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Abstract. Multi-class multi-server queueing problems are a generalisation of the well-known M/M/k

queue to arrival processes with clients of N types that require exponentially distributed service with different
average service times. In this paper, we give a procedure to construct exact solutions of the stationary state
equations using the special structure of these equations. Essential in this procedure is the reduction of a part
of the problem to a backward second order difference equation with constant coefficients. It follows that
the exact solution can be found by eigenmode decomposition. In general eigenmodes do not have a simple
product structure as one might expect intuitively. Further, using the exact solution, all kinds of interesting
performance measures can be computed and compared with heuristic approximations (insofar available in
the literature). We provide some new approximations based on special multiplicative eigenmodes, including
the dominant mode in the heavy traffic limit. We illustrate our methods with numerical results. It turns out
that our approximation method is better for higher moments than some other approximations known in the
literature. Moreover, we demonstrate that our theory is useful to applications where correlation between
items plays a role, such as spare parts management.
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1. Introduction

Multi-class, multi-server (MCMS) models arise when clients with different service char-
acteristics ask for the same capacity and performance characteristics are needed for each
class separately. Applications arise, e.g., in manufacturing, when a workstation has to
process different job types with each their own work content and one is interested in
the throughput time per job type, cf. [3,10,12]. We encountered MCMS queues in our
research on inventory control of repairable spare parts when modeling repair facilities
[15,16]. Particularly, we needed the first two moments of the number of items in the sys-
tem, or the backorders, per class and the correlation between classes. These quantities
have a direct relation to the availability of the installed base served by the repair facility.

Although some literature on MCMS queues is available, there are limitations on
the number of classes and/or the number of servers and on the performance charac-
teristics considered (see the next section for a literature review). Here we present an
exact algorithm to compute the steady state probabilities in Markovian systems as de-
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scribed, i.e. each customer class has its own Poisson arrival process and arrival rate as
well as its own exponentially distributed service time. From these state probabilities,
we can derive a large variety of relevant class-dependent performance characteristics.
Of course, it is rather straightforward to write down the global balance equations of
the corresponding Markov chain. However, it is not trivial to find the exact solution of
these infinite-dimensional equations. New in our approach is that we show that the exact
solution has a special structure. This allows us to reduce the construction of the solu-
tion to finding the eigenvalues and eigenvectors of a finite-dimensional matrix, where
in a Wiener–Hopf-like way only half of the eigenvalues corresponding with decay for
increasing numbers of clients are relevant. In this paper, we explain our approach in
detail and we show the results in some numerical experiments. Also, we compare our
exact results to some approximations that have been described in the literature. The
exact computations for high numbers of servers and/or classes are lengthy and good,
numerically more efficient approximations are useful. We define some approximations
based on a restricted set of multiplicative eigenmodes. In this way we can demonstrate
a new sort of multiplicative state space collapse in the heavy traffic approximation for
non-dedicated multi-server systems (see next section for a literature survey). Moreover,
our approximation has advantages for higher moments compared with [7,17].

The remainder of this paper is structured as follows. First, we give a brief overview
of the relevant literature and we explain our contribution in section 2. Next, we sketch
our approach and we derive the steady state equations (section 3). Then, we solve these
equations (including the nontrivial eigenvalues and eigenmodes) explicitly for the spe-
cial cases of equal service rates (section 4). We discuss the exact solution of the general
model in section 5. Next, we define our approximate, restricted mode solution in sec-
tion 6. In section 7, we derive relevant performance measures from the steady state
probabilities. Numerical results and computational efficiency are discussed in section 8.
In this section we also discuss an application of our results to obtain better approxima-
tions for the system availability of an installed base taking correlation between various
items into account. Moreover we discuss the quality of our “multiplicative modes only”
approximation compared with others. Finally, we give our conclusions in section 9.

2. Literature

There are only few papers that are directly devoted to MCMS models, as far as we know
[5,6]. De Smit [5] analyses the GI/M/k multi-class queue where different types of
customers have different service rates. Here GI refers to general arrival processes and
Hm denotes a mixture of different exponential distributions, as one obtains in a multi-
class model, if one abstracts from the identity of the different jobs and introduces one
overall jobtype. His approach uses phase vectors and a solution is derived by Laplace
transform and Wiener–Hopf decomposition techniques. He obtains explicit results for
the stationary distributions of waiting times and the queue length. It is shown that the
stationary waiting time distribution is a mixture of exponentials, generalizing a previous
result for M/Hm/2 of Cohen [4]. This result is theoretical, but de Smit [6] develops a
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numerical solution based on these results. However, the numerical procedure is limited
to H2 service time distributions or equivalently a two-class system with exponential
service time distributions.

Another line of research on the MCMS queue is the application of approximation
techniques or asymptotic methods. Bertsimas and Mourtzinou [1] consider systems with
general arrival and service distributions in heavy traffic. However, their results are re-
stricted to single server systems. Diaz and Fu [7], give some approximations mainly for
the single server case. Basic to the reasoning underlying their approximations is that the
expected waiting time is class-independent, see also [17]. Moreover, they assume the
correlation between items in queue and in service is related in a simple way to the class
utilisation fractions. As we will see in the remainder of this thesis, the exact solution of
MCMS problems has a more complex structure. Other interesting work in this respect is
(Adan and van der Wai, 1998). They relate the mean lead time of a two-class system to
those of a single class system with a Coxian-2 service process. They show that systems
where different items are processed by the same servers might perform better than the
system with dedicated servers if the difference between service rates (µ1/µ2) is not too
big (>7).

Recently quite some work has been done on heavy traffic approximations for multi-
class queueing systems with dedicated servers using fluid model equations and semi-
martingales. In [2,18] a proof of a state space collapse is given under certain, rather
general conditions. They show that that these conditions are satisfied for FIFO networks
of Kelly type (class independent service time distributions). Our approximate solution
based on multiplicative eigenmodes gives rise to an analogous effect for non-dedicated
MCMS systems. It turns out that the critical eigenmode in case of heavy traffic is of
multiplicative type and the approximation error vanishes for the utilisation approach-
ing 1. State space collapse occurs in the sense that the critical eigenmode dominates the
queueing behaviour.

The contributions of our paper to the existing literature are the following:

1. We use a direct approach to solving the steady state equations exactly without restric-
tion on the number of classes or the number of servers (although the combination of
many servers and many customer classes may require long computer run times).

2. We are able to derive a wide range of performance measures, not only the standard
measures as the mean waiting time or the mean queue length. Particularly, we can
easily calculate higher moments of the queue length and the number of items (or
backorders) in the system per class. We can even derive correlation coefficients, e.g.,
between the number of items (or backorders) in the system for different classes.

3. We show that the exact solution of the steady state equations has a special structure,
which up to the best of our knowledge has not been recognised before in the existing
literature. Particularly, we show that the solution does not have a simple product
structure as one might expect intuitively.
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4. We present a new sort of approximation based on a restricted number of multiplicative
eigenmodes, which contains the state space collapse behaviour in the heavy traffic
limit and we discuss its merits.

3. Stationary state equations for MCMS problems

Let us now describe the problem in more detail. Jobs with type i arrive according to a
Poisson process with arrival rate λi . The total arrival rate is given by � = ∑

λi . The
arrival fraction of class i is ai = λi/�. We consider identical, non-dedicated servers,
hence the flow through a server consists of all job types. The service distribution of job
type i is exponential with rate µi , and it is the same for all servers. The service discipline
by which jobs are assigned is first-come-first-serve (FCFS). Hence the stability condition
for this queueing system is given by ρ < 1. The average service rate µ is defined by
1/µ = ∑

ai/µi . The utilisation is represented by ρ with µ = �/(kρ). Our notation for
the relative perturbation from the average service rate is δi with µi = µ(1 + δi).

To describe the state of the queueing system, we will use two vectors w and s̄ of
dimension N , i.e. each component i contains information about the amount of items of
each class i in queue or in service, correspondently. Because of the PASTA property
(Poisson Arrivals See Time Averages), these vectors will provide us all the information
about the system that we need. Let us now have a closer look at the stationary state
equations of the MCMS system.

The state equations follow from a micro-balance reasoning as usual. The net ex-
change of probability in an infinitesimal time interval from a given state with its neigh-
bours has to be zero in an equilibrium situation. Neighbours of a state (w, s̄) with n

clients are states to or from which a one step transition is possible, either by an arrival
event (A) or a service completion event (C). Neighbour states have n−1 or n+1 clients.

Before stating the stationary state equations, we first introduce the following nota-
tion. We use |w| for the total number of items in the queue, analogously we use |s̄| for
the total number of items in service. The next expressions are obvious:

|w| + |s̄| = n; |w| = 0, if n � k; |s̄| = k, if n � k.

The vector ēi is defined with all zero components except for the component i, which is 1.
In addition to this vector, we define eij as 1 if i = j and 0 otherwise. Also, we define

δ(s̄)
def= 1

k

N∑
i=1

siδi .

Using the structure of the arrival process, the stationary equations for n > k can
be given in a reduced form. For n − k consecutive arrivals, the probability distribution
over the possible vectors describing the queue w is given by the product of the arrival
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fractions and by the number of possible arrival sequences within the vector w. As a
consequence, we may write the steady state distribution P(w, s̄) as:

P(w, s̄) = Pn(s̄)|w|!
N∏
i=1

a
wi

i

wi ! (1)

where the unknown vector Pn(s̄) represents the stationary probability distribution over
the server states s̄, given that the system contains n jobs (in service plus in queue). A key
issue in the remainder of this section will be how to derive an expression for the d(N, k)-
vector Pn with components Pn(s̄). Here we use the shorthand notation d(N, k) = (N +
k − 1)!/(k!(n − 1)!). For example, for N = 3 and k = 4 we find d(N, k) = 15. Of
course, this dimension increases rapidly with N and k. Now it is easy to check that in
vector-notation: (

(1 + ρ)I + d̄
)
Pn = ρPn−1 + APn+1. (2)

Here I denotes the identity matrix and d̄ represents a diagonal matrix with elements
δ(s̄) on the diagonal, i.e. d̄ξ [s̄] = δ(s̄)ξ [s̄], and the matrix A is defined by its working
on an arbitrary d(N, k)-vector ξ , as:

Aξ [s̄] def= 1

k

N∑
i=1

N∑
j=1

ai(1 + δj )(sj + 1 − eij )ξ [s̄ − ēi + ēj ].

The equation for Pn is a second order difference equation in a d(N, k)-dimensional
linear space, which plays a central role in our analysis.

Note that Pn can also be defined for n � k. It is a vector of dimension d(N, n),
since only n of the servers are occupied. Let Ln denote the corresponding linear space
of dimension d(N, n) accommodating that vector. The equations for n � k are

DnPn = ρFnPn−1 + BnPn+1 (3)

where Dn,Fn and Bn are respectively defined as:

Dn :Ln → Ln, Dnξ [s̄] def=
(
n

k
+ ρ + δ(s̄)

)
ξ [s̄],

Fn :Ln−1 → Ln, Fnξ [s̄] def=
N∑
i=1

aiξ [s̄ − ēi],

Bn :Ln → Ln+1, Bnξ [s̄] def= 1

k

N∑
i=1

(si + 1)(1 + δi)ξ [s̄ + ēi], for n < k.

For n = k, we get Bn = A operating between d(N, k)-dimensional linear spaces.
We come back to solving these equations in section 5.



312 A. VAN HARTEN AND A. SLEPTCHENKO

4. The unperturbed case of an MCMS queueing system

Our analysis of multi-class multi-server problems starts by revisiting the well-known
M/M/k queue that can be considered as a special case where the service rate of each
class is identical.

It is well known that the stationary probability distribution over n satisfies:

P(n) = max

(
1,

k

n

)
ρP (n − 1)

and the solution is found in a straightforward way. Now in case all service times are
equal (δi = 0), the multi-class probabilities P(w, s̄) are just a multinomial modification
of the previously found P(n), as we saw in the previous section. This can be checked by
substitution in the steady state equations.

But, a lot more information about other solutions of the state equations for n > k

can be derived. This is useful for the exploration of the general case in the next section.
First, we observe that the eigenvalues and eigenvectors of the matrix A can be explicitly
found if all δi = 0. We will come back to that shortly. Moreover, in this case (δi = 0), the
matrix d̄ in equation (2) vanishes and the solutions of this equation are then immediately
found from the eigenvalues and eigenvectors of the matrix A. That is, if we put Pn =
z−(n−k)V for some z with V equal to an eigenvector of A for the eigenvalue v, then we
find a solution for n > k if

(1 + ρ)z−(n−k)V = ρz(−n−1−k)V + z−(n−k)AV ⇒
(1 + ρ)zV = ρz2V + vV ⇒ (1 + ρ)z = ρz2 + v.

The eigenvectors and eigenvalues of the matrix A can be constructed as follows.
First, we observer that

V(k,0,...,0)[s̄] = k!
N∏
i=1

(ai)
si

si !
defines an eigenvector of A for the eigenvalue 1. Let us interpret it as an eigenvector
where all k servers are occupied with “real” jobs. In an analogous way, we can find
eigenvectors V(m,h2,...,hN ) for eigenvalues m/k where only m servers are occupied with
“real” jobs and k − m are filled “artificially”. Index hj refers to the number of servers
occupied with “virtual jobs” in “virtual mode j” with j = 2, . . . , N.

Mathematically, this means that we decompose each state s̄ = (s1, . . . , sN ) with
|s̄| = k as

si =
N∑

j=1

θ
j

i , θ
j

i � 0,

N∑
i=1

θ
j

i = hj , h1 = m,

N∑
j=1

hj = k.
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This allows for many possible decompositions θ . We define

Vh̄[s̄] = k!
∑
θ

N∏
j=1

N∏
i=1

(t
j

i )
θ
j
i

θ
j

i ! . (4)

Here we define the real mode t1 = (a1, . . . , aN) and the virtual mode of type j as tj

with t
j

j = −1 and t
j

i = 1/(N − 1) for i = j . Note that for j = 2, . . . , N the vector tj

is perpendicular to (1, . . . , 1).
Again, one can check these eigenvectors by substitution using the definition of A.

The eigenvalues corresponding to these eigenvectors are completely defined by the first
component of the vector h̄ which we denote as m = h1. Hence, there are k + 1 eigen-
values v = m/k for m = 0, . . . , k. The eigenspaces corresponding to each eigenvalue
of A have dimension

dm/k =
(
N − 2 + k − m

k − m

)

due to the amount of possible combinations of the last N−1 components of the vectors h̄,
given that the first component is equal to m.

Then, by substituting the obtained eigenvalues v = m/k for m = 0, . . . , k into the
equation (1 + ρ)zm = ρz2

m + v we find the following values of zm:

zm = 1

2ρ

{
(1 + ρ) ±

√
(1 + ρ)2 − 4

m

k
ρ

}
, m = 0, . . . , k.

Note that the + sign leads to zm > 1 and the − sign to zm � 1. Only the solutions with
zm > 1 decay for n → ∞ and are acceptable in constructing probability distributions.
There are d(N, k) of such solutions. Only one of them, namely with m = k, plays a role
in the exact solution for the unperturbed case. In this respect, the unperturbed case turns
out to be special.

Of course, one should expect that this changes in a general case with δi = 0.

5. Solving general MCMS problems

Let us first construct the solutions of the state equations for n > k in general (sec-
tion 5.1). Then we solve the remaining equations for n � k and, thereby, construct
the full solution of the state equations (section 5.2). Next, in section 5.3, we consider
some special cases. Finally, we give some fast approximations of the exact solution in
section 6.

5.1. The exact solution for n > k

Let us first reformulate the second order difference equation for the d(N, k)-vector Pn

given in (2) as a first order difference equation for a 2d(N, k)-dimensional vector. Now
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let us consider the vector Pn = (Pn−1,Pn)
T. It has to satisfy Pn = HPn+1 with the

matrix H given by

H =
( 1

ρ

(
(1 + ρ)I + d

) − 1

ρ
A

I 0

)
.

Note that solving this backward recursion boils down to determining the eigenval-
ues and eigenvectors of the matrix H. The following information is crucial.

Lemma 1.

1. Under the stability condition with all δi sufficiently small, H has:

– eigenvalues z satisfying |z| � 1 with total multiplicity d(N, k),

– eigenvalues z satisfying |z| > 1 with total multiplicity d(N, k).

2. If δi = 0,A has eigenvalues α(m/k), with α = ∑n
i=1 ai(1 + δi), m = 0, . . . , k,

with the same multiplicities and similar eigenspaces as in the unperturbed case. As
a consequence, 0 is an eigenvalue of H with eigenspace (0, ker(A))T and the same
multiplicity d(N − 1, k) as before.

3. N+1 special eigenvalues of H corresponding with eigenvectors possessing a product
structure can be found:

– there is an eigenvalue 1 with eigenvector (B,B)T with:

B(s̄) = |s̄|!
N∏
i=1

a
si
i

si !(1 + δi)si
, (5)

– under the stability condition, there are N eigenvalues

z(η) = 1 + ρ − η

ρ
> 1 (6)

where η satisfies a polynomial equation of degree N + 1:

1 + ρ − η

ρ
=

N∑
i=1

ai
1 + δi

η + δi
(7)

which also has the solution η = 1, i.e. z(1) = 1 as above, see figure 1. The
eigenvector for z(η) is (z(η)C,C)T with:

C(s̄) = |s̄|!
N∏
i=1

a
si
i

si !(1 + δi/η)si
. (8)

One of these eigenvalues z(η0) crosses z = 1 into z < 1 crosses 1 into the region
ρ > 1 where the stability condition is violated.
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Figure 1. Graphical solution of the polynomial equation for some special eigenvalues of H.

Proof. To start with we note that z = 1 is an eigenvalue of H corresponding with the
given eigenvector. This follows simply by substitution. Note that in the eigenvector
the probabilities over the states are proportional to the products of the required service
fractions. Now the first part of the lemma is simply a consequence of the well-known
perturbation theory for eigenvalues of matrices, cf. [8]. Next, we observe that also in
the perturbed case the eigenvalues of A are α(m/k), with m = 0, . . . , k, but now the
eigenspaces are slightly different. They are found using a N-vector perpendicular to
1 + δ = (1 + δ1, . . . , 1 + δN)

T instead of the expressions in section 4. Hence, the
dimension of the eigenspaces corresponding with m/k is the same as before.

The remainder of the lemma is a matter of substituting the specified eigenvectors
in the eigenvalue equation and checking that it is satisfied. The behaviour of the crucial
eigenvalue follows by noticing that both the derivative of the left- and right-hand side at
η = 1 are equal to −ρ. The situation is illustrated below. �

Let us now discuss the consequences of the lemma 1. First, it should be noted
that in the case k = 1 (a) there are N − 1 eigenvalues 0 for any N , (b) there is an
eigenvalue 1, and (c) there are N real eigenvalues >1 given by the special polynomial
equation. This provides complete information on the eigenvalues. In other cases, other
eigenvalues besides the special ones play a role. In figure 2 below, it is shown how the
eigenvalues evolve from their unperturbed values if the perturbation is “turned on.”

To plot the changes of eigenvalues, we use a case with N = 4, k = 3, ρ = 0.9.
To change δi , we put δi = ait with a2 = 0.1, a3 = 0.15, a4 = 0.2, when δ1 is chosen
such, that

∑N
i=1(ai/(1 + δi)) = 1.

Let us now use the information on the eigenvalues and eigenspaces of H to solve
the state equations for n � k exactly in terms of the state probabilities for n = k. This
can be done using the following recipe. Let us use the abbreviated notation d = d(N, k).
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Introduce:

• � as the d × d diagonal (or Jordan) matrix corresponding with the eigenvalues of H

with |z| > 1.

• � as the d × d matrix of upper parts of the corresponding (generalised) eigenvectors.

Note that Z = ���−1 satisfies

(1 + ρ)I + d̄ = AZ−1 + ρZ.

Now

Pn = (
Z−1)n−k

Pk = XWn−kX−1Pk

is an exact solution for n � k starting at Pk for n = k. But, of course, Pk for n = k still
has to be determined by analysing the equations for n � k.

5.2. The exact solution for n � k

Consider Pn(s̄) for n < k satisfying (3). Again, the state equations for n < k have a
backward recursion structure. The equation for n = k(

(1 + ρ)I + d̄
)
Pn = ρPn−1 + APn+1

reduces to

Pk = Z−1FkPk−1

by using the equation for Z. For n < k, we obtain

Pn = ρD−1
n FnPn−1 + D−1

n BnPn+1.

Figure 2. A sketch of the behaviour of the eigenvalues of H with the strength of the perturbation.
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Hence, the complete solution can be represented as

Pn = QnPn−1 = QnQn−1 · · · Q1P0

where Qn follows recursively from

Qk = Z−1Fk

and

Qn = ρ(Dn − BnQn+1)
−1Fn.

Of course, P0 is a free constant determined by∑
p(w, s̄) = 1.

A simple computation shows that

P0 = {
1 + 〈11,Q1〉1 + · · · + 〈1k−1,Qk−1 · · · Q1〉k−1 + 〈

1k,
(
I − Z−1

)−1Qk · · · Q1
〉
k

}−1
.

Here we denote with 〈1n,X〉n the inner product of X in a d(N, n)-dimensional space
with the d(N, n)-vector 1n with all components equal to 1.

Thus, the exact solution for all n has now been derived.

5.3. Some special cases

To illustrate the theory, we consider two cases where the algorithm can be executed more
explicitly: (I) the case k = 1, (II) the case k = 2, N = 2.

In the case k = 1, we have states s = e1, . . . , eN indicating the type of job in
execution. The eigenvalues are given by z(ηj), j = 1, . . . , N , as defined by equations
(6), (7); the matrix of eigenvectors � has elements ai/(1 + δi/ηj ). The solution of (2) is
given by: Pn = P0Z−na. Here a denotes the N-vector with components ai . In the case
of 2 classes this coincides with a result that can be found in [9].

In case k = 2 and N = 2, we start with the observation that the special eigenvalues
in equations (6), (7) can be explicitly computed, because the degree of the equation
is 3 and the solution η = 1 is already known. This leads us to the following quadratic
equation for z

0 = eq1(z)
def= ρ2z2 − ρ{2 + ρ + δ1 + δ2}z + {

1 + ρ + δ1 + δ2 + (1 − ρ)δ1δ2
}
.

Now, only 2 of the 6 eigenvalues of H are still unknown; they can be found from

the characteristic polynomial 0 = eq(z) def= det(−(1 + ρ + D)z+ ρz2I + A) by dividing
out the known eigenvalues. Here we denote by D the diagonal matrix with the average
perturbation δ for the respective states on the diagonal. Hence, we decompose eq(z) =
z(z− 1)eq1(z)eq2(z). Therefore, the remaining 2 eigenvalues have to satisfy a quadratic
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equation with coefficients that can be explicitly given in terms of the original matrix
coefficients as

0 = eq2(z)
def= ρz2 − ρ

{
1 + ρ + 1

2
(δ1 + δ2)

}
z + 1

2
{1 + a1δ1 + a2δ2}.

Note that the latter equation gives rise to one eigenvalue z > 1.
Now Z is a 3 × 3 matrix operating on the probabilities of the states (2, 0),

(1, 1), (0, 2) for the jobs in execution when the servers are occupied. The column
of � corresponding with an eigenvalue z = (1 + ρ − η)/ρ becomes (v, 1, 1/v)T

with v = a1(η + δ2)/{a2(η + δ1)}. For the other eigenvector corresponding with
z > 1 satisfying eq2(z) = 0, we find −a1(1 + δ2)/q(z), 1, a2(1 + δ1)/q(z)

T with
q(z) = {(δ2 − δ1)/2}z+ {a1(1 + δ1)− a2(1 + δ2)}/2. It is clear that also in this case the
solution can be given explicitly in terms of the parameters of the problem.

6. Approximate solutions

In this section we shall introduce some approximations of the state probabilities Pn(s̄).
These approximations will be constructed using only the eigenmodes of the steady state
equation for n > k, which have a multiplicative structure. However, the equation for
n � k the equations can only be satisfied if k = 1. In the general case they will be
satisfied only in an approximate way.

The advantage of the approximations is that (I) the computation of the approx-
imation requires algebra in spaces of considerably lower dimension and (II) all sums
over states in the performance measures can be determined explicitly due to the product
structure. Moreover, since the critical mode which causes instability, if the utilisation
crosses 1, is included, these approximations can be considered as heavy traffic approx-
imations. For a further discussion on heavy traffic approximations we refer to [2,18].
The approximation is given by:

for n < k, Pn(s̄) = C(kρ)n
N∏
i=1

a
si
i

si !(1 + δi)
si
, (9)

for n � k, Pn(s̄) =
N∑
i=1

γiz
−(n−k)
i D(ηi)

−k|s̄|!
N∏

j=1

a
sj
j

sj !(1 + δj/ηi)
sj

(10)

with ηi, zi as defined in (6), (7) and

D(ηi) =
N∑

j=1

aj

(1 + δj/ηi)
.
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In order to determine the constants C and γi we require that the total probability
sums to 1 and that the expected number of items of type i in service is correct for each i.
This provides us with N + 1 equations for N + 1 unknowns:

N∑
i=1

{
D(ηi)

−1 am

(1 + δm/ηi)

}
ϕi + Cbm

k−1∑
n=1

n

k

(kρ)n

n! = ρm,

N∑
i=1

ϕi + C

k−1∑
n=0

(kρ)n

n! = 1

with ϕi
def= γi(1 − z−1

i )−1 and hence

C =
{

k−1∑
n=0

(kρ)n

n!
(

1 − n

k

)}−1

(1 − ρ).

An even simpler approximation is found, if we use for n > k − 1 only the critical
mode corresponding with the least decay for increasing n. In this case, we require the
expected number in service disregarding type to be correct and we obtain the same value
for C as given here above, but now

γcr = (
1 − z−1

cr

){
1 − C

k−1∑
n=1

(kρ)n

n!

}

and the other coefficients vanish. In the next section we shall compare these approxima-
tions with some well-known heuristics given by Whitt [17].

7. Accurate information on performance measures

Here we shall provide some further insight in the behaviour of some interesting perfor-
mance measures related to stochastic variables, such as the waiting time w, the queue
length q and the number of items of type i in queue qi . Performance measures that
we consider are expectations, variances and probability for positivity of these stochastic
variables. Moreover, since it is clear that there is correlation between these stochastic
variables, we also shall provide formulas for some conditional expectations and correla-
tion coefficients. Of course, the clue that such exact formulas can easily be derived lies
in the fact that series of geometric type can simply be summed. To start, we notice that

P(q > 0) = 〈
1k, (Z − I)−1Pk

〉
,

P (w > 0) = 〈
1k, (Z − I)−1ZPk

〉
,

P (qi > 0) = 〈
Iik, (Z − I)−1Pk

〉
and the performance estimators for the total number of items in queue are

E[q] = 〈
1k, (Z − I)−2ZPk

〉
,
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E
[
q2]=E

[
q(q − 1)

]+ E[q] = 2
〈
1k, (Z − I)−3ZPk

〉
,

Var[q] =E
[
q2
]− E[q]2.

Then we can write down the performance estimators for the number of items in queue
for each type of items:

E[qi | q = n − k] = ai(n − k),

E[qi] = aE[q],
E
[
qi(qi − 1) | q = n − k

] = a2
i (n − k)(n − k − 1),

E
[
qi(qi − 1)

] = a2
i E
[
q(q − 1)

]
,

Var[qi] = E
[
qi(qi − 1)

]+ E[qi] − E[qi]2.

We can also estimate the covariance between the numbers of items of different classes
in queue:

E[qiqj | q = n − k] = aiaj (n − k)(n − k − 1) for i = j,

E[qiqj ] = aiajE
[
q(q − 1)

]
for i = j,

corr(qi, qj ) = E[qiqj ] − E[qi]E[qj ].
Here we use the notation 1n as before in determining P0. The matrix Iin is a diagonal
matrix of dimension d(N, n) with 1 for each state s̄ that contains type i and 0 elsewhere.
Note that Little’s law is satisfied and the expected waiting time does not depend on the
type of item.

Some other quantities are simpler to derive. Using Little’s theorem, we find the
first moments:

E[Ri] = E[qi] + λi

µi

,

E[Si] = λi

µi

.

Moreover, we can now easily derive the following second moments and correlation co-
efficients:

E
[
R2

i

] = E
[
q2
i

]+ E
[
S2
i

]+ 2E[Siqi],

E
[
S2
i

] =
k−1∑
n=1

〈
χ

s2
i

n ,Pn

〉+ 〈
χ

s2
i

k ,
(
I − Z−1

)−1
Pk

〉
,

E[Siqj ] = aj
〈
χ

si
k ,
(
I − Z−1

)−2
Z−1Pk

〉
,

E[SiSj ] =
k−1∑
n=1

〈
χ

si ·sj
n ,Pn

〉+ 〈
χ

si ·sj
k ,

(
I − Z−1)−1

Pk

〉
,

E[RiRj ] = E[SiSj ] + E[Siqj ] + E[Sjqi] + E[qiqj ].
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In these formulas, χ
s2
i

n and χ
si ·sj
n are the diagonal matrices of dimension d(N, n) with the

square number of items of type i in s̄ (i.e. s2
i ) or, accordingly, the product of the numbers

of types i and j items in s̄ (i.e. si · sj ) as the diagonal element corresponding to s̄.
In an analogous way, we can analyse different performance measures in stochastic

spare parts systems (cf. [15]). For example, mean and variances of the number of back-
orders for type i, BOi = max(0, Ri − sti ) with sti a given positive integer representing
the stock level in spare part networks. It is possible using recursion with respect to
sti , since first and second moments and the correlation coefficients of the backorder
variables with stock levels sti = 0 are known. This basic idea can already be found
in [14]. In our work we extend it to include correlation between backorders of different
types. This provides us with the possibility to compute a better approximation of the
system availability in Sherbrooke’s spare parts stock allocation method METRIC. For
details we refer again to [15]. Some results will be shown in the sequel.

8. Some numerical results

In order to derive numerical results, we implemented the exact solutions and the approx-
imations as described above in MATLAB. A wealth of interesting phenomena can now
be quantitatively analysed. Let us just show a few of the results.

8.1. The average waiting time in MCMS systems and correlation between different
types of items

The effects of different service times for various classes of items can easily be illustrated.
Consider a system with 2 classes and k servers. The parameters are chosen as a1 =
1/3, a2 = 2/3. The first type of items has an average service time larger than the
second type of items. In terms of δ1 and δ2 this can be represented as:

δ1 = −δ, δ2 = (1/2)δ

1 − (2/3)δ
, with δ ∈

[
0,

2

3

)
, i.e.

2∑
i=1

ai

1 + δi
= 1.

Let us now compare for various choices of ρ and k the expected waiting time in the
system with δ > 0 with those for M/M/k where δ = 0 (figure 3). The conclusion that
the ratio increases with δ is not surprising, but it is nice that we can explicitly determine
how it increases. Of course, a similar behaviour as in figure 3 is found for the average
number of items in the system.

8.2. Variance per item and correlation between different types of items

Of course, a similar behaviour as in figure 3 is found for the average number of items in
the system since the number of items in service is constant. It is also interesting to notice
that the variance of the number of items in the system is also increases with increase of δ.
In figure 4 we have presented the relative increase of the variance of the total number of
items in the system.



322 A. VAN HARTEN AND A. SLEPTCHENKO

Figure 3. Increasing differences between service characteristics of classes lead to increasing waiting times.

Figure 4. Increasing differences between service characteristics of classes lead to increasing variance of
items in the system.

Figure 5. Increasing differences between service characteristics of classes lead to increase of the correlation
coefficient.

Let us again consider the same example, but now with our focus on the interdepen-
dency between stochastic variables for different types of items. In figure 5, the behaviour
of the correlation coefficient is shown.
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From figure 5, we see that the correlation between backorder levels can be signif-
icant. Even at a moderate utilisation (75%), the correlation coefficient may exceed 0.5.
For high utilisation (ρ = 0.95), it is clear that the correlation is very high (around 0.9),
suggesting that it is relevant to take the correlations into account when estimating the
system availability. In the next subsection, we deal with this issue.

8.3. An application: better approximations for system availability

Applications of our results can be found in several areas. Here we consider the situation
of an installed base of size B where upon failure items are repaired in a non-dedicated
repair shop, while for item type i there are sti spare parts. Let us first have a closer
look at the asymptotic expansion of the nonlinear system availability function of VARI-
METRIC model (cf. [14]). In their simplest form VARI-METRIC models use normally
a linear approximation

A1 = 1 − 1

B

∑
i

E
[
BOi ( st )

]
.

Although this approximation seems adequate for infinite repair shop capacities, it is
questionable whether this is also true in the case of finite capacities. The latter means
that the number of backorders of different components at the same repair shop are mu-
tually correlated. This is a severe complication, as the expectation of the product of
backorders cannot be taken term-wise anymore. Still, equation (11) can be seen as a
linear approximation of the exact availability function

A(st) = E

[
1

B

∏
i

{
1 − BOi( st )

}]
.

The quality of this linear approximation is still unknown, however. The analysis of
MCMS models provides insight in the joint probability distribution of the number in
repair for all items. This gives us the expectations for backorders per item as well as
the correlations between items. Therefore, it is possible to have an approximation where
also the quadratic terms are taken into account:

A2 = 1 −
∑
m

E
[
BOmi( st )

]+
∑

i,j,i<j

E
[
BOi( st )BOj ( st )

]
.

Note that the correction to the linear approximation is positive. Here we use exact
expressions for the moments of the backorders. In figure 6, we show the difference
between the two approximations. Let us take an example of a single-location, single
indenture system with k = 4 servers and N = 5 types of items processed in the same
repair shop. The arrival (failure) rates fractions are ai = 0.2 for all i. For the service
rate deviation δi , we put 0.5(i − 1) for i = 2, . . . , 5 and δ1 is negative = −21/31 so that∑

ai/(1 + δi) = 1. All spare part levels are equal to sti = 7 items in stock. The size of
the installed base B is 15. The utilisation rate is varied between ρ = 0.6 and ρ = 0.84.
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Figure 6. Approximations of the system availability.

Figure 7. Computing times and dimensions of the vector P for different number of item classes in the
system and different amounts of servers.

In figure 6, we have also shown another approximation for the system availability,
denoted by Ainf. This estimate is obtained under the assumption of infinite repair capac-
ity and based on a general service time distribution (waiting and repair together!) for
items of type i, having a mean value Ri as derived in section 7. Using Palm’s theorem,
cf. [11], then the number of items of a type i in the repair shop has a Poison distribu-
tion with Ri as parameter. Different items have independent distributions. This infinite
capacity approximation is often used in practice, cf. (Rustenburg, 2000). Note from
the figure above that considerable differences between the approximations of the system
availability arise for high utilisation rates.

8.4. Computational efforts

To estimate the computational efforts needed to solve the problem exactly, we estimated
the CPU time usage for the most demanding computations, namely the calculation of
the eigenvectors of the matrix H. Below, we show some results for various values for
the number of item classes N and the number of servers k. The computing time was
estimated in seconds using MATLAB 5.3 with NAG toolbox, using a Pentium II-350 PC
with 128 Mb RAM and under Windows NT.



ON MARKOVIAN MULTI-CLASS, MULTI-SERVER QUEUEING 325

Table 1
Computing time (sec.) required to find eigenvalues for different number of item classes in the system and

different amounts of servers.

1 ser. 2 ser. 3 ser. 4 ser. 5 ser. 6 ser. 7 ser. 8 ser. 9 ser. 10 ser.

2 classes 0 0 0 0 0 0 0 0 0 0.01
3 classes 0 0 0 0.01 0.02 0.05 0.09 0.16 0.271 0.41
4 classes 0 0 0.01 0.07 0.26 0.771 2.583 8.382 19.618 43.853
5 classes 0 0.01 0.07 0.43 2.484 15.752 60.387 201.38 720.55 –
6 classes 0 0.07 0.24 2.474 26.448 155.30 – – – –

Table 2
Dimensions of the vector P for different number of item classes in the system and different amounts of

servers.

1 ser. 2 ser. 3 ser. 4 ser. 5 ser. 6 ser. 7 ser. 8 ser. 9 ser. 10 ser.

2 classes 2 3 4 5 6 7 8 9 10 11
3 classes 3 6 10 15 21 28 36 45 55 66
4 classes 4 10 20 35 56 84 120 165 220 286
5 classes 5 15 35 70 126 210 330 495 715 1001
6 classes 6 21 56 126 252 462 792 1287 2002 3003

The matrix H is first balanced and then reduced to upper Hessenberg form using
real stabilised elementary similarity transformations. The eigenvalues and eigenvectors
of the Hessenberg matrix are calculated using the QR algorithm. Next, the eigenvectors
of the Hessenberg matrix are transformed back to the eigenvectors of the original ma-
trix H (cf. [8,13]). The total computation time of both these algorithms is polynomial in
dimension of the matrix H (figure 7, tables 1 and 2).

The highest dimension of the cases solved here (d = 715, for 5 items and 9 servers)
seems already quite high for a practical use, and shows that this exact algorithm can be
easily used in practice, certainly if a faster computer is used. Otherwise, the approxima-
tion scheme (section 6) can be applied.

8.5. On the quality of the approximate probability distribution

Finally, we shall provide some insight in the errors by using the simpler N mode or
1-critical mode approximations introduced in section 6. Let us take an example with
N = 5 classes of items with arrival fractions ai = 0.2 for all i. For the service rate
deviation δi , we put 0.5(i−1) for i = 2, . . . , 5, δ1 = −21/31, so that

∑
ai/(1+δi) = 1,

where ai/(1 + δi) represent the service fractions. The utilisation rate is varied between
ρ = 0.7 and ρ = 0.95. The number of servers is varied between k = 1 and k = 4. In
figure 8, the relative errors for the first and second moments are compared to the exact
solution.

In these examples, with moderate ratios of service fractions for different classes
and high utilisation rates, the errors are around 5%, which is quite reasonable. Of course,
one should be careful with these approximations if the number of servers is large.
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The approximations are better for high utilisation rates, since the smallest (critical)
eigenvalue (>1) becomes closer to one and the influence of the others eigenvalues be-
comes negligible. This is known as state space collapse in heavy traffic approximations.
For further discussions of this phenomenon, we refer to [2,18].

Comparison of the obtained approximations to the approximations for multi-server
[17] modified by Diaz and Fu [7] for the multi-class case shows that the Whitt’s and
Diaz’s approximations give the same results for the first moment as N-mode MCMS
approximation. This can be understood from the fact that in both cases the expected
waiting time for k servers is derived with a scaling technique from the exact result
for the expected waiting time for 1 server. All compared approximations have neg-
ligible computation time (less than 10−3 s) for the presented experiments. However,
the approximation of Diaz and Fu for the second moment for a single server queue
(cf. [7]) produces errors up to 5%, while our results are exact. A comparison of the
variance of the total number of items in the system obtained by our approximation
and by Whitt’s approximation for GI/G/k queue is presented in (figure 9). There
we can see that, although the Whitt’s approximation is more stable to the number of
classes, our approximation produces smaller errors. Therefore, our approximation,
which can also give us other performance estimators (e.g., correlations, higher mo-
ments), is preferable for situations where this is important (such as in section 8.3 with N

high).

Figure 8. The approximate distributions are usually rather accurate for high utilisation rates.
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Figure 9. Average errors of the second1 moment produced by N-mode MCMS approximation and Whitt’s
approximation.

9. Conclusions and generalisations

In this section, we derived a method for the exact analysis of multi-class, multi-sever
queues, based on a classical method using the stationary state equations. Though con-
ceptually we only deal with a perturbation of the well-known single class M/M/k sys-
tem, the structure of the solution becomes a lot more complex. Using the exact solu-
tion, several performance measures of the MCMS system can be studied in terms of
formulas with a finite number of terms. The computational effort to find the exact solu-
tion depends on the number of classes N and the number of servers k. Representative
for the computational effort is the dimension of the linear space used in section 5, i.e.
d(N, k) = (N + k − 1)!/{k!(N − 1)!}. For large instances of the problem, some well-
founded approximations can be given which only rely on N modes.

The exact method introduced in this section can in principle be generalised to prob-
lems with non-identical servers, but the computational effort will increase since we will
have to keep track of state of each server and then we get d(N, k) = Nk. Also, certain
situations with priority classes can be tackled in the spirit of this paper. This is still work
in progress, cf. [15].
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