N

WVVðx0|xÞdx0 are the cumulative distribution

functions of the CPDs in CC and VV, respectively, which are
required to satisfy the normalization conditions‡‡ and well
describe the dependence of the CPDs on x (see the ESI†). In
addition, if g ¼ 0, WCC ¼ WVV ¼ d(x � x0) and WCV ¼ WVC ¼ 0,§§
so that the Chapman–Kolmogorov equation (eqn (2)) does not
change the PDF without deformations.

Now, we restrict df to quite small values compared to f � fJ

and dene an innitesimal scaled strain step as dgh df/(f� fJ)
� 1. Introducing a transition rate as T(x0|x)¼ limdg/0W(x0|x)/dg,
Soft Matter, 2015, 11, 1253–1258 | 1255
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Fig. 5 (a) Coordination number, z, and (b) pressure, p, in units of the
spring constant, k, plotted against the area fraction during a
compression–decompression cycle (the arrows in (a)). The open
symbols and lines are MD simulations and numerical solutions of the
Master equation, respectively. The (red) squares and solid lines are the
results under compression, while the (blue) circles and dotted lines are
data under decompression. The straight lines in (b) are given by
numerical solutions of the Master equation without any opening and
closing contacts, i.e. WCV ¼ WVC ¼ 0, where the (black) solid and
(yellow) dotted lines are the results under compression and decom-
pression, respectively. The insets are zooms into the squares sur-
rounded by the broken lines.
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we rewrite the Chapman–Kolmogorov equation (eqn (2)) as a
Master equation,24

v

vg
Pf

�
x0
� ¼

ðN
�N

h
T
�
x0|x

�
Pf

�
x
�� T

�
x|x0

�
Pf

�
x0
�i
dx; (8)

where we use the CPDs, eqn (4)–(7), for the transition rates.
Fig. 4(a) and (b) display the numerical solutions of the Master
equation under incremental compression steps, where the
increment of area fraction is xed to df ¼ 10�5 so that dg# 2.5
� 10�3 throughout the numerical integrations. Here, the initial
condition is given by the PDF obtained throughMD simulations
with the distance from jamming, f0 � fJ ¼ 4 � 10�3. The
overlaps are scaled by the averaged overlap at the initial state,
�x(f0). Good agreement between the solutions (red solid lines)
and MD simulations (open symbols) is established for small dg
even in the tails of the PDFs (the inset in Fig. 4). In addition, the
Master equation reproduces discontinuous jumps of the PDFs
around zero-overlap as observed in Fig. 1(b). We also conrmed
that numerical solutions starting from different initial condi-
tions, e.g. a step function and a Gaussian distribution (not
consistent with mechanical stability), converge to a unique
solution with discontinuous jumps around zero (see the
ESI†).

In additional MD simulations of decompression tests with
the increment of area fraction, df < 0, we nd that the mean
values and CPDs are given by just replacing the scaling
parameter, g, with�g in eqn (3)–(7), which does not change the
form of the Master equation (eqn (8)). Therefore, the linear
scalings of the coefficients for non-affine deformations, an, bn,
and vn, are maintained under decompression, and the func-
tional forms of the CPDs are the same for both compression and
decompression (see the ESI†). However, the scattered data
under compression and decompression are not symmetric with
respect to the diagonal line, x0 ¼ x. Thus, the transition rates for
decompressions are Tg<0(x0|x) s Tg>0(x|x0), which lead to irre-
versible responses of so particle packings under cyclic (de)
compressions. Fig. 5 shows coordination number and static
pressure during cyclic compression, where we rst increase the
area fraction from f0 � fJ ¼ 4 � 10�3 to f1 � fJ ¼ 8 � 10�2 and
then decrease back to f0 � fJ with the increments df ¼ �10�4.
Fig. 4 Numerical solutions of the Master equation (the solid and
dotted lines) under compression, where (a) and (b) display the PDFs of
negative and positive overlaps, respectively. The solutions develop in
the directions indicated by the arrows. The open squares, circles, and
triangles are the PDFs obtained fromMD simulations with f� fJ ¼ 4�
10�3, 1.2� 10�2, and 4� 10�2, respectively. The insets show the semi-
logarithmic plots. Overlaps are scaled by the averaged overlap at f0 �
fJ ¼ 4 � 10�3.

1256 | Soft Matter, 2015, 11, 1253–1258
Reasonable agreement between the MD simulations and
numerical solutions of the Master equation is established (see
the ESI† for the connection between the PDFs and coordination
number or pressure). The Master equation captures irreversible
responses of these quantities (the coordination number is more
visible in Fig. 5(a)). In addition, the Master equation well
reproduces the non-linear behavior of pressure (Fig. 5(b)),3

while the Master equation without any opening and closing
contacts, i.e. numerical solutions with zero transition rates in
CV and VC, gives a linear increase and decrease of pressure
(straight lines in Fig. 5(b){{) as described in the literature
focusing on the systems close to jamming.22

In summary, we provide, for the rst time, a Master equation
for the PDFs of forces in so particle packings under quasi-
static (de)compressions, where not only the changes of contacts
and virtual contacts, but also their mutual exchange, i.e.
opening and closing contacts, are included in the transition
rates for the Master equation. The transition rates (or the CPDs
of the generalized overlaps) are symmetric around mean values
with nite widths, where both the mean and uctuations are
well characterized by a single scaling parameter, g¼ df/(f� fJ),
quantifying the degree of non-affine deformations. We conrm
that the mean values and CPDs for decompression are given by
replacing the scaling parameter with �g. The Master equation
can predict the incremental evolution of the PDFs, including
discontinuous jumps around zero, that is, the multi-particle
system is reduced to a single-contact picture, i.e. a mean-eld
like description.

The CPDs show by themselves important properties:
contacts respond in a non-affine way, especially near
jamming,21 as quantied by the scaling, e.g. ac� g¼ df/(f� fJ).
Astonishingly, their uctuations obey Gaussian statistics, indi-
cating the uncorrelated stochastic evolution of forces.9 In
contrast, the nearly Holtsmark distributions for virtual contacts
that deform affinely in average feature much broader tails.
Indicating much larger changes of interparticle gaps, this
This journal is © The Royal Society of Chemistry 2015
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implies a strongly correlated stochastic evolution over a wide
range of length-scales. The probabilities for opening and
closing contacts are exponentially decaying with distance from
zero (i.e. e�|L|/qv and e�|L|/qc in eqn (6) and (7), respectively), and
cause discontinuous jumps in the PDFs, since opening contacts
are free to open widely whereas closing contacts are affected by
repulsion, i.e. qv [ qc (see the ESI†). Note that such disconti-
nuities are specic to “static packings” and will disappear once
a nite temperature is imposed.20 Because both the Gaussian
and Holtsmark distributions are members of the stable distri-
bution family, uctuations of contacts and virtual contacts in
so particles should obey the generalized central limit
theorem,25 which has consequences for the statistical descrip-
tion of disordered systems in general. The strong deviation
from an affine approximation21 for contacts and the enormous
uctuations of overlaps26 for virtual contacts, as well as the
probabilities for opening and closing of contacts, are all
proportional to the scaled strain increment, g.

Clearly, there is the need for further studies on the physical
origin of the statistics of overlaps described above. The func-
tional forms of the CPDs can give very interesting insights into
the micro-mechanics of so particles, e.g. stochastic processes
of overlaps in force-chain networks. Now, analytic solutions or
asymptotic solutions of the Master equation are important next
steps towards the understanding of the functional forms of the
PDFs. The Master equation also poses a new challenge; it
requires the increment df to be much smaller than f� fJ, i.e. g
� 1. Thus, strictly speaking, it can never reach fJ, and the result
cannot be the PDF at fJ, albeit asymptotically. This means that
the jamming transition is a singular limit of the Master
equation.

Finally, our analysis can be easily extended to three dimen-
sions and be examined and validated by experiments, e.g. by
photoelastic tests2 or oedometer tests of sands.27,28 The exten-
sion to other cases is also straightforward, e.g. the solutions
under shear can be obtained if we apply our results for
compression and decompression to principal compressive and
tensile directions, respectively (in preparation).
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Notes and references
‡ Since the DT is unique for each packing, virtual contacts are uniquely deter-
mined, where the total numbers of contacts and virtual contacts are conserved
quantities which are independent of the area fraction. We have not observed any
ips of the Delaunay edges if g # 10�3, and the number of ipped edges is less
than 1% at most for g � 10.

§ We rescale every radius as R(t + dt)¼ [1 + {�x� xm(t)}/l]R(t), where t, dt, �x, and xm(t)
are time, increment of time, target mean overlap, and averaged overlap at time t,
respectively. When �x > xm(t), each radius increases, while it decreases if �x < xm(t).
This journal is © The Royal Society of Chemistry 2015
Therefore, the averaged overlap converges to the target value, �x, in the long time
limit. Here, we keep themass constant and use a long length scale l¼ 102�R to grow
the particles gently, where �R is the mean radius at t ¼ 0. Note that the static
packings prepared with longer length scales, l ¼ 103�R and 104�R, give the same
results concerning critical scaling of frictionless particles near jamming,22 while
we do not obtain the same results with l ¼ 10�R. We stop rescaling each radius
when every acceleration of particles drops below a threshold 10�6k�R/m and
assume that the system is static.

{ We neglected the higher order term proportional to xijdf.

k From our results of the mean square displacements, most particles do not jump
out of cages and our systems do not undergo structural relaxations aer
compression. We also checked that the response to compression does not depend
on the protocols, e.g. an overdamped dynamics.

** g can be large, whereas dg is always small.

†† The meaning of qv is that gqv represents a typical length of interparticle gaps
which are generated by opening contacts. Similarly, new contacts have a typical
overlap�gqc. For example, gqvx 0.061and gqcx 0.0065 for g¼ 0.01 in our scaled
length.

‡‡ The normalization conditions are
Ð 0
�NWVVdx0 +

Ð
N
0 WVCdx0 ¼ Ð 0

�NWCVdx0 +Ð
N
0 WCCdx0 ¼ 1, for previously virtual contacts and contacts, respectively.

§§ We used WVV ¼ (2p)�1 Ð e�[k|gVvz0|l+i(x0�f
v
)z0 ]dz0 ¼ (2p)�1Ð ei(x�x0 )z0dz0 / d(x � x0)

with z0 h z/g and e�1/g/g / 0 for g / 0.

{{ Note that the pressure is still irreversible even though there are no opening
and closing contacts.
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