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Bouncing on thin air: how squeeze forces in the
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Millimetre-sized droplets are able to bounce multiple times on flat solid substrates
irrespective of their wettability, provided that a micrometre-thick air layer is sustained
below the droplet, limiting We to .4. We study the energy conversion during a bounce
series by analysing the droplet motion and its shape (decomposed into eigenmodes).
Internal modes are excited during the bounce, yet the viscous dissipation associated
with the in-flight oscillations accounts for less than 20 % of the total energy loss.
This suggests a significant contribution from the bouncing process itself, despite the
continuous presence of a lubricating air film below the droplet. To study the role
of this air film we visualize it using reflection interference microscopy. We quantify
its thickness (typically a few micrometres) with sub-millisecond time resolution and
∼30 nm height resolution. Our measurements reveal strong asymmetry in the air
film shape between the spreading and receding phases of the bouncing process. This
asymmetry is crucial for effective momentum reversal of the droplet: lubrication
theory shows that the dissipative force is repulsive throughout each bounce, even
near lift-off, which leads to a high restitution coefficient. After multiple bounces the
droplet eventually hovers on the air film, while continuously experiencing a lift force
to sustain its weight. Only after a long time does the droplet finally wet the substrate.
The observed bounce mechanism can be described with a single oscillation mode
model that successfully captures the asymmetry of the air film evolution.
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1. Introduction

The intriguing phenomenon of droplets bouncing on a liquid or solid substrate has
attracted quite some attention during the past decade. For droplets on a liquid bath it
has been observed that vertical vibration of the bath, and thus a continuous resupply
of air below the droplet, is crucial to achieving unlimited levitation: the drops exhibit
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an indefinite bouncing series (Couder et al. 2005). We are interested in bouncing on
solid substrates, where the creation of liquid–solid contact has large consequences for
the recoil. Contact angle hysteresis is the main dissipation mechanism in the receding
motion, and is able to inhibit a bounce (Yarin 2006). However, the influence of
contact angle hysteresis can be fully eliminated by creating a non-wetting impact (as
in the vibrated-bath case), in which a thin layer of air is squeezed between the droplet
and the substrate. The main source of dissipation is thereby eliminated, thus allowing
the droplet to bounce. At first impact, energy is transferred from centre of mass (CM)
motion to vibrational modes under the influence of strong drop deformation. During
lift-off this internal energy is transferred again to the CM motion but not fully, leading
to shape oscillations of the drop during flight. This is especially prominent at large
impact velocity and leads to a low restitution of the bounce (Biance et al. 2006). At
moderate impact velocity (We< 1) the oscillations are moderate and can be analysed
using linear normal mode theory. In this regime, on which we focus in this paper,
repeated quasi-elastic bouncing is observed. The non-wetting state can be obtained
either by using a superhydrophobic substrate to minimize the contact area (Richard
& Quéré 2000) or by actively maintaining a thin layer of air or vapour below the
droplet. The latter is often obtained through evaporation exploiting the Leidenfrost
effect on a heated surface (Chandra & Avedisian 1991; Biance et al. 2006; Tran
et al. 2012). The layer squeezed below the drop then exists of the vapour of the
droplet phase. Bouncing has also been demonstrated in another experiment using a
sublimating substrate of dry ice to maintain the vapour layer (Antonini et al. 2013).
One way to maintain the air layer without creating a vapour phase is to oscillate
the substrate, often a liquid, i.e. a bath (Couder et al. 2005; Terwagne, Vandewalle
& Dorbolo 2007; Gilet et al. 2008) or a soap film (Gilet & Bush 2009). In both
cases, energy of the substrate is transferred via the squeezed film to the droplet.
Recently it was reported that drops can bounce on an air film even without supplying
additional energy (Kolinski, Mahadevan & Rubinstein 2014a; de Ruiter et al. 2015a).
Interferometry experiments show that the air film is sustained throughout the full
impact process, not only on hydrophobic but also on hydrophilic substrates.

We are specifically interested in the role of the air film in this non-contact
bouncing mechanism. Recently, the influence of ambient air on drop impact has
been studied extensively both theoretically (Mandre, Mani & Brenner 2009; Hicks
& Purvis 2010; Mani, Mandre & Brenner 2010; Duchemin & Josserand 2011, 2012;
Mandre & Brenner 2012; Hicks & Purvis 2013) and experimentally (Driscoll &
Nagel 2011; de Ruiter et al. 2012; Kolinski et al. 2012; van der Veen et al. 2012;
Kolinski, Mahadevan & Rubinstein 2014b; de Ruiter, van den Ende & Mugele
2015c) using interferometry or total internal reflection microscopy to visualize the
evolution of the air film with (sub-) micrometre thickness and sub-millisecond time
resolution. Most studies focused on the quick air film collapse and its implications
for splashing at high impact velocities, while a few described the slower squeeze-out
in gentle impacts. In all cases the squeeze-out was considered to be irreversible,
ultimately leading to the formation of liquid–solid contact. However, exploring the
low-impact velocity regime we observed that the air film does not collapse at all,
allowing drops of both high and low surface tension fluids to bounce on the air film
(de Ruiter et al. 2015a). In previous bouncing studies, both experimental (Richard &
Quéré 2000; Biance et al. 2006) and numerical (Moláček & Bush 2012; Terwagne
et al. 2013), the existence of an air film was used to explain non-wetting. However,
any further role of the air film on the bouncing dynamics was neglected. When
exploiting the Leidenfrost effect to achieve non-wetting, the air film is relatively



Bouncing on thin air 533
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FIGURE 1. (Colour online) Bouncing series of an R0 = 1.03 mm droplet impacting on a
flat glass substrate with an initial velocity of 0.22 m s−1. (a) Time sequence showing the
vertical centreline of the droplet with the centre of mass position indicated in red. The
bright lines are reflections from the droplet surface. (b) The snapshots show a selection of
(upper row) side view images and (bottom row) the corresponding reflection interference
pictures (1t= 2.4 ms) during the first bounce.

thick (∼100 µm) and air film dissipation is indeed negligible, leading up to 1000
successive bounces (Biance et al. 2006). However, for small air film thicknesses the
role of the squeezed layer as a source of dissipation or as a force actor might not
be negligible. For a droplet bouncing on a viscous bath, Gilet et al. (2008) have
developed a theoretical description involving a squeeze force and dissipation in the
air film. In their description the air film is flat, and therefore liquid motion inside the
drop (coupled to the film drainage via the drop–air interface) must have a significant
influence on the film drainage to observe full momentum reversal and thus repeated
bouncing. Here, the question arises whether the assumption of a flat air film correctly
explains the momentum transfer via the air film to the drop.

We study the impact of millimetre-sized droplets onto a rigid, stationary substrate
(thus excluding any external forcing or replenishment of the air film). When released
from a typical height of 4–14 mm the droplet bounces repeatedly before an abrupt
transition to wetting is observed. Figure 1(a) shows the time evolution of the centre
of mass during a typical bouncing series. During the ‘bounce’, i.e. when the linear
momentum is reversed due to interaction with the substrate, the droplet is flattening
on the substrate, but maintains a virtual contact angle of 180◦, as shown in the upper
row of figure 1(b). To sustain this non-wetting situation independent of substrate
wettability, a finite air layer should exist between the droplet and the substrate. This
is confirmed using reflection interference microscopy: the interference pattern is
permanently observed during the bounce: see the bottom row of figure 1(b). Due to
the absence of a contact line, the dissipation during the bounce is expected to be
small. Indeed, we observe a remarkably high restitution coefficient of 0.96 ± 0.04,
resulting in many bounces before eventually wetting occurs. We aim to give a
comprehensive description of this bouncing mechanism as first demonstrated in our
previous publication (de Ruiter et al. 2015a). The intricate coupling between air
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film dynamics, droplet oscillations, and the resulting restitution is discussed from an
experimental point of view, and by considering a single oscillation mode model that
captures the key dynamics. At first glance one may think that the air film is elastically
compressed, resulting in a reaction force which is permanently oriented upwards to
reverse the droplet momentum. However, the excess pressure in the air film is low,
as confirmed by a balance between drop inertia and gas pressure (Mani et al. 2010),
and thus the air flow in the film must be considered to be incompressible. This is
no problem as far as the energy picture is concerned, since the kinetic energy can
be stored temporally in the surface of the drop, but it is a problem in terms of
momentum transfer. When the lower side of the drop retracts from the surface, air
is sucked into the air film below the drop. Hence the squeeze force on the droplet
should be directed downwards, i.e. become a suction force, while the momentum is
supposed to grow in the upward direction. So, how can a drop bounce on air?

We analyse the bouncing process in terms of an energy picture, i.e. the conversion
from CM energy to internal energy and backwards, using the side view recordings to
obtain the drop shape and trajectory. Second, we analyse the evolution of the drop–air
interface from the bottom view interferometric data in order to estimate the evolution
of the pressure distribution in the film. Thus we can investigate the role of the squeeze
force exerted onto the drop, necessary to reverse the momentum of the drop during the
bounce. The associated dissipation in the air film is compared to the total energy loss
in each bounce (as obtained from the side view). In § 2 we present our experimental
approach, while in § 3 the analysis of the recorded data is discussed as well as how
to obtain the kinetic and potential energy from the droplet shape evolution. Here we
will also explain how to obtain the squeeze force and the dissipation in the air layer
from the evolution of the film profile. In § 4 the results of the bouncing and squeeze-
out analysis are discussed. Moreover, a simple ‘single oscillation mode’ model will
be presented to explain the bouncing on a purely dissipative force. We conclude our
findings in § 5.

2. Experiments
The droplets are quasi-statically dispensed from a syringe needle and detached by

their own weight to obtain a uniform radius that depends only on liquid properties and
outer needle diameter. The height of the needle above the substrate is varied between 5
and 15 mm, leading to impact velocities at first bounce between 0.22 and 0.49 m s−1.
We use three types of substrates to test the influence of surface wettability: fully
wettable polished glass wafers with a roughness below 3 nm as verified by atomic
force microscopy; the same glass wafers hydrophobized with a UV-cured silicon oil
layer (Arayanarakool et al. 2011) to obtain a contact angle of ∼90◦; and a series of
(super)hydrophobic substrates with root-mean-square roughness varying between 8 and
100 nm. The latter are produced by oxygen plasma etching of a ∼5 µm thick SU-8
photoresist layer on a glass wafer, which is subsequently coated with a C4F8 layer to
obtain an advancing contact angle of 155◦ and a roughness-dependent receding contact
angle of 120◦–150◦ (Tsougeni et al. 2009). The hydrophilic glass wafers are rigorously
cleaned ultrasonically and exposed to a plasma treatment to prevent any irregularities
that can cause premature formation of contact. The substrates are transferred to the
cuvette containing the set-up shortly before the experiments are performed, to avoid
the settlement of dust particles from the air.

We use drops with varying liquid density ρ, viscosity µ, and surface tension σ .
The seven liquids tested are listed in table 1 in order of decreasing surface tension:
water, 85 wt% glycerol (Sigma-Aldrich) in water, sunflower oil (commercial kitchen
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σ ρ µ R0 Bo Oh θY

Liquid (mN m−1) (kg m−3) (mPa s) (mm) (—) (—) (deg.)

Water 64.6 996.9 1.0 1.03 0.16 0.004 3; 90; 155 a

85 wt% glycerol 63.9 1219.4 ∼109 0.95 0.17 0.401 9
Sunflower oil 33 920 ∼49 0.84 0.19 0.307 29
90 wt% propanol 28.7 825.2 2.2 0.79 0.17 0.016 ∼0
90 wt% propanol 28.7 825.2 2.2 1.04 0.31 0.014 ∼0
Decane 24 730 0.92 0.78 0.18 0.008 ∼0
Silicone oil 19.7 913 5 0.69 0.23 0.045 ∼0
FC-40 16 1855 2.2 0.52 0.30 0.018 ∼0

TABLE 1. Properties of the liquids tested. All aqueous solutions contain 0.01 wt%
rhodamin to suppress reflections at the 546 nm interference signal. The equilibrium contact
angle θY is measured in an independent experiment with a gently deposited drop.

aWater contact angles on hydrophilic, hydrophobic, and superhydrophobic wafers,
respectively.

oil), 90 wt% propanol (Merck KGaA) in water, n-decane (Merck KGaA), silicone oil
(µ= 5 mPa s, Aldrich), and fluorinert FC-40 (Sigma). All aqueous solutions contain
0.01 wt% rhodamin to suppress reflections from the top side of the drop at the 546 nm
interference signal. This leads to a small decrease in the surface tension of water to
64.6 mN m−1. The drop radius R0 varies between 0.52 and 1.03 mm, and is correlated
with the fluid properties (in particular surface tension) when detached from a needle
with fixed outer diameter (0.24 mm). For propanol drops we also used a larger needle
to obtain two different drop sizes.

Upon first impact the drops have Weber numbers We = ρR0v
2/σ = 0.64 . . . 4.3

(v: impact velocity), indicating that both inertia and surface tension play a role in
the bouncing dynamics. Due to finite energy losses in the bouncing process, the drop
is subject to a cascade of consecutive bouncing events with progressively reduced
maximum rise height (see figure 1a) and thus reduced impact velocity. Effectively,
each subsequent impact is a separate experiment, in which the drop is gently released
from a somewhat lower initial height leading to a correspondingly lower impact
velocity and Weber number. During this bouncing cascade Weber numbers as low
as O(10−3) are obtained; this cannot be obtained by direct release from a needle,
which would create a liquid bridge to the very near substrate due to drop stretching.
Two other dimensionless numbers are given in table 1: the Ohnesorge number
Oh = µ(σρR0)

−1/2 and the Bond number Bo = ρgR2
0/σ , representing the ratio of

viscosity and gravity to surface tension, respectively. In particular, we analyse the
bouncing behaviour for liquid drops with low Oh � 1 for which the dissipation
in the liquid can be calculated using the potential flow assumption. However,
air-film-mediated bouncing also exists for high-viscosity fluids (glycerol, sunflower
oil), albeit with much shorter bouncing cascades.

The experiments are performed at room temperature and under ambient pressure
and recorded with three synchronized high-speed cameras. The full bouncing sequence
is recorded in side view at 4000 f.p.s. (Photron-FASTCAM Ultima 512) to obtain
contour images of the drop. In addition the air film is imaged using dual-wavelength
reflection interference microscopy (de Ruiter et al. 2012). The two resulting signals
are recorded separately at 20 000 f.p.s. with two high-speed cameras (Photron SA3
and SA5).
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FIGURE 2. (Colour online) Shape mode decomposition of the droplet interface: mode
n = 0 (blue circle), and superposed modes n 6 4 (cyan dotted) and n 6 10 (red). The
centre of mass position ycm is indicated by the red ×.

3. Analysis of the recorded data
3.1. Side view

During the bouncing series, the drop retains its radial symmetry with respect to the
vertical axis. This is in contrast to larger drops (R0 > 2 mm) levitated on a steady,
but relatively fast, ascending air flow (Bouwhuis et al. 2013), or in the Leidenfrost
state (Caswell 2014), in which experiments the radial symmetry was broken, leading
to star-shaped drop oscillations. Moreover, their air film is non-axisymmetric (Caswell
2014), while radial symmetry is clearly present in the current experiment, as shown
in the bottom line of figure 1(b).

Hence, the time-dependent droplet contour R(t, θ) can be obtained from the side
view images. We use Laplacian edge detection, and decompose the shape in terms of
Legendre polynomials Pn(x) (Oh, Ko & Kang 2008; Oh, Legendre & Mugele 2012):

R(t, θ)= R0 +
∞∑

n=0

cn(t)Pn(x), (3.1)

with R0= (3V/(4π))1/3 where V is the volume of the drop, and x= cos θ where θ = 0
is in the upward direction. Modes up to n=10 are included to obtain a sufficiently flat
bottom (with respect to the pixel resolution) when the droplet is interacting with the
substrate: see figure 2. The coefficients can be calculated from the drop profile R(t, θ)
using the orthogonality of the Legendre polynomials

∫ 1
−1 Pn(x)Pm(x) dx= 2δnm/(2n+ 1)

(Oh et al. 2008, 2012):

cn(t)= 2n+ 1
2

∫ 1

−1
{R(t, θ)− R0}Pn(x) dx. (3.2)

Here, the coefficients c2 . . . c10 give the contributions of the respective shape modes
superposed on a sphere with radius R0+ c0, where c0 allows for volume conservation
in the case of non-negligible deformations. Similarly, the coefficient c1 compensates
for the centroid shift due to the higher modes. The analysis centre should be equal
to yCM to correctly separate the CM motion and internal flow. To this end the
following procedure has been used: for each time frame the drop edge is detected
with respect to the vertical symmetry axis x= x0, yielding an averaged drop contour
(xi, yi). Using an initial estimate for yCM(t), a tentative R(t, θ) profile is extracted
with a step size in the cosine of the polar angle 1cos θ = 10−3 over the interval
−1 6 cos θ 6 1. The cn obtained by numeric integration of (3.2) yield a shape
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decomposition using (3.1) and a corresponding correction to the centroid height
estimate (3/4)

∫ 1
−1 xR4(t, θ) dx/

∫ 1
−1 R3(t, θ) dx. The procedure is repeated with an

updated R(t, θ) profile until the correction term reaches zero, and thus the correct
yCM is found.

The droplet interface oscillations are now fully captured by the coefficients
c0(t), c1(t), c2(t) . . . c10(t), and the CM motion by yCM. Its trajectory during flight
is parabolic in time, which can be used to accurately calibrate the pixel size
(17.96 µm pixel−1) knowing the acceleration g = 9.81 m s−2 (we estimated that
the drag force is smaller than 2 %, and thus negligible). This pixel size is used
for calibration of the length scale in the recorded pictures. The derivatives ẏCM and
ÿCM (ċn resp.) are determined by fitting a second-order polynomial to the yCM(t)
data (cn data resp.) over the interval [t − 21t, t − 1t, t, t + 1t, t + 21t], where
1t = 0.25 ms. From this polynomial the slope and second derivative at time t are
obtained. An example of the CM trajectory and the first four modes of the shape
decomposition are shown later in § 4 in figures 5 and 9 respectively.

From the CM motion yCM(t) we extract its potential and the kinetic energy, and the
net external force F acting on the drop:

UCM = ρVgyCM, (3.3)
KCM = 1

2ρVẏ2
CM, (3.4)

F= ρV(ÿCM + g). (3.5)

Next we consider the internal potential and kinetic energy involved in the droplet
shape variations. The (potential) surface energy of the deformed droplet is linear in
the area, Uint = σAsurf , given by

Uint = 2πσ

∫ π

0
R sin θ

√
R2 + (∂θR)2 dθ, (3.6)

with R = R(t, θ) the angle-dependent radius of the droplet. In the limit of small
deformations this expression reduces to Uint ' 2πσ

∫ 1
−1{R2 + (∂θR)2/2} dx, where

x= cos θ . Using the shape decomposition in (3.1) one obtains

Uint = 2πσ

∞∑
n=2

(n− 1)(n+ 2)
2n+ 1

c2
n (3.7)

up to second order in the coefficients cn (see appendix A for details). This can be
written in the usual form as Uint =

∑∞
n=2(keff ,nc2

n)/2 with the effective spring constant
keff ,n = 4πσ(n− 1)(n+ 2)/(2n+ 1), which quickly converges to a linearly increasing
keff ,n ≈ 2nπσ for n > 2. That is, higher-frequency modes are stiffer as their creation
causes a large increase in surface area. Since we calculate the potential energy both
exactly with (3.6) and in the linear approximation with (3.7), we can use their
difference as an estimate of the accuracy of the linear approximation. The latter
is used to determine the (internal) kinetic energy and dissipation in the flow field,
which is strictly only valid for c0→ 0, that is, for small amplitudes of the fundamental
mode c2 < 0.1R0. Thus, during the relatively large drop deformations in the bounce
or ‘quasi-contact’ phase we would like to have an estimate of the accuracy of the
linear approximation. As will be shown later in figure 10(b), the linear approximation
overestimates the potential energy with 20 % for the first bounce, but they fully agree
for later bounces.
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The internal kinetic energy and dissipation depend on the details of the flow field.
Since viscosity plays a minor role, we assume potential flow v = ∇ϕ, which, due
to liquid incompressibility, satisfies Laplace’s equation, ∇2ϕ = 0. The solution of this
equation is given by

ϕ(r, θ)=
∞∑

n=1

AnrnPn(x) (3.8)

in spherical coordinates, where An is the strength of mode n. The corresponding
radial and tangential velocities are given by ur(r, θ) = ∂rϕ(r, θ) and uθ(r, θ) =
r−1∂θϕ(r, θ). For small deformations the normal vector n can be replaced by the
radial unit vector êr and we obtain for the displacement at the interface of the drop
(r = R0): ∂tR(θ) = ur(R0, θ) =

∑∞
n=1 nAnR0

n−1Pn(x). Comparing this with our shape
decomposition in (3.1), we find

ċn = nAnRn−1
0 . (3.9)

Thus, the relation between cn and An is straightforward, yet only for small amplitudes
such that the condition implied by (3.9) (c0 = 0) is fulfilled. However, for large
amplitudes of the fundamental mode c2 > 0.1R0 (i.e. during a bounce) the relation
between cn and An becomes very complicated as energy is transferred between modes
due to nonlinear coupling. For example, Becker, Hiller & Kowalewski (1991) have
formulated a nonlinear inviscid model that evaluates the kinematic and normal stress
boundary conditions at the deformed droplet surface R(θ, t) instead of the equilibrium
spherical droplet. Here, we will restrict ourselves to the linear approximation using
the cn values during the ‘quasi-contact’ phase as an estimate of the flow field.

Given the velocity potential (3.8), we calculate the kinetic energy Kint =(ρ
∫
∇φ·

∇φ dV)/2. Using the relation ∇ · (φ∇φ) = ∇φ · ∇φ + φ∇2φ = ∇φ · ∇φ and the
divergence theorem, the integral over the volume of the droplet is converted to a
surface integral Kint = (ρ

∫
φ(n · ∇φ) dA)/2. In the small deformation limit this

expression reads Kint =πρR2
0

∫ π

0 (ϕ∂rϕ)|R0 sin θ dθ . Evaluating it yields

Kint = 2πρR3
0

∞∑
n=1

1
n(2n+ 1)

ċ2
n (3.10)

(see again appendix A for details). The kinetic energy can be written in the usual form
as Kint =

∑∞
n=2(meff ,nċ2

n)/2, with the effective mass for oscillation given by meff ,n =
3M/(2n2+ n), where M is the total mass of the droplet. The effective mass decreases
with increasing mode number as the flow field gets more localized towards the surface
region for higher-frequency oscillations.

Although potential flow assumes that the fluid is inviscid, we can calculate the
dissipation in the flow field in the limit of low fluid viscosity, i.e. small Oh number.
The internal dissipation rate is given in terms of the rate of strain tensor D by Ėvisc

drop=∫
(2µD : D) dV . It can be shown that (Moláček & Bush 2012)

Ėvisc
drop = 8πµR0

∞∑
n=1

n− 1
n

ċ2
n. (3.11)

These expressions for the energy and the dissipation will be used in § 4 to analyse
the bouncing process. (Here we consider a water droplet for which potential flow
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FIGURE 3. (Colour online) Bottom view analysis: air film thickness during the bounce
phase. (a) Sketch of the thin film interference. (b) The radial intensity profile (thin red
line) and the corresponding interface profile (thick black line). The squeezed film radius
rsq, the minimum film thickness hmin, and the volume-averaged film thickness h (dashed
line) are indicated. Partly reproduced from de Ruiter et al. (2015a, figure 1).

can be assumed. Miller & Scriven (1968) derived an expression for arbitrary Oh,
which was used by Moláček & Bush (2012) to display the coefficients that modify
expressions (3.10) and (3.11), respectively, as a function of both Oh and mode
number.) Moreover, from (3.7) and (3.10) we obtain the well-known Rayleigh
frequencies for a freely oscillating droplet by evaluating ∂t(Kint +Uint)= 0:

ωn = (σ/ρR3
0)

1/2
√

n(n− 1)(n+ 2). (3.12)

3.2. Bottom view
During each bounce the air film is imaged in reflection mode through the transparent
substrate by dual-wavelength reflection interference microscopy (DW-RIM) at the
436 and 546 nm spectral lines (each with a bandwidth of ∼30 nm) of a mercury
lamp: see figure 3(a). The interference pattern is radially symmetric, as shown in
figure 1(b), while the non-monotonic spacing of the fringes indicates a rather complex
radial thickness profile of the air layer with several inflection points. We compare
the intensity with a comprehensive RIM model taking into account the finite aperture
of the optics, as well as the wavelength distribution of the lamp and the spectral
sensitivity of the cameras (de Ruiter, Mugele & van den Ende 2015b). This yields
an absolute film thickness profile h(r, t) of the so-called ‘dimple’ with an absolute
accuracy of approximately 30 nm: see figure 3(b). We analysed the 20 000 f.p.s.
recordings with a time step between 0.1 and 0.25 ms aiming at hundred interface
profiles per bounce. The observed region is finite: outside the kink the interference
pattern quickly vanishes as the slope of the drop interface becomes too large to be
resolved (>3◦).

For each bouncing event the interference pattern is observed for a finite time span in
which the squeezed air film expands radially and again recedes, while no real liquid–
solid contact is established. This time span corresponds (within the resolution of order
0.1 ms) to the ‘quasi-contact’ time during which the droplet interface is flattened by
the air pressure build-up. When the impact Weber number drops below a critical value
during the bouncing cascade, the ‘quasi-contact’ time becomes infinite, i.e. the air
film remains continuously squeezed to a micrometric layer with a local maximum
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at the dimple centre. The drop no longer visibly detaches from the substrate in side
view images, but simply oscillates. In the bottom view images the interference pattern
remains visible permanently (until the film collapses) and oscillates as well. This stage
will be denoted ‘hovering’ instead of ‘bouncing’. For the film thickness profile h(r, t)
obtained during each ‘quasi-contact’ phase we determine some characteristic quantities
as defined in figure 3(b). The dimple volume is Vsq(t)=

∫ rsq(t)
0 h(r)2πr dr, with rsq the

radius of the squeezed film. Additionally, the average height h(t)=Vsq/(πr2
sq), and the

minimum film thickness hmin(t) at the position rmin(t) are determined. This minimum
thickness is critical for the stability of the film.

The flow in the squeezed air layer can be described in the lubrication limit because
the layer has a thickness h ≈ 1 µm while its radius r varies from 102 to 103 µm.
Moreover, the gas film can be considered as incompressible, as determined by the
balance between drop inertia and viscous stresses in the gas film (Mani et al. 2010):
the dimensionless compressibility parameter ε = O(100) � 1 for a typical water
droplet impact. In that case the continuity relation leads to a simple relation between
the interface profile h(r, t) and the radial volumetric flow rate Q̇(r) expressed as
dQ̇(r)/dr=−2πrḣ(r). Hence

Q̇(r)=−2π

∫ r

0
sḣ(s) ds, (3.13)

or, in terms of the averaged velocity v(r)= Q̇(r)/(2πrh(r)),

v(r)=− 1
rh(r)

∫ r

0
sḣ(s) ds. (3.14)

The axial dependence of the velocity field can be obtained from the reduced Stokes
equations

∂rp=µ∂2
z v, (3.15)

∂zp= 0. (3.16)

Integration of (3.15) yields an expression for v(r, z) that is quadratic in z, resulting in
a parabolic flow profile. The exact shape of the profile is determined by the boundary
conditions: we assume a no-slip condition at the gas–substrate interface, i.e. v(r, 0)=
0, while we consider partial slip at the gas–droplet interface, i.e. at z=h(r), depending
on the mobility of the droplet interface. It has been shown that a liquid interface with
impurities has a finite mobility that allows the gas to slip along the interface and
have a finite velocity at the boundary (Chesters 1991). For a fully mobile interface we
assume (∂zv)h = 0, for a fully immobile interface v(r, h)= 0. To interpolate between
these limiting cases we introduce a coefficient 1 6 α 6 2 (α = 1, no slip; α = 2, full
slip). The resulting velocity profile is given by

v(r, z)= β(α)v(r)
{(

z
αh(r)

)
−
(

z
αh(r)

)2
}
, (3.17)

where the normalization factor is given by β(α) = 6α2/(3α − 2) to ensure that the
height-integrated velocity profile is equal to the total height times the average velocity,
i.e.

∫ h(r)
0 vr(r, z) dz= h(r)v(r). The local dissipation rate per unit volume in the film
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is given by ε̇(r, z) = 2µD : D = µ(∂zv)
2. So the local dissipation rate ẇsq(r) dr =

2πr dr
∫
ε̇(r, z) dz in a shell with thickness dr is given by

ẇsq dr= 24πµ

[
3α2 − 6α + 4
(3α − 2)2

]
v2(r)

r
h(r)

dr. (3.18)

Equation (3.18) integrates to the total dissipation rate Ẇsq =
∫ Rmax

0 ẇsq dr, where the
film extends over a lateral distance Rmax. For a parallel plate geometry (∂rḣ = 0
and no-slip) this reduces to the classical solution for the total dissipation rate
Ẇsq = (3/2)πµḣ2h−3R4.

Equivalently, we can calculate the pressure field in the squeeze flow and determine
the squeeze force. By substitution of the velocity profile (3.17) in the Stokes equation
(3.15), we find the pressure gradient, ∂p/∂r =−(6µ/π(3α − 2))(Q̇(r)/rh(r)3), which
is integrated to obtain the excess pressure 1p(r) in the air film:

1p(r)= p(r)− p∞ = 6µ
π(3α − 2)

∫ ∞
r

Q̇(s)
sh3(s)

ds, (3.19)

where p∞ is the ambient pressure outside the squeezed layer. The squeeze force can
be determined by integrating the pressure over the film area:

Fsq =
∫ ∞

0
2πr1p(r) dr= 6µ

(3α − 2)

∫ ∞
0

sQ̇(s)
h3(s)

ds. (3.20)

The partial slip pre-factor decreases from 1 to 1/4 when the boundary condition
changes from no-slip to full slip at the droplet interface. For the analysis of our
experiments we use the no-slip condition in line with the previous numerical work
(Smith, Li & Wu 2003; Hicks & Purvis 2010; Mani et al. 2010).

4. Results and discussion
The air-film-mediated bouncing scenario is universally observed for all tested

liquids. A representative example of a bouncing series is depicted in figure 4(a).
It shows the centre of mass trajectory of a water drop bouncing on a hydrophilic
glass wafer (black line). After a 0.8 s bouncing time we observe a sudden change
in the CM height and an abrupt ∼180◦ to ∼3◦ change in contact angle, marking the
transition towards wetting. Direct visualization of the initial air film using interference
microscopy (in § 4.2) will unambiguously confirm the non-wetting bouncing scenario.
For now we observe that a very similar trajectory is found for an identical water
drop bouncing on a wafer hydrophobized with a UV-cured silicon oil layer (magenta
dashed line; small deviations are attributed to a 10 % difference in initial impact
velocity). This demonstrates that the bouncing behaviour is independent of wettability,
already strongly suggesting the presence of the aforementioned air film.

Very similar behaviour comprising a subsequent bouncing, hovering and wetting
phase can be observed for both high and low surface tension fluids when the Weber
number of the initial impact is below ∼4 (de Ruiter et al. 2015a). Figure 4(b) shows
the bouncing behaviour of the fluids listed in table 1: for each fluid we selected a
single experiment (de Ruiter et al. 2015a) obtained at the maximum impact velocity
that still yielded a bouncing series, in favour of immediate wetting upon the first
impact. For each subsequent impact event of this experiment, We is calculated from
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FIGURE 4. (Colour online) Universality of air-film-mediated bouncing: influence of
wettability and liquid properties. (a) Bouncing series of a water droplet impacting on
a hydrophilic (black; v = 0.22 m s−1) or hydrophobic wafer (magenta dashed; v =
0.20 m s−1). Oh= 0.004. (b) Occurrence of bouncing (solid symbols) and hovering (open
symbols) for various liquids as a function of Oh and We: black squares, water; green
triangles up, 85 wt% glycerol; blue diamonds, sunflower oil; red stars, 90 wt% propanol;
grey triangles down, decane; olive circles, silicone oil; dark blue pentagons, fluorinert
FC-40. Upper, red shaded area, high-speed impacts leading to immediate wetting due to air
film collapse; white area, bouncing; lower, blue shaded area, hovering. The horizontal bars
at the boundary of direct wetting-to-bouncing and bouncing-to-hovering show the predicted
transitions based on critical film thickness, We (hc = 200 nm) (§ 4.2.1), and the onset of
gravity effects, We = Bo2 (§ 4.1.1), respectively. Partly reproduced from de Ruiter et al.
(2015a, figure 3).

the maximum value of the CM velocity v = max |(ẏCM)| obtained just before the
impact. The results are plotted as a function of the Ohnesorge number Oh. For a
wide range of surface tensions and liquid viscosities (table 1) spanning two orders
of magnitude in Oh, air-film-mediated bouncing and hovering are observed in a
universal We regime spanning three to four orders of magnitude. However, the number
of bounces decreases with Oh due to larger viscous losses upon increasing liquid
viscosity and/or surface deformability. For the detailed discussion of the bouncing
process we consider the longest bouncing series obtained, which occurred for a water
drop with Oh= 0.004.

4.1. Shape dynamics of the droplet during the bouncing
The bouncing series of a water droplet with R0 = 1.03 mm, recorded with the side
view camera, is shown in detail in figure 5. The centre of mass of the droplet is
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FIGURE 5. (Colour online) Bouncing series of an R0 = 1.03 mm droplet impacting on a
flat glass substrate with an initial velocity of 0.22 m s−1. Time evolution of the CM height
(red, upper curve) and macroscopic air layer thickness (grey, lower curve) obtained from
the side view images. The bouncing series can be subdivided into a bouncing phase and
a hovering phase (shaded) that shows an equilibrium sag δ, followed by wetting. Partly
reproduced from de Ruiter et al. (2015a, figure 2).

released from h0,eff = 3.61 mm, resulting in an initial impact velocity of 0.22 m s−1,
i.e. We= 0.76. The red line shows the height of the centre of mass obtained from the
shape mode analysis. The full bouncing sequence takes less than one second, during
which the droplet bounces 16 times on the substrate, followed by a hovering stage
(shaded) with 15 oscillations on a continuously present air film. The air film thickness,
hc(t)= yCM(t)−∑∞n=0 cn(t)Pn(−1), below the centre of the droplet (grey line) becomes
very thin during each bounce, but cannot be resolved accurately enough to measure
micrometric thicknesses. (The bottom view analysis, described in the next section, will
do.) The maximum flight height decreases with each bounce, and thus We decreases
progressively. In the final hover oscillation We is only 0.004. Thereafter, solid–liquid
contact is established and the droplet wets the substrate (see figure 5).

4.1.1. Centre of mass trajectory and interaction time
For each single bounce the centre of mass (CM) motion can be subdivided into two

phases, a free flight and ‘quasi-contact’: see figure 6. During the flight the interaction
force is zero and the CM motion is fully decoupled from the droplet oscillation. The
CM trajectory is parabolic in time with constant gravitational acceleration, so the
speed increases linearly in time upon approaching the substrate. In contrast, during
the ‘quasi-contact’ phase the droplet interacts via the squeezed air layer with the
substrate (the grey line in figure 5 is practically zero), and the motion of the centre
of mass is directly linked to the droplet deformation. The droplet can be viewed as
a liquid resonator powered by energy of the centre of mass that is converted into
internal kinetic and elastic surface energy. The droplet stretches laterally while the
CM height decreases down to about half the droplet radius for the first bounce: see
the middle snapshot in figure 1. The maximum speed v = max|(ẏCM)| is reached at
the end of the flight phase and defines the We number of the impact: see figure 6.
During the deformation, the CM velocity decreases to zero. Subsequently the velocity
is reversed and the droplet bounces off with velocity v′ = max(ẏCM). During the
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FIGURE 6. (Colour online) Velocity and estimated interaction force for the experiment
shown in figure 5. (a) Time evolution of the CM height (red) and interaction force (blue,
peaked during ‘quasi-contact’) derived from the CM acceleration. (b) CM velocity (dark
red). The first two bounces are shown (t< 0.10), as well as a few hovers (0.70< t< 0.75).
The blue shaded area indicates interaction with the substrate, i.e. ‘quasi-contact’.

‘quasi-contact’ phase the droplet thus experiences an acceleration that must be caused
by the interaction with the air film. The blue line in figure 6 shows the interaction
force F with a time resolution of about 1 ms, as calculated with (3.5). The force is
double (sometimes single) peaked and is always positive, as would be the case for
a normal force in the case of elastic contact. We will discuss this observation when
analysing the nature of the force in a later section.

What happens during the subsequent bounces? Due to energy dissipation and
transfer to internal modes, the droplet bounces back to a smaller height in the
next flight phase, and its subsequent impact velocity will be lower. Ultimately the
free-flight phase is fully eliminated and the drop hovers on an air film of micrometric
thickness. Now, the motion of the centre of mass is permanently linked to the
shape oscillations. The interaction force does not decrease to zero any more as the
droplet is continuously in ‘quasi-contact’ with the substrate via the air film. The
(late) time-averaged interaction force converges to the gravitational force (46 µN in
figure 6) when the droplet approaches its equilibrium shape. This equilibrium shape
is not spherical but flattened, as it constitutes a small gravitational sag δ which is
the result of a balance between gravity and surface tension, δ/R0 ∼ Bo (Mahadevan
& Pomeau 1999). The observed sag indeed increases with Bo and ranges from
δ/R0 ≈ 0.15 for drops of water (Bo = 0.16; figure 5) to 0.23 for drops of FC-40
(Bo= 0.30), in good agreement with the prediction.

The overall bouncing behaviour can be described by the restitution coefficient. The
restitution coefficient is defined as the ratio between maximum velocities after and
before the bounce, ε = v′/v = √We′/We: see figure 6. It is plotted in figure 7 as
function of We for water and glycerol drops, for three bouncing series each with
different initial impact speeds. For a water droplet with R= 1.03 mm the restitution
coefficient is approximately constant over most of the We range and has a value of
0.96 ± 0.04, similar to the restitution coefficient found by Richard & Quéré (2000)
for bouncing on a superhydrophobic substrate – which may also involve an air film.
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FIGURE 7. (Colour online) The dependence of the restitution coefficient ε on impact
We for experiments with 1.03 mm water droplets (initially released from various needle
heights: red, 5 mm; blue, 11 mm; black, 15 mm) and 0.95 mm glycerol droplets (in the
lower part of the graph: dark red, 5 mm; dark blue, 8 mm; grey, 10 mm). Solid symbols
denote the bouncing phase, while open symbols denote the hovering phase. The red arrows
denote the sixth and ninth bounce of the experiment in figure 9, for which coupling of
the oscillation and flight time (i.e. impact within the prolate shape) leads to a relatively
low restitution coefficient.

The restitution coefficient in figure 7 shows a characteristic fluctuation pattern versus
We, which is remarkably independent of the initial fall height. The fluctuation in
restitution is related to a coupling between the oscillation time of the dominant
mode n= 2 (see § 4.1.2) and the flight time. The restitution is maximal when at the
moment of impact the droplet is stretching towards oblate, since the bottom interface
velocity is then minimized (Biance et al. 2006). On the other hand, when at impact
the drop is contracting from a prolate shape, the restitution is expected to show a
local minimum. The latter is indeed the case for the impacts indicated with an arrow
in figure 7.

While the restitution coefficient suddenly drops to zero when solid–liquid contact is
made at low We, at the other limit of We∼ 1 it decreases more gradually. This can be
explained by the large droplet deformation: at higher impact velocity the restitution
coefficient is largely determined by the transfer of energy to large-amplitude droplet
oscillations rather than dissipation in the liquid or the squeeze layer. With a simple
liquid spring free of dissipation, Biance et al. (2006) showed that for We > 1 the
speed after take-off does not depend on the impact speed or the compression of the
spring, and is given by v′ ∼√σ/(ρR). It can then be easily shown that the second
bounce should have We∼1; this jump is indeed observed in figure 7. This implies that
for each initial impact condition We > 1 the drop falls into a very similar trajectory
after the first bounce. As a result the number of bounces remains remarkably constant,
i.e. 16–18 for water droplets. Moreover, from figure 7 we observe that the restitution
coefficient and thus the number of bounces depends on the droplet viscosity: the
restitution coefficient of highly viscous glycerol droplets is about 0.7 and leads to
only two bounces.

In the absence of real liquid–solid contact during the ‘quasi-contact’ or bounce
phase, its interaction time is defined as the period during which the interaction force
is non-zero. Within the experimental time resolution, this is equivalent to the period
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FIGURE 8. (Colour online) The dependence of interaction time on We. (a) A 1.03 mm
water droplet is released from various initial heights (red, blue and black data set) onto
a glass substrate, or a hydrophobic cured silicon oil layer (grey). In the bouncing phase
the interaction time of individual bounces can be obtained (closed symbols), while at the
onset of the hovering phase (shaded blue) the interaction time suddenly becomes infinite
(see arrow) and we instead measure the oscillation time (open symbols). (b) Normalization
of the interaction time by τ = (ρR3

0/σ)
1/2 for experiments with droplets of water (black),

85 wt% glycerol (green), sunflower oil (blue), 90 wt% propanol with R0 = 0.79 mm and
1.04 mm (red and pink respectively), decane (grey), silicone oil (olive), and FC-40 (dark
blue). Solid line, Rayleigh free oscillation time; dashed line, numerical results from
Moláček & Bush (2012) in the absence of gravity (We � Bo2); short dashed lines,
analytical solutions from Moláček & Bush (2012) for a droplet oscillating around its
equilibrium position (We� Bo2).

during which the interference pattern of the air film is visible. The interaction times
for the impact of a 1.03 mm water droplet are shown in figure 8(a): for the successive
bounces the interaction time increases while We decreases. Again, the results from
the various experiments at different initial impact velocity collapse perfectly. Also, for
hydrophilic and hydrophobic substrates we observe no difference. The interaction time
is approximately 9.1 ms for bounces at We∼ 1, and increases towards 18.5 ms for the
last bounce. Subsequently, the interaction time abruptly becomes infinite at We∼ 0.02,
which is the onset of the hover stage. During the hovering we can instead measure
the oscillation time of the droplet (and the dimple), which is 20.7 ms.

Simple scaling theory of a weakly deformed liquid drop (We � 1) shows that
the contact time of a non-wetting bounce is described by a characteristic time
τ = (ρR3

0/σ)
1/2 (Richard, Clanet & Quéré 2002; Okumura et al. 2003). The contact

time then scales as tc/τ ≈ A(Bo, We, Oh), where A is a function of the three
dimensionless numbers relating the importance of gravity, inertia and viscosity to
surface tension. In our experiments we consider only two of them since viscosity
effects are assumed negligible at all times, Oh � 1. In figure 8(b) the rescaled
interaction time tc/τ is plotted for eight bounce series with different liquid droplets.
In the bounce phase all data collapse, and the abrupt transition to hovering is observed
for all liquids – yet the obtained oscillation time and the We number at the transition
both vary with Bo. We think this is due to gravity. Gravity effects are negligible
at the beginning of the bounce series, but are expected to become dominant when
We decreases and the droplet oscillates around its equilibrium shape. Okumura et al.
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(2003) show that the transition between these two regimes is given by We ∼ Bo2.
Within our small range of Bo numbers studied (0.16–0.31) the abrupt transition to
hovering is in exact correspondence with this scaling; see also figure 4(b) (with small
deviation at higher Oh). We can now explain the limiting behaviour as follows: for
large We the droplet is expected to approach the Rayleigh free oscillation time of the
dominant n= 2 mode, tfree/τ = 2π/

√
8∼ 2.22 (see (3.12)). This is indeed the case, as

indicated by the black horizontal line. On the other hand, in the weak deformation
limit of We→ 0 the calculations of Chevy et al. (2012) show that the oscillation time
depends on Bo: for increasing influence of gravity, the deformation of the droplet
is stronger and it behaves in a stiffer way, i.e. the oscillation time decreases in the
limit of We→ 0. This decrease is confirmed in figure 8(b): see arrow. In fact, the
global behaviour shows fair agreement with the limiting behaviour in the absence
(black dashed line) and presence (coloured small dashed lines) of gravity for the
logarithmic spring behaviour derived by Moláček & Bush (2012). The remarkable
difference, however, is the abrupt transition towards hovering, yielding a constant
oscillation time very early on (at We = Bo2). This may be a consequence of the air
film dynamics that were excluded from any previous models. Finally we stress here
again that real contact is never made. Air-film-mediated bouncing thus adds another
perspective to reducing the real contact time below the Rayleigh free oscillation time,
as was achieved very recently using cleverly designed macrostructures (Bird et al.
2013; Liu et al. 2014).

4.1.2. Droplet oscillations
So far we have mainly considered the CM motion of the droplet. In addition,

during ‘quasi-contact’ the droplet becomes deformed to buffer the energy needed
for recoil. Since not all energy is transferred back to the centre of mass, the drop
subsequently oscillates during the flight. The magnitude of the oscillation depends on
impact velocity and droplet properties such as size, surface tension and viscosity. Let
us consider the oscillations associated with the trajectory of an R0 = 1.03 mm water
droplet impacting at 0.22 m s−1 as in figure 5. The most significant coefficients cn
of the mode decomposition, i.e. up to n= 4, are shown in the main panel of figure 9.
During the bounce phase the decrease in the mean radius R0 + c0 and a small c1
contribution show that the small-amplitude approximation is not valid here. Thus we
need some caution in using the cn values to describe the potential flow inside the
droplet. For now, we look at the surface decomposition itself. Amongst the orders >2,
the dominant mode is n= 2 with a oscillation time of 9.1 ms (±0.1). Due to its clear
dominance, the second mode sets the free oscillation time of the overall drop, that
is, the variation of the drop height as shown in the right inset of figure 9. The other
oscillation times are 4.7 and 3.0 ms for the n= 3 and 4 modes, and all show perfect
agreement with their respective Rayleigh frequencies, (3.12). The independence of
modes is only observed during the free-flight phase; during the ‘quasi-contact’ phase
all modes up to n= 4 are abruptly forced into the same phase, as the droplet becomes
deformed by interaction with the squeezed air layer. The result is a single peak for the
n= 2 mode and a double peak for the n= 3 mode. With each subsequent bounce the
amplitudes of all modes during the ‘quasi-contact’ decrease. Gradually the frequencies
of the modes change such that in the hover phase all modes are synchronized with
the motion of the centre of mass. The transition is most clear for the n = 3 mode,
which initially shows two peaks during a bounce, gradually merged into one. For the
n = 2 mode the characteristic time for ‘quasi-contact’ merely increases. In the final
hover stage shown in figure 9 the synchronized oscillation time is 20.7 ms.
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FIGURE 9. (Colour online) Shape mode decomposition using Legendre polynomials for
the bouncing series shown in figure 5, for n = 0 (black dotted line, shifted by constant
R0), n=1 (black solid line), and in order of decreasing amplitude: n=2 (red), n=3 (blue),
and n = 4 (grey) versus time. The first two bounces are shown (t < 0.10), as well as a
few hovers with equilibrated gravitational sag (0.70< t< 0.75). The free oscillation time
depends on the mode, tfree = 9.1, 4.7, 3.0 ms for n = 2 . . . 4, whereas during hovering
the modes are synchronized, tbound = 20.7 ms. Left inset, moment of lift-off after the
first bounce. Right inset, overall drop deformation in terms of the half droplet height
(magenta).

It is important to note that the oscillation modes with n > 2 are critical for the
bouncing dynamics. The left inset of figure 9 shows the lift-off after the first bounce.
Near the contact point the droplet interface has a high curvature due to a favourable
superposition of positive even modes n= 2 and 4 and negative odd mode n= 3. Thus,
the superposition of higher modes can lead to a significant decrease in the ‘quasi-
contact’ area that is critical for a high-restitution lift-off.

From the mode decomposition the half droplet height B = ∑∞n=0 cn(t)[Pn(1) +
Pn(−1)]/2 has been calculated and is shown in the right inset (magenta) of figure 9
for the first two bounces and the last few hover oscillations. During the first few
bounces, the droplet deforms in the vertical direction to about half its original
size, while the oscillations during the intermediary free-flight phase are significantly
smaller. They also show a slight decay due to viscous dissipation in the droplet.
During the successive bounces the We number decreases and so does the droplet
deformation. Consequently the intermediate flight time gets shorter and the bouncing
pattern gradually transforms into the single oscillation pattern that can be observed
in the hover phase.

4.1.3. Energy transfer and dissipation
The transfer during the bounce of CM energy to internal energy (i.e. oscillation

energy) and subsequent dissipation in the internal flow have previously been described
as the primary source of dissipation in non-contact bouncing of droplets (Richard &
Quéré 2000). The main reason for this is the relatively long flight time compared
to the contact time. However, in our experiments the free oscillations have small
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FIGURE 10. (Colour online) Energy conversion and dissipation for the experiment in
figure 5. (a,b) First bounce showing the conversion of the kinetic (dark solid line) and
potential (dark dashed line; the thin dashed line shows the linear approximation) parts of
(a) the total CM energy and (b) the total internal energy. (c) Total energy (black solid
line), total energy plus the calculated internal dissipation (black dotted line; 1Evisc

drop is
indicated by the grey region), and excess viscous dissipation 1Evisc

excess (green region) to
explain the difference from the total initial energy E0. Partly reproduced from de Ruiter
et al. (2015a, figure 5).

amplitude, and their weak decay in figure 9 shows that there is little dissipation during
the flight. We thus need to take into account the dissipation during the ‘quasi-contact’
phase. Using the side view experiments we cannot only derive the CM energy but also
the internal energy of the drop from the shape mode decomposition. Figure 10(a,b)
shows the energy conversion during the first bounce. The CM energy in figure 10(a) is
converted from gravitational to kinetic energy without any losses during the approach
flight. A very small scatter is observed in the constant CM energy (162 nJ before the
first bounce) because of the inaccuracy in the position determination of the centre
of mass. Only during ‘quasi-contact’ do the CM dynamics couple to the oscillation
dynamics, and CM energy is temporarily buffered into internal energy while the drop
is strongly decelerated. However, a large part of the energy is restored in the CM
motion while the drop lifts off, again yielding a constant but slightly lower CM energy
of 128 nJ. The internal energy is shown in figure 10(b). During the ‘quasi-contact
phase’ the internal flow field has two peaks in the kinetic energy – one before and
one after the maximum deformation of the droplet – while the potential energy is
maximum when the flow reverses. In the transition to the subsequent flight phase
the drop keeps a small residual oscillation energy of 6 nJ, continuously converting
kinetic and potential energy with a weak decay due to dissipation.
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Figure 10(c) shows the sum of the droplet energy Etot =ECM +Eint plotted in black.
We calculate the internal dissipation 1Evisc

drop (grey area) by time-integration of (3.11),
and add this term to the droplet energy (resulting in the black dotted line). During
the flight phases this sum is constant (plateaus in the black dotted line) which implies
that the small decay in internal drop energy (blue) is indeed due to 1Evisc

drop, while the
CM energy (red) is conserved. However, accumulated over an entire bounce series, the
above-mentioned viscous dissipation during the flight phases amounts to only 20 % of
the total energy loss of the droplet. During the short ‘quasi-contact’ phases another
10 % is dissipated via this mechanism but most of the energy (70 %) is dissipated via
another mechanism, not yet identified. After each ‘quasi-contact’ or bounce the CM
energy has decreased significantly while the internal energies just before and after a
bounce are nearly equal. This loss in CM energy cannot be fully accounted for by
the internal dissipation 1Evisc

drop, as evidenced by the clear jump in the black dotted
line. (The scatter during each ‘quasi-contact’ phase is due to limitations of the linear
decomposition of the drop shape. As dissipation is always negative, the black curves
should be monotonically decreasing.) The green area in figure 10(c) indicates the
‘excess’ dissipation 1Evisc

excess, cumulative over the entire bouncing series. It represents
the missing 70 % of the total energy loss, dissipated during the ‘quasi-contact’ phases.
Inaccuracies of the linear approximation during ‘quasi-contact’, as suggested by the
10 % reductions in R0 + c0 in figure 9, are expected to cause deviations of the order
of 20 %, and yet the amount of 1Evisc

excess shown in figure 10(c) suggests a second
dissipation channel, namely dissipation in the lubricating air layer.

4.2. Air film dynamics during bouncing
4.2.1. Interface shape

The interaction of the droplet with the squeezed air layer during ‘quasi-contact’ can
be analysed from the film thickness profiles as obtained from the bottom view images
using interferometry. As an example, figure 11 shows the evolution of the air film for
the first impact of a water drop bouncing series at We = 0.76. A height plot of the
air film evolution in time is shown in figure 11(a), while the corresponding thickness
profiles are plotted in two separate figures: figure 11(b1) shows the spreading of the
confined film up to the maximum lateral extension, while figure 11(b2) shows the
contraction phase. The transient film has a typical height of only 1 µm while the
lateral extension is about 1 mm, resulting in a small O(10−3) height-to-radius aspect
ratio. The air film is thus remarkably flat. However, if we stretch the y-axis as in
figure 11(b), we observe the typical thickness profile of the air film. The largest
film thickness is attained in the centre of the film (i.e. the droplet–air interface is
dimpled), and the film is bounded by a ‘kink’ of high interfacial curvature where the
film thickness is minimum (near the rim of the film). Outside this kink the interfacial
slope diverges.

First of all, an obvious condition for non-contact bouncing is the presence of an
air film during the full ‘quasi-contact’ phase. This requires a minimum film thickness
larger than ∼200 nm on glass substrates (de Ruiter et al. 2012, 2015a): when the
film thickness becomes smaller, liquid–solid contact is formed and bouncing is
inhibited. It was shown that for larger We & 1 the minimum film thickness develops
around the shoulder near r = 300 µm: see figure 11(b1). For increasing We it is at
this location where the film thins to the critical value needed to obtain liquid–solid
contact. Mandre et al. (2009) demonstrated the influence of surface tension on the
minimum film thickness: the strong curvature near the shoulder generates a capillary
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FIGURE 11. Time evolution of the squeezed air film during the first bounce phase for
an R0 = 1.01 mm water droplet (v = 0.22 m s−1) shown in figure 13. (a) Contour plot
h(r, t) of the film height as a function of radial position and time. The corresponding
interface profiles are shown with 1t= 0.1 ms for (b1) the spreading stage up to 3.6 ms,
and (b2) the contraction stage up to 8.6 ms. As the minimum is hard to follow in these
diagrams, we show the time evolution of this minimum explicitly in (c), which clearly
reveals the curling motion at the turning point. Partly reproduced from de Ruiter et al.
(2015a, figure 4).

pressure that prevents further thinning of the air film. This leads to an equilibrium
film thickness hc=5R Oh8/9

g We−10/9, where the Ohnesorge number Ohg=µg(σρR0)
−1/2

is the ratio between gas viscosity and surface tension and inertia. Hence, hc decreases
with We. We previously verified this scaling in our experiments (de Ruiter et al. 2012),
and use it here to estimate the critical Weber number for which hc < 200 nm, and
bouncing is inhibited. Since Ohg only varies by a factor of two for millimetre-sized
droplets, the film is expected to collapse when We & 4–6, which is a narrow range
independent of liquid properties. These predictions are plotted in figure 4(b) and are
in good agreement with experiments in which We is pushed to its maximum limits
while still obtaining a bounce series.

From figure 11 one observes that the evolution of the air film during spreading and
contraction of the drop is not time-symmetric: the height plot in figure 11(a) shows
that the spreading phase is significantly shorter, and the size of the confined air film
grows monotonically up to its maximum extension. During the contraction phase
however, the air film shows repeated small contractions and expansions. Figures
11(b1, b2) provide more detail on this asymmetry. During the spreading phase in
figure 11(b1) the interface unfolds ever more outwards, while the inner region remains
almost unchanged. The initial stagnation area under the centre of the droplet expands
into an ever larger region, and the interface moves almost vertically outside this
stagnation region. In contrast, during the contraction phase shown in figure 11(b2),
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FIGURE 12. (Colour online) Time evolution for successive bounces of (a) squeezed film
volume, (b) average and (c) minimum film thickness. Three bounces are shown from the
experiment in figure 13, We= 0.76, 0.26, 0.05 (grey, bounce 1; red, 5; blue, 12), and one
hover oscillation, We= 0.007 (black, 10).

the outer kink moves inward towards the centre of the film. Simultaneously the
minimum thickness gradually increases after some initial wiggles that coincide with
the contraction/expansion cycles. The typical ‘curling’ behaviour of the kink is shown
by plotting the air film thickness versus the position of the kink in figure 11(c). It
is important to note that the air film thickness inside the kink still decreases but
it increases outside the kink as the drop ‘peels off’ the substrate. The pronounced
asymmetry between the spreading and the receding phase turns out to be crucial for
the bouncing process, as we will see in the next section.

The air film shapes obtained for subsequent bounces can be described by a few
simple characteristic parameters, despite the film complexity. As discussed in § 3.2,
we use the volume of the air film Vsq, its average height h, and its minimum film
thickness hmin, which determines whether the squeezed air layer is stable so that no
liquid–solid contact is formed. Figure 12 shows the time evolution of these parameters
for a few selected bounces. As expected, all parameters vanish or diverge outside
the ‘quasi-contact’ phase, i.e. when the drop is not interacting with the substrate, and
we verify again that the ‘quasi-contact’ time increases during a bouncing series until
it becomes infinite at the onset of the hover stage (thin black lines). In the hover
stage each oscillation continuously passes into the next one as the droplet interface is
permanently deformed.

For successive bounces the maximum volume of trapped air decreases from typically
3 to 0.2 nl: see figure 12(a). We plot the maximum entrapped volume as a function
of the Weber number of the bounce in figure 13(b). The increase in dimple volume
with We is characteristic for the low-velocity regime in which capillarity smooths
out the dimple. When the inertia of the drop becomes important, for We > 1, the
dimple volume again decreases with We, leading to a maximum in dimple volume
(Bouwhuis et al. 2012; Klaseboer, Manica & Chan 2014; de Ruiter et al. 2015c).
The latter regime is not reached in the experiment of figure 13. We obtain the scaling
Ṽsq ∼ We0.83 in the hovering phase (i.e. the limit of small We), which is slightly
stronger than the exponent of 1/2 predicted in the low-velocity regime (Bouwhuis
et al. 2012). The volume decrease is strongly linked to the decrease in spreading
radius rsq from ∼0.8 mm in the first bounce to only ∼0.4 mm in the hover stage, as
shown in figure 13(a).

The average film thickness decreases as shown in figure 12(b), thus the droplet
interface on average approaches the substrate closer and closer with each bounce.
However, the minimum film thickness exhibits a rather random behaviour. For each
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FIGURE 13. (Colour online) Interference signals and shape of the air film at minimum
thickness for successive bounces. (a) The same bounces as in figure 12, as well as hover
oscillations 1, 3, 5, 7, and 9 (We = 0.02 . . . 0.008). Insets: snapshots of the film at
maximum lateral extension for the first bounce (left) and the ninth hover (right). The
1 mm scale bar relates to both snapshots. (b) Absolute minimum of the film thickness
(black circles) with accompanying dimple volume (red triangles) for all bounces and hover
oscillations (closed and open symbols respectively).

bounce in figure 12(c) it shows several oscillations in time, indicating that the kink
comes down repeatedly or new kinks are formed. For the stability of the air film we
are interested in the spatiotemporally obtained absolute minimum thickness during
each bounce. The air film profiles obtained at the instant of minimum film thickness
are shown in figure 13(a). No trend is observed in the minimum film thickness during
the bouncing stage, which is confirmed for a full bouncing series in figure 13(b): it
varies between 300 and 900 nm depending on the details of the squeeze-out. This
is sufficiently large (>200 nm) to prevent solid–liquid contact during all subsequent
‘quasi-contacts’.

The dynamics in the hover stage are different. With decreasing We the influence of
surface tension becomes ever more prominent and the droplet interface shows smaller
fluctuations (both in time and with radial position): see figures 12(c) and 13(a). In fact
the vertical impulse on the droplet is too low to replenish the air film, and the centre
of the dimple suddenly collapses to a height of, here, approximately 500 nm. From
then on the centre of the dimple is more or less stationary and the droplet hovers on a
micrometric air layer. The outer kink gradually approaches the substrate more closely
with each oscillation until the critical film height of ∼200 nm is reached and liquid–
solid contact is established. Figure 13(b) shows the transition between the bouncing
and the hover phase: the minimum film thickness in the hover phase shows a clear
trend with We. Empirically we find h̃min ∼We0.36.

4.2.2. Momentum transfer and dissipation
Although the air viscosity is small, the effects of the viscous flow in the squeezed

air film may become substantial if the shear rate and pressure gradient diverge, due
to the small film thickness. Indeed we find a significant lower number of bounces
than the maximum of 1000 that can be obtained in a Leidenfrost situation where
the air film has a much larger thickness of about 100 µm (Biance et al. 2006). This
strongly suggests that air film dissipation is substantial. The build-up of a viscous
pressure simultaneously leads to an upward force that decelerates the droplet and
should provide the impulse to let the droplet bounce, i.e. reverse the drop velocity
before continued air film thinning leads to formation of solid–liquid contact. For the
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experimental air film profiles we calculate the viscous squeeze force and the local
dissipation rate, (3.20) and (3.18) respectively, using the lubrication equations.

We notice that the squeezed air film has an extreme radius-to-height aspect ratio,
leading to the first naive approach of assuming a flat disk with time-dependent radius
and radially invariant height – either hmin(t) for an upper limit, or h(t) for a lower
limit of the force and dissipation. However, the flat disk approximation fails because
the viscous force is always oriented opposite to the direction of motion, implying a
reversal of the force towards attractive as soon as the drop starts to move away from
the substrate (lift-off) and air is flowing radially inward. For the bouncing drops this
is evidently not the case as the force is repulsive at all times, as shown from the CM
analysis in figure 6. This implies that the interface – at least locally – should exhibit
a downward motion, to obtain a net outward air flow. An effective momentum transfer
thus arises from the fact that the air film is not flat! The details of the kink motion
as described in figure 11(b) are in fact essential to understanding the momentum
reversal during the air cushioning quantitatively. Unfortunately, we miss crucial shape
information outside the kink due to the steepness of the interface compared to the
lateral resolution of the recording: all profiles abruptly end just outside the kink
(see figure 11b). As a result the squeeze force Fsq cannot be determined from the
experimental data as it relies on the unknown reference pressure just outside the
measurable region. To overcome this problem we use a simple parametrization of the
interface: figure 14(a) shows a sketch of the interface evolution that is generic for all
our experiments. At each time, the radial description of the interface shape is given
by a straight line from dimple centre to kink inside the kink, matched to a relatively
steep parabola outside the kink, described with respect to the kink by 1h = a(1r)2

(where a = 1.45 × 10−3 µm−1 for the experiment in figure 11). The kink moves
along straight lines: for the experiment in figure 11 the kink approaches the substrate
from [r, z] = [0, 4.0] to [800, 0.4] during the spreading phase (see figure 14a1) and
retracts along another straight line from [r, z] = [800, 0.4] to [0, 3.67] µm during
the contraction phase (see figure 14(a2), while the dimple centre remains fixed at a
height of 4 µm. The approach and retraction of the kink is assumed to be parabolic
in time (see figure 14c, black line).

In this description the interface unfolds ever more outwards during the spreading
phase, while the inner region is stationary. Hence, inside the kink no flow occurs,
while outside the kink the flow radiates outwards, and thus the pressure inside the
kink is positive. During the contraction phase the outer kink moves inwards but does
not follow the slope of the interface, as indicated in figure 14(a2). Now there are two
contributions to the flow field: outside the kink the interface moves back up, thus the
flow is radially inwards, and the pressure gradient is positive. In addition the region
inside the kink is shrinking, still leading to an effectively downward motion of the
interface and thus leading to a radially outward flow, resulting in a negative pressure
gradient. As a result the pressure is positive for the largest part of the dimple. The
calculated pressure profiles are shown in figure 14(b1) during the spreading phase
and in figure 14(b2) during the contraction phase. The integrated squeeze force is
shown in figure 14(c). The calculated force Fsq thus shows two positive peaks with
a minimum around maximum drop extension. This is in good agreement with the
interaction force F obtained from the drop acceleration described in figure 6. Thus the
squeeze force indeed provides the impulse necessary to reverse the drop momentum
during the bounce. Further refinement of the result (e.g. elimination of the very small
attractive force at the final lift-off) may be obtained by considering a more complex
interface evolution: the idealized profiles in figure 14 now assume a simple parabolic
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FIGURE 14. (Colour online) Role of air film asymmetry on interaction force. (a) Sketch
of the idealized profiles showing the asymmetry in the spreading (a1) and contraction (a2)
of the squeezed air layer: red, parabolic outer kink profile; black and blue, linear
inner profile during spreading and contraction respectively. To stress the asymmetry, the
kink height retracts in the sketch (blue dashed) to a lower value than in the actual
parametrization. (b1,2) Examples of pressure profiles calculated from the idealized air film
shape. (c) Integrated squeeze force (blue, right axis), together with the minimum air film
height hmin in the idealized case (black) and the actual experimental evolution (grey dotted).
Partly reproduced from de Ruiter et al. (2015a, figures 2 and 4).

approach of the kink in time: see the black line in figure 14(c). Instead one could also
implement the repetitive up–down motion of the kink, as observed in the experiment
(see grey dotted line), while still forcing the kink to move in a straight line in the
(r, h) space as in figure 14(a).

The corresponding viscous dissipation has been calculated from the original
experimental air film data, but is restricted to the contribution within the measurable
region. First we determine the local height-averaged velocity v of the squeezed
air using (3.14). From this velocity and the film profile we calculate the local
dissipation rate using (3.18). Very high local outward velocities up to ∼0.1 m s−1

are obtained, in particular in the narrow gap near the outer kink. The velocity is not
monotonically increasing in the direction of the kink, in contrast to previous results
by van der Veen et al. (2012) where radially averaged rather than local velocities
were considered. Instead, after formation of the first kink we also observe regions of
moderately negative velocity in the inner region of the squeezed air film. However,
the highest velocities are observed at the kink and are positive. This allows for the
above-mentioned net outward flow. The local dissipation rate ẇsq dr (J s−1), integrated
over the film height, is shown in a contour plot versus radial position and time in
figure 15. Obviously, the dissipation rate is diverging (indicated in dark red) at the
location where the air gap is both narrow and fast thinning, i.e. close to the outer
kink, while the dissipation is negligible in the centre of the dimple which is almost
stationary (cf. figure 11). This divergence is consistently observed for all experiments,
although to a different extent, depending purely on the shape evolution of the dimple.
For the bounce series of a water droplet the divergence at the kink is strongest for
intermediate We as in figure 15(b), while for lower and higher We also significant
dissipation is obtained in the inner region, as shown most clearly in figure 15(a).
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FIGURE 15. Local dissipation rate in the air film. The local dissipation rate ẇsq dr (J s−1),
with dr = 3.3 µm, is plotted versus radial position and time for (a–c) the impact of an
R0 = 1.03 mm droplet with We= 3.79, 0.76, 0.007, (d) the impact of an R0 = 0.79 mm
90 wt% propanol droplet with We= 1.18, and (e) the impact of an R0 = 0.52 mm FC-40
droplet with We= 1.93 (shaded: no data). The colour scale is logarithmic. The time axis
in (c) is compressed by a factor of 3.

The local dissipation rate can be integrated in space and time to obtain the total
energy Wsq dissipated in the air film. Results are given in table 2. As expected Wsq

decreases during the bounce series of a water droplet because air is squeezed out
more gently at lower drop momentum. For high-viscosity droplets (85 wt% glycerol),
Wsq is relatively high at similar We due to the small air film thickness during the
bounce. This is caused by the ‘stiffer’ droplet shape on short time scales due to
the higher droplet viscosity. It is important to note that all measured dissipation
values are a lower bound estimate, due to the divergence of the dissipation rate at
the kink and the restricted field of view of the interference pattern at that location.
Using rough parabolic extrapolations of the interface profiles in the neighbourhood
of the kink, we expect that the region of high dissipation rate extends a bit further
outside the kink, before it decreases steeply when the local film height diverges. So
we miss the contribution from a small region just outside the kink. Nevertheless,
we compare the estimated contribution of the air film dissipation with the excess
dissipation determined from the side view analysis in § 4.1.3. Table 2 shows that the
percentage of air film dissipation roughly increases during a bouncing series. Aside
from the underestimation of air film dissipation just discussed, it can be expected that
for high We impacts part of the excess dissipation is accounted for by nonlinearities
in the drop shape decomposition. At low We the drop oscillations are extremely small
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Aqueous solution Figure 15 We (—) Wsq (lower estimate)
(×10−9 J) (%)

Water (a) 3.79 33.5 12
(b) 0.76 1.0 5

0.26 0.65 10
0.05 0.35 45
0.02 0.40 ∼100

(c) 0.007 0.06 ∼100
85 wt% glycerol 0.84 3.4 a

90 wt% propanol (d) 1.18 1.4 11
FC-40 (e) 1.93 0.59 15

TABLE 2. Squeeze dissipation in various bounces: total dissipation measured in the
confined region, and percentage of excess dissipation found in figure 10.

aFor high-viscosity glycerol the viscous dissipation in the drop cannot be estimated
by (3.11), thus the excess dissipation cannot be determined.

and this contribution is negligible. Overall, a conservative estimate yields that air
film dissipation accounts only partially for the excess energy loss at the first high-We
impacts and for the complete loss during later low-We bouncing events.

4.3. A single oscillation mode model
4.3.1. Model description

To explain the bouncing due to a purely dissipative squeeze force at least
qualitatively, we model an impacting droplet as a deformable cylindrical pill box.
The droplet has radius a and height 2b. The minimal energy surface then demands
a = b = Rc, where 2πR3

c = V is the volume of the droplet. The mass is given by
= 2πR3

cρ, and the relative height by β = b/Rc: see figure 16(a). The flow field within
the drop is given by ż = ε̇z and ṙ = −(ε̇r)/2, where ε̇ = ḃ/b. Here r and z are
constrained to 0 6 r 6 a = √R3

c/b and −b 6 z 6 b. For a bouncing drop we find
the following expressions for the kinetic energy K, the potential energy U, and the
dissipation rate Ẇ, in terms of the vertical droplet length 2b and the height z of the
centre of mass:

K = 1
2 Mḃ2

(
1
3 + 1

8β
−3
)+ 1

2 Mż2, (4.1)

U = 2πσR2
c(β
−1 + 2β1/2 − 3)+Mgz, (4.2)

Ẇ =−6πµRcḃ2β−2 + (ż− ḃ)Fsq(b, ḃ, z, ż), (4.3)

where the first terms on the right-hand sides denote the internal contribution of the
droplet oscillation (see appendix B). The internal kinetic energy and dissipation are
calculated from the internal extensional flow, while the internal potential energy is
just the interfacial energy due to the deformation of the pill box droplet. The second
energy term denotes the contribution of the CM motion, while the second dissipation
term denotes the rate of work done on the droplet by the squeeze force ḣFsq, where
h= z− b is the air film thickness.

In our pill box model the bottom of the droplet is a flat disk, thus the squeeze force
Fsq is given by

Fsq(b, ḃ, z, ż)=−3
2
πµa4

sq(b)
ż− ḃ
(z− b)3

, (4.4)
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FIGURE 16. (Colour online) Properties of the ‘pill box’ droplet with height 2b and
radius a. (a) Sketch of the equilibrium droplet with the radius of the squeezed layer asq
shaded in grey. (b) a (black dashed) and asq according to (4.5) (red solid) versus b. Insets:
compressed and elongated droplet.

where the radius of the squeezed layer asq(b) in principle is given by the radius
a(b) =√R3

c/b of the pill box. In the experiments, the droplet interface is flattening
during the impact, which cannot be captured by our simple model. Instead, we
implement a flat interface from the start as it ensures that the pressure increases
rapidly enough to sustain a micrometre-thick air layer, in contrast to a spheroid model
droplet where the pressure increases too gradually (1p ∼ h−1 only). This simple
flat disk shape obviously has its limitations in capturing the exact mechanism of
momentum transfer: we demonstrated experimentally that the asymmetric downward
and inward motion of the kink is critical to sustaining a repulsive force. However,
in the model the asymmetry will be induced via an asymmetry of the ‘quasi-contact’
radius during approach and lift-off. A completely symmetric bounce would lead to
a zero momentum transfer; bouncing can only be achieved if the ‘quasi-contact’
area is on average larger during the approach phase than during the contraction.
In the model this is achieved by the large elongation in the vertical direction (see
figure 16b) of the drop at lift-off, at the cost of large oscillations during the free-flight
phase. To suppress these large oscillations we implemented an additional asymmetry,
asq(b)= f (b/Rc)

√
R3

c/b, where

f (β)=
{
ε + 1− ε

1+ cβ25

}1/4

(4.5)

with ε = 0.001 and c= 32.38: see the red curve and the grey shaded ‘quasi-contact’
areas in figure 16(b). Here the function f (β) and the values for ε and c are
pragmatically chosen to optimize the model for the experimentally observed
restitution.

As the drop makes no direct contact with the substrate, the squeeze force is, besides
gravity, the only external force acting on the droplet. Hence, the momentum equation
reads

Fsq =M(z̈+ g). (4.6)

Because ∂t(K+U)= Ẇ, we obtain a second differential equation which together with
(4.6) describes the behaviour of both the CM height z and the deformation of the
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droplet in terms of b (see appendix B for details):

αMb̈=−Fsq − 6πµRcḃ− 3πσRc
2
3(β

−1/2 − β−2), (4.7)

where a ≈ 11/24 = 0.46. In free flight when Fsq = 0, and for small deviations
of β from unity, (4.7) reduces to a damped harmonic oscillator equation (see
appendix B). The resonance frequency and quality factor of this oscillator are given
by ωff = (3πσ/αM)1/2 and Q = (3πσαM)1/2/6πµRc, respectively. In the hovering
state when z = b, it again reduces to a damped harmonic oscillator equation, now
with ωho = (3πσ/(1+ α)M)1/2 and Q = (3πσ(1 + α)M)1/2/6πµRc. So the ratio
between the oscillation frequencies in the flight and hovering phase is equal to
ωff /ωho =√1/α + 1= 1.8, which is in reasonable agreement with the observed ratio
Tho/Tff = 2.3 (cf. figure 9). Based on last value of this ratio we should estimate
a= 0.23 instead of a= 0.46.

Equations (4.6) and (4.7) can be written in dimensionless form, where the
dimensionless heights Z, H, B are obtained by scaling z, h, and b with Rc and
the dimensionless time T by scaling t with t0 = (Rc/g)1/2 (≈10 ms for a millimetric
drop):

Z̈ =−λA
Ḣ

B2H3
− 1 and αB̈= λA

Ḣ
B2H3

− λḂ− κ 2
3
(B−1/2 − B−2), (4.8a,b)

which depend on the four parameters α, κ,λ and λA. Here, κ=3σ/(2ρgR2
c)=3/(2Boc)

represents the stiffness of the liquid spring, λ = (3µ/ρ)(gR3
c)
−1/2 the damping

coefficient in the droplet and λA = (3µair/4ρ)(gR3
c)
−1/2 = 1.58 × 10−4 the damping

coefficient in the air.
To get better agreement with the experiments, the parameters α, κ and λ are

determined as follows. The restitution of the bounce is largely determined by the
effective mass in vibration; α is adapted using the effective mass in the potential
flow assumption, α= 3/(2n2+ n). We choose n= 3, i.e. the lowest mode resulting in
a flattened interface, leading to a = 1/7. Both σ and µ are optimized to obtain the
observed resonance frequency and quality factor. This yields estimates for λ and κ ,
i.e. λ = α(ω0t0)/Q and κ = α(ω0t0)

2. Experimentally we measure the oscillation and
damping times of the second mode and find that ω0t0 = 6.61 and Q= 97. This leads
to λ= 1.01× 10−2 and κ = 6.24.

4.3.2. Results: energy transfer and air film dynamics
We have solved (4.6) and (4.7) for z and b numerically, using the scaling just

described. The result for an initial height z0/Rc = 4 is given in figure 17(a). The
calculations show six bounces before the droplet starts and continues to hover; this
phase extends infinitely as wetting is not implemented. Our main observation from
figure 17(b) is that the oscillation amplitude during the flight phases is considerably
larger than observed in the experiments (see also the inset of figure 9). This implies
a significant transfer of energy to internal modes during lift-off of the droplet.

The energy transfer from the centre of mass to internal modes and backwards are
shown in figure 18. Figure 18(c) shows the entire bouncing series. Similar to the
experiments, the total droplet energy (black solid) shows a step decrease during each
contact phase, and a gradual decrease during each flight. The latter is fully attributed
to a decrease in internal droplet energy (blue) associated with a single dissipation
channel, being dissipation in the internal fluid flow (grey shaded area). Indeed, the
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FIGURE 17. (Colour online) Calculated bouncing series for a pill box droplet. (a) Time
evolution of CM height Z (red, upper curve) and air layer thickness H (grey, lower
curve). The bouncing series can be subdivided into a bouncing phase and a hovering phase
(shaded blue) that shows an equilibrium sag δ. This particular simulation extends to only
T = 30, but more hover oscillations can be obtained afterwards. (b) Half droplet height B.
The first two bounces are shown, as well as a few hover oscillations with equilibrated
gravitational sag. The time axis has been scaled on t0 = 10.2 ms. Compare to figures 5
and 9 respectively.

sum of the total droplet energy and the internal dissipation (black dotted) is conserved
during the flight phases. However, the in-flight internal dissipation amounts to only
12 % of the total energy loss. The other 88 % is lost during the bounce phases, and
fully attributed to squeeze dissipation (green shaded area). This squeeze dissipation is
fully localized in time at the initial impact of each bounce. This is in line with the
energy evolution near the first bounce in figure 18(a,b), where we observe a sudden
conversion (to kinetic internal energy, dark blue) and dissipation of kinetic CM energy
(dark red) at the approach near T ∼ 2.4. The abruptness is due to the diverging build-
up of pressure in the air film resulting in a strongly peaked repulsive force. This
divergence (see the black line in figure 18d at T ∼ 2.4) is a consequence of the ‘flat
plate’ description of the air film. The force decelerates the droplet interface almost
instantaneously to a height H≈ 0.003 which remains almost constant afterwards while
the force suddenly drops, preluding a gradual squeeze-out phase. In reality the droplet
interface flattens from an initial spherical shape, which smooths the transition: both
the dissipation (figure 15) and the interaction force (figure 6) show a much broader
distribution. After the maximum lateral stretch of the model droplet at T∼ 2.8 the CM
energy initially increases towards its former value, but decreases again shortly before
detachment at T ∼ 3.2: see the red line in figure 18(a). Because the lower side of
the drop moves upwards now, a small attractive force converts CM energy back into
internal oscillations and the drop stretches vertically: see the blue line in figure 18(b)
at T ∼ 3.2. This attractive force is indicated by the black dashed line in figure 18(d).
In reality a very small attractive force occurs only at the final lift-off, if at all (see
figures 6 and 14c), resulting in a smaller oscillation amplitude and a higher restitution
coefficient.

The single oscillation mode model thus successfully captures the energy conversion
and dissipation during a non-wetting bounce; and at the same time it highlights the
importance of asymmetry in the air film evolution for obtaining a high-restitution
bounce. In the model the asymmetry is introduced by (4.5), which suppresses the
attractive force at lift-off. This attraction would otherwise lead to large free oscillations
at the cost of droplet momentum.
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FIGURE 18. (Colour online) Energy conversion and air film dynamics. (a,b) Details of the
first bounce showing the conversion of the kinetic (dark solid) and potential (dark dashed)
contributions to (a) the total CM energy (red) and (b) the total internal energy (blue);
(a) also shows the squeeze dissipation

∫
Ẇ dt|squeeze (green, lower curve). (c) Total energy

(black solid) and the sum (black dotted) of the total energy plus the internal dissipation∫
Ẇ dt|drop (grey shaded region), and squeeze dissipation (green shaded region). E0 is the

initial total energy. (d) Time evolution of the air film thickness H (green), CM height Z
(red), and squeeze force F (black) during the first bounce. The squeeze force becomes
attractive in the final stage so −F is plotted instead (dashed).

5. Conclusions

We have demonstrated that millimetre-sized droplets are able to bounce multiple
times on flat solid substrates. This holds equally well for fluids with a high or
low surface tension, and for wetting and non-wetting surfaces. The independence
of wettability is explained by the presence of a squeezed air film, which has been
observed using reflection interferometry. This micrometre-thick air film prohibits
liquid–solid contact for We . 4, largely independent of liquid properties. Moreover,
we show that this air layer, and in particular its time-asymmetry in spreading and
contraction, plays a crucial role in the momentum transfer of the droplet, a role
that has often been overlooked or neglected in previous studies. In the low Weber
number regime investigated (We . 1), the local air film velocities are smaller than
0.1 m s−1, so the air film can be considered as incompressible, and the normal
reaction force is purely dissipative. Assuming a flat droplet–air film interface, based
on its extreme r/h aspect ratio, leads to an attractive force when the lower side of
the drop moves away from the substrate. In our numerical model it can be solved
artificially by introducing a strong asymmetry in the size of the ‘quasi-contact’ area,
and yet the experiments show asymmetry of a different nature, namely in the motion
of the outer kink bounding the air film. The kink moves outwards and downwards



562 J. de Ruiter, R. Lagraauw, F. Mugele and D. van den Ende

in the approach phase, but inwards rather than upwards in the contraction phase:
see figure 11. This leads to a net outward air flow and an upward force during
the total ‘quasi-contact’ phase, as shown in figure 14, also during retraction. The
corresponding dissipation in the air film is strongly localized around the kink region
near the rim of the air film. Because we can only partially observe this region (due to
experimental resolution), we can only make a conservative estimate which attributes
several 10–100 % of the excess energy loss during each ‘quasi-contact’ phase to air
film lubrication. In particular, in the hover stage (when the shape oscillations show
negligible internal dissipation) we indeed observe an almost 100 % dissipation in the
air film. Moreover, only 20 % of the total energy loss is dissipated during the flight
phases, again indicating a significant contribution of air film dissipation to the overall
bouncing dynamics.
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Appendix A
This appendix describes the expressions for the potential and kinetic energy and

the dissipation in the internal flow field within the drop, in terms of the shape mode
decomposition.

A.1. Determination of internal potential energy
The internal potential energy is given by the surface energy of the deformed
droplet interface. When deforming the droplet interface with respect to its spherical
equilibrium shape, surface tension tends to contract the interface, thus acting as a
liquid spring. In spherical coordinates this internal energy Uint = σAsurf is given by

Uint = 2πσ

∫ π

0
R sin θ

√
R2 + (∂θR)2 dθ, (A 1)

where R(θ) is the angle-dependent radius of the droplet. In the limit of small
deformations this expression reduces to Uint' 2πσ

∫ 1
−1 {R2 + ((∂θR)2)/2} dx, where x=

cos θ . The potential energy can now be expressed in terms of the spherical interface
decomposition R(t, θ)= R0 +

∑∞
n=0 cn(t)Pn(x) obtained from analysing the side view

recordings. The energy for each mode n= 2 . . .∞ can be calculated separately and
then linearly superposed, because the modes are independent for small amplitudes.
Thus, the summation sign is temporarily dropped for convenience: we describe a
single mode n imposed on the undisturbed droplet, i.e. R= (R0 + c0)+ cnPn(x) with
a correction c0 to account for volume conservation. The surface area integral is
evaluated using the orthogonality of the Legendre polynomials:

Uint = 2πσ

(
2(R0 + c0)

2 + c2
n
n(n+ 1)+ 2

2n+ 1

)
. (A 2)

To find the potential energy apart from a constant 4πσR2
0 for the equilibrium spherical

shape, we need to take into account that c0 6= 0. To calculate the correction we start
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from volume conservation:

V = 4
3
πR3

0 = 2π

∫ π

0

∫ R(θ)

0
r2sin θ dr dθ = 2

3
π

∫ 1

−1
R3 dx. (A 3)

Substituting R3= ((R0 + c0)+ cnPn)
3 up to second order, and exploiting the properties

of the Legendre polynomials, we obtain

V = 4
3
π

[
(R0 + c0)

3 + 3(R0 + c0)c2
n

2n+ 1

]
. (A 4)

Defining (R0+ c0)/R0= 1+ δ and dividing by (4/3)πR3
0 last equation can be rewritten

as

1= (1+ δ)3 + 3(1+ δ)(cn/R0)
2

2n+ 1
. (A 5)

Evaluating this expression for small δ and cn (up to second order), we obtain

δ '− (cn/R0)
2

2n+ 1
, (A 6)

which yields the final expression for (R0 + c0),

(R0 + c0)
2 =
(

R0 − c2
n

R0(2n+ 1)

)2

' R2
0 − 2

c2
n

2n+ 1
, (A 7)

which is accurate up to second order and can be substituted back into the expression
for the potential energy, (A 2). This yields, apart from the constant contribution,

Uint = 2πσ
(n− 1)(n+ 2)

2n+ 1
c2

n. (A 8)

To calculate the total potential energy to second-order accuracy of c0, we sum (A 8)
over the individual modes.

A.2. Determination of internal kinetic energy
Given the velocity potential, (3.8), we calculate the kinetic energy:

Kint = 1
2
ρ

∫
φ(n · ∇φ) dA. (A 9)

In the small deformation limit the surface integral can simply be evaluated over a
sphere with mean radius R0, allowing us to substitute the normal vector n by the radial
unit vector êr; the expression then reads

Kint =πρR2
0

∫ π

0
(ϕ∂rϕ)|R0 sin θ dθ. (A 10)

The latter expression can be evaluated for each individual mode describing the velocity
field. We substitute the radial velocity ∂rϕ=Annrn−1Pn(x) at the boundary r=R0, and
use the properties of the Legendre polynomials:

Kint =πρR0
2
∫ 1

−1
nA2

nR2n−1
0 Pn

2(x) dx= 2πρR0
2n+1A2

n
n

2n+ 1
. (A 11)
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Given the relation between cn and An in the limit of small deformation (3.9), ċn =
nAnRn−1

0 , the final expression for the kinetic energy is

Kint = 2πρR3
0

1
n(2n+ 1)

ċ2
n, (A 12)

which can again be summed over the individual modes.

A.3. Determination of dissipation in the droplet

The internal dissipation rate is given in terms of the rate of strain tensor D by Ẇdrop=∫
(2µD : D) dV where D is given by

D = (∂rur)êr êr +
(

1
r
∂θuθ + ur

r

)
êθ êθ +

(ur

r
+ cot θ

uθ
r

)
êφ êφ

+ 1
2

(
r∂r

(uθ
r

)
+ 1

r
∂θur

)
(êr êθ + êθ êr) (A 13)

in the case of rotational symmetry. Evaluating this expression in terms of the mode
decomposition, it can be shown after some tedious calculations that (Moláček & Bush
2012)

Ẇdrop = 8πµR0

∑
n

n− 1
n

ċ2
n. (A 14)

Appendix B

This appendix describes the details of the ‘single oscillation mode’ model. The flow
field within the drop is given by ż= ε̇z and ṙ=−(ε̇r)/2, where 06 r 6

√
R3

c/b, −b6
z 6 b and ε̇= ḃ/b. So the internal kinetic energy is given by

Kint = 1
2
ρ

∫ a

0

∫ b

−b
(ż2 + ṙ2) dz 2πr dr= 1

2
ρVḃ2

(
1
3
+ 1

8
β−3

)
, (B 1)

where = b/Rc. The internal dissipation can be expressed as

Ẇ =
∫ a

0

∫ b

−b
(−3µε̇2) dz 2πr dr=−6πµRcḃ2β−2. (B 2)

The internal potential energy is given by the excess surface of the drop, U=σ(2πa2+
4πab− 6πR2

c), where a= (R3
c/b)

1/2. Hence we obtain for the total kinetic energy K,
the total potential energy U, and the dissipation rate equations (4.1)–(4.3). Substitution
of these equations in the energy expression Ẇ = ∂t(K + U) results in the following
differential equation:

−6πµRcḃ2β−2 + (ż− ḃ)Fsq =
(

1
3
+ 1

8
β−3

)
Mb̈ḃ+ 3M

16Rc
β−4ḃ3

+Mz̈ż+ 3πσRc
2
3
(β−

1
2 − β−2)ḃ+Mgż. (B 3)
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Because Fsq =M(z̈+ g), the terms with ż cancel and the equation reduces to

−6πµRcḃβ−2 − Fsq =
(

1
3
+ 1

8
β−3

)
Mb̈+ 3Mβ−4

16Rc
ḃ2 + 3πσRc

2
3
(β−1/2 − β−2). (B 4)

Neglecting higher-order terms except for the interfacial tension contribution, because
otherwise the droplet height becomes negative, this results in (4.7)

αMb̈=−Fsq − 6πµRcḃ− 3πσRc
2
3(β

−1/2 − β−2), (B 5)

where for small deviations of δ = β − 1 we obtain

2
3(β

−1/2 − β−2)= 2
3((1+ δ)−1/2 − (1+ δ)−2)= δ − 7

4δ
2 = (β − 1)+ · · · (B 6)

for the internal potential energy. So for small deviations and no interaction with the
substrate, Fsq = 0, (4.7) transforms into the damped harmonic oscillator equation

b̈+ 6πµRc

αM
ḃ+ 3πσ

αM
(b− Rc)= 0. (B 7)

The resonance frequency is given by ω0 = (3πσ/αM)1/2 and damping time
t= αM/6πµRc. So the quality factor of the resonator is Q= (3πσαM)1/2/6πµRc. In
the hovering phase, when the drop is nearly in contact with the substrate, b= z+ h,
where h� b and almost constant. Hence

b̈+ 6πµRc

αM
ḃ+ 3πσ

αM
(b− Rc)=−M(b̈+ g)

αM
. (B 8)

In this case the resonance frequency is given by ω0 = (3πσ/(1 + α)M)1/2 and the
quality factor by Q = (3πσ(1+ α)M)1/2/6πµRc, indicating that in the hover phase
the dissipation is lower.
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