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Abstract

Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States.
Although spending in drug discovery/development has increased, the amount of drug approvals has seen a pro-
gressive decline. Particularly, adverse side effects to the heart and general vasculature have become common
causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics.
Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovas-
cular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking
structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation.
Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological
phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in
the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the

area of drug discovery and development.
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Introduction

C ARDIOVASCULAR DISEASES (CVDs) are the most frequent
causes of death in the United States.! In 2011, 800,000
people were killed by CVDs; approximately 60% of those
deaths were attributable to coronary heart disease (such as
myocardial infarction [MI]) and hypertensive heart disease.’
CVDs also include diseases affecting the general vasculature,
such as atherosclerosis, hypertension, and other vascular cell
dysfunctions that can result in occlusion and thrombosis.>?
Over the years, these cardiovascular complications have
been treated with numerous interventional* and pharmacolog-
ical agents.’”’ Several drugs have been developed against

heart and vasculature diseases, but the increasing number of
patients affected by them motivates a strong need for new
and improved treatments. However, drug discovery and de-
velopment has seen a decline each year in approved cardio-
vascular drugs.®

The cost of developing a new drug varies approximately be-
tween $0.8 and $1.2 billion U.S. dollars.” After an intensive
and costly research period, new drug candidates are subjected
to clinical trials to assess safety and efficacy, before reaching
regulatory decision by the U.S. Food and Drug Administra-
tion (FDA). However, despite extensive preclinical labora-
tory and animal testing, high rates of potential drug
candidates still fail in clinical trials, especially during later
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stages of development.®' For instance, in the year of 2000,
clinical safety (such as toxicity) and efficacy issues accounted
for approximately 30% of drug project failures.'' Between
1991 and 2000, the rate of clinical trial success in cardiovas-
cular drug development was as low as 20%."' Moreover, over
the past five decades, adverse side effects have been a major
reason for cardiovascular drugs being rejected or retracted
from the market.'*"'* This can be partially attributed to the
lack of effective and predictive preclinical models. Although
conventional two-dimensional (2D) cultures and animal (dis-
ease) models have successfully contributed to the develop-
ment of a wide range of therapeutics, many of these models
do not adequately mimic human in vivo conditions. For exam-
ple, there are essential genetic and metabolic differences be-
tween human and animals that can lead to significant
pharmacokinetic mismatch.'> These differences motivate
the development of better and more predictive human-based
in vitro models to assess the safety and efficacy of potential
new drugs. Ideally, these models should consist of platforms
in which biochemical, physical, and electrochemical factors
can be integrated and controlled in order to recapitulate the
dynamic microenvironment of tissues in vivo.

Several studies have been able to microengineer biologi-
cally relevant heart and general vasculature tissue models
in vitro."®'7 The development of these three-dimensional
(3D) engineered microtissues can potentially be used for
in vitro drug testing, disease modeling, and biological mech-
anistic studies.'®" Moreover, these models exhibit the phys-
iological characteristics of myocardium and blood vessels
because of the presence of tissue-like properties such as mul-
tiple cell interaction (e.g., paracrine signaling and cell—cell
signaling), cell-extracellular matrix (ECM) interactions, and
mechanical stimulation (Fig. 1). Importantly, in the past few
years, novel microfluidic platforms have been introduced
and have led to the creation of biomimetic cardiovascular
tissues in vitro.?' > These microfluidic organs-on-a-chip
models can recapitulate important organ-level functions,
multicellular microarchitecture, and environment dynamics
(Fig. 1), thus providing a technological platform capable of
accelerating cardiovascular drug development. Therefore,
these engineered and novel heart- and vasculature-on-a-chip
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FIG. 1. Key design parameters required to mimic a heart
and general vasculature-on-a-chip model. Color images
available online at www .liebertpub.com/aivt
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systems could contribute to the development of suitable
high-throughput platforms for drug development and disease
modeling of major CVDs such as MI, hypertension, heart fail-
ure, and atherosclerosis.

Here, we discuss the challenges for the validation of car-
diovascular organs-on-a-chip platforms and their potential
applications on the pharmaceutical industry drug develop-
ment pipeline. Furthermore, we describe and discuss the ad-
vances of the past decade in the development of heart- and
vasculature-on-a-chip platforms to study heart and general
vasculature physiology and disease, pinpointing their suc-
cesses and shortcomings. Additionally, we identify opportu-
nities for in vitro disease modeling and drug development.

Challenges and Translational Opportunities
Need for cardiovascular organ-on-a-chip models

CVD is the leading cause of death in the United States.'
Approximately 85.6 million people suffer from a CVD, result-
ing in 2,150 deaths per day in the United States alone and cost-
ing annually $320 billion and predicted to continue to rise.'
As aresult, there is a need for development of novel drugs ei-
ther for prevention®” or for treatment of CVD.?® Despite such
a demand, the number of new pharmaceutical compounds ap-
proved per amount of dollars spent on research and develop-
ment (R&D) has halved approximately every 9 years since
1950.% Although most of the scientific and technological
fields have seen exponential advances, the past 60 years of
drug development has not followed that trend.”” However,
spending continues to increase, with a reported $40 billion ex-
penditure in 2014 in pharmaceutical R&D.*® Together, this
suggests that there is a need for a disruptive technology that
allows for a more predictive and efficient drug discovery/de-
velopment process.®*"**? Such technology would have the po-
tential to lead to the discovery of new and improved drugs to
treat CVD, while reducing the current patient burden.

Some of the key challenges that current drug discov-
ery models face have been previously summarized by
Pound et al.®>* Most of these drawbacks fall into one
main problem—positive/negative findings in animals do not
necessarily link to positive/negative findings in humans.***
Below, we have listed some of the shortcomings associated
with the current paradigm of drug development, as appeared
in the literature:

1. CVD animal models are poor predictors of human
responses.>®

2. Adverse effects caused by systemic toxicity or toxicity
of metabolites are organism dependent.®’

3. Some drugs can benefit a certain group of ethnicity,
sex, age, and/or genotype. Such phenomenon is not
necessarily captured in a limited clinical trial study.
For example, it is known that the average volunteer
for clinical trials is a midaged female.*®** This does
not recapitulate the multitude of possible users of a par-
ticular drug.

4. The current paradigm is lengthy and costly.*

For all of the reasons mentioned above and others discussed
in the literature, the process of drug development in the cardio-
vascular arena, obtaining regulatory approval, and achiev-
ing market entry is becoming less efficient and more costly.
In fact, industry faces an increasing FDA regulatory scrutiny,’
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while less drugs are being allowed to the market. However,
this is not unfounded: regulatory agencies are requiring
more evidence of safety to avoid postmarket issues, because
clinical trials do not offer a complete measure of protec-
tion.*'"*? Together, the above-described reasons highlight the
role of new models to better predict safety in humans.

Some researchers underscore that inefficiency in the drug
discovery pipeline could perhaps be attributed to current car-
diovascular models. In fact, these models are not entirely capa-
ble of mimicking human conditions and dynamics. For
example, a survey showed that industries were interested in
adopting human tissue-based approaches for drug testing, de-
spite the fact that they were not widely used (Fig. 2A).>" Inter-
estingly, costs were not seen as a major issue toward adopting
such models, while 50% reasoned that human models were
more relevant.’! A study analyzing AstraZeneca’s drug pipe-
line from 2005 to 2010 showed that 82% of drug project clo-
sures in the preclinical phase was because of safety issues.
Interestingly, among the organ systems involved in the safety
failures, the cardiovascular one accounted for as much as

A Motivations for better human B
models in safety tests

17% failures, the highest of all the organ systems analyzed.®
The solution could be the introduction of a paradigm shift
using a disruptive technology that presents a physiologically
relevant in vitro model of the human heart and general vascu-
lature system.*’ In contrast to preclinical stages, the project
closures in clinical phase are mainly because of efficacy is-
sues. Remarkably, in 40% of the cases of lack of clinical ef-
ficacy (Fig. 2B), the reason is no target linkage to disease or
no validated models available, whereas other aspects are re-
lated to results not fitting preclinical evidence.®
Organs-on-a-chip platforms have gained wide scientific at-
tention because of their potential in achieving a physiological
resemblance in vitro, with a hope to potentially change the
way scientists and industry can test the effect of drugs on
human cells and organs. Indeed, pioneering work has focused
on mimicking cardiovascular tissue in vitro.***® These
organs-on-a-chip platforms have thus far been able to make
interesting additional in vitro models. However, to date, it
is still difficult to claim that the associated studies have cre-
ated examples that are adopted by industry, as means toward
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(A) Survey on the motivations behind adopting human tissue-based approaches for safety pharmacology
' (B) AstraZeneca’s small-molecule projects from 2005 to 2010. the terminated projects were analyzed to understand
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cost-effective development of new drugs that would not have
been possible otherwise. Even though such models have pro-
duced exciting scientific studies, there has not been a major
reception for them by the industry. Furthermore, focusing
on scalability and ease of handling of the technology would
accelerate the adoption of such platforms.

The needs of the industry can broadly be divided into a
need for better in vitro models predicting the behavior of an-
imal and human organs (i.e., heart), and human organ sys-
tems (i.e., heart—vascular interactions). While actual proof
of clinical predictability is necessary to make an impact
and engage with regulatory agencies, scientific studies to
date have demonstrated that their platforms could be poten-
tially capable of performing a high-throughput screen.*”*® In
the path toward achieving broad application by the pharma-
ceutical industry are two key challenges: guaranteeing clini-
cal relevancy and reproducibility.

Translating cardiovascular organ-on-a-chip models

Once the advantages over current technologies/models are
proven, the following step is to have a commercialization
strategy. Aside from the academic examples mentioned
above, it is also worthwhile considering some of the ventures
established toward commercializing and implementing the
associated technologies. There are a number of enterprises
aiming at commercializing products that encompass single
and multiple organs-on-a-chip.** These companies have
mainly developed products for research laboratories, but on-
going efforts are being made to apply such technologies at a
broader scale in the pharmaceutical industry.

The market need from pharmaceutical industry is expected
to be high, mainly because of the ever-decreasing number of
new drug approvals and the challenges faced with preclinical
models. However, these in vitro platforms would require reg-
ulatory approval for cardiovascular applications, either for
heart- and vasculature-on-a-chip systems alone, or for a po-
tential combination of both. An opportunity in this arena is to
show comparable results to animal tests, followed by a strong
demonstration of reproducibility and clinical significance.
Another path for application of cardiovascular organs-on-a-
chip could be direct regulatory endorsement. The current
platforms required by FDA for such assessments have
remained limited to petri dish, animal studies, and limited
clinical trials—models still lacking the level of accuracy
and predictability required. Here, the dialog with regulatory
agencies such as FDA would be a starting point, in order to
establish standards expected for such platforms from the reg-
ulatory point-of-view.

Some of the open challenges that are being addressed by re-
search teams and companies are related to standardization, opti-
mization, and scaling up for manufacturing (discussed in detail
by Vladisavljevic et al.>®). While the scientific community is
geared toward innovating and creating new platforms, the
growth of companies in this area could lead to their optimiza-
tion for standardization, reproducibility, and scaling-up. These
key challenges, once tackled, will allow the widespread usage
of cardiovascular organ-on-a-chip for drug discovery, while se-
curing regulatory endorsement. The impact of such technolo-
gies for drug discovery and development is expected to be
vast (Fig. 2C). Current opportunities exist for improving perfor-
mance at later stages of lead optimization, and safety and effi-
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cacy at early stages of preclinical studies. Furthermore, we
envision that such technologies would be able to provide signif-
icant impact on preclinical stages in the near future, and person-
alized medicine approaches at a later stage.

Heart-on-a-Chip Platforms in Drug Discovery
Mimicking cardiac environment

Cardiac tissue contractile function is mediated through
cardiomyocytes (CMs) that are organized in parallel arrays
of myofibril bundles. The contractility of CMs is mediated
through chemical, mechanical, and electrical stimuli.>">2
In addition to CMs, cardiac tissue is composed of fibroblasts
and microvessels, which consist of endothelial cells (ECs)
and vascular smooth muscle cells. Cellular composition
and anisotropic organization, together with continuous expo-
sure to multiple dynamic stimuli, plays a critical role in
maintaining cardiac physiological function.™>> Microflui-
dic in vitro heart-on-a-chip platforms can provide precise in-
dividual control over each these essential factors, allowing
for novel opportunities to study cardiac physiology, pathol-
ogy, and pharmacology. In particular, these platforms may
hold great promise for the development of high-throughput
assays that could be valuable in drug screening and toxicity
studies 21+22:24.25.56

Recent advances have enabled the engineering of phys-
iologically relevant microscale myocardial tissues by using
microfluidic organ-on-a-chip systems. Such systems are often
fabricated using poly(dimethyl siloxane) (PDMS) because of
its biocompatibility, nontoxicity, and low cost.’”® In addi-
tion, PDMS is an elastomeric and transparent material that
can be rapidly prototyped and customized into a microfluidic
system by using soft and photolithography techniques.’” How-
ever, the hydrophobic nature of PDMS limits the attachment
and spreading of cells.”® This challenge can be addressed
by treating the PDMS surface with proteins (e.g., fibronec-
tin) that facilitate cellular attachment.>® Recently, Annabi
etal.”® developed a technique to overcome this challenge by
coating microfluidic channels with hydrogels (Fig. 3A),
which provided a suitable environment for on-chip car-
diac cell culture. Specifically, methacrylated tropoelastin
(MeTro) and gelatin methacryloyl (GeIMA) facilitated cel-
lular adhesion inside the microfluidic channels,59 which
was also reported in other cell types.®®®! The seeded CMs
revealed not only an increased attachment, but also prolifer-
ation and beating rate on MeTro hydrogels compared to
GelMA (Fig. 3B).°> This was mainly attributable to the
presence of cell-interactive amino acid sequences and the
more elastic nature of tropoelastin compared to GelMA.
In addition, continuous perfusion of medium through the
heart-on-a-chip platform provided the possibility to mimic
blood flow-induced shear stress on myocardial tissue. There-
fore, this platform could potentially be useful to study biomi-
metic cues on cardiac function. The results of this study
suggested that tropoelastin-based hydrogels might offer a
suitable microenvironment for proper functioning of CMs
in vitro. Important properties of tropoelastin that support
this are the tunable elasticity and biocompatibility. More-
over, this microfluidic system could be used to study safetGy
and efficacy of drugs under physiologic-like conditions.®?
However, this simplified ECM approach might not recapit-
ulate the complexity of cardiac ECM composition. Further
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(A) Schematic of a PDMS-based microfluidic heart-on-a-chip model developed to culture cardiomyocytes. These

microfluidic channels were coated by gelatin- and tropoelastin-based hydrogels to induce cellular attachment. (B) The effect
of 10% (w/v) tropoelastin and 10% (w/v) gelatin-based hydrogels on the beating pattern (left) and beating frequency (right) of
cardiomyocytes (CMs) inside microfluidic microchannels. (C) The schematic of a heart-on-a-chip microdevice designed for
pharmacological testing. (D) The effect of isoproterenol on the contractility of CM-seeded muscular thin films, showing an

increase in beating rate compared to control. Adapted with permission from Annabi et al.

available online at www.liebertpub.com/aivt

challenges include identifying the minimal design criteria
for ECM composition and organization that are required
to properly mimic the heart, which might, among others, re-
quire the screening of different ECM compositions in a
high-throughput manner.

Although native myocardial cells, scaffold elasticity, and
(natural) ECM proteins are critical to engineering biomi-
metic cardiac tissues in vitro, additional components of na-
tive heart tissue are required to recapitulate proper cardiac
tissue function. Here, we will highlight some of these factors
and discuss their use and application in the fabrication of
heart-on-a-chip devices.

One of the factors important for the fabrication of heart-on-
a-chip devices is electrical stimulation and CM anisotropy.
In vivo, myocardial pumping arises from the electrical stimu-
lation of CMs by automated pacemaker cells in the sinoatrial
node. These electrical signals propagate through the left and
right atria to go to the atrioventricular node and eventually
reach the right and left ventricles. As a result, the anisotropic
and elongated CMs are depolarized, which results in regular
and synchronized cardiac muscle contraction. Consequently,
external electrical stimulation and an anisotropic organization
of CMs may contribute to the development of more physio-

and Agarwal et al.”” Color images

logic in vitro heart tissue. Anisotropic alignment of CMs
and ECM significantly affects electrical and mechanical func-
tioning of cardiac tissue.®*** Integrating structural and func-
tional anisotropy used in cardiac tissue engineering®® into
heart-on-a-chip devices could result in better contractile
force generation and better electrical propagation of action po-
tentials.® Grosberg et al.% used a muscular thin film (MTF)
technique to design a heart-on-a-chip with anisotropically or-
ganized CMs. MTF platforms were created by microcontact
printing fibronectin patterns on a thin, deformable PDMS
film, later seeded with primary neonatal rat ventricular CMs.
Additionally, the self-organized CMs on the functionalized
surface were electrically stimulated by platinum electrodes.
By electrically stimulating CMs on the chip, the in vivo gen-
eration of electrical signals by pacing cells could be recapitu-
lated. Moreover, electrical stimulation of cells increased the
cellular alignment, differentiation, and functionality of engi-
neered cardiac tissue.®” This study showed that contractile be-
havior and electrophysiological properties such as the action
potential morphology of MTFs could be measured success-
fully. Consequently, these measurements could be used in
the evaluation of pharmacological intervention on the contrac-
tile function of multiple cardiac microtissues. Using a dose-
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range experiment, the effect of epinephrine concentrations on
the frequency of contractions was calculated based on the
MTF contractility stress profiles. This demonstrated that
MTFs in a microfluidic chip can be used to assess contractility
in the presence of drugs or physiologic-like cues such as hy-
drodynamic, mechanical, and electrical stimuli. Although
this 2D monolayer of CMs provides an opportunity to analyze
deformation of cardiac microtissue in a 3D manner, it is not
able to recapitulate the 3D microenvironment of myocardial
tissue. A solution to this challenge could be found by combin-
ing cellular encapsulation and microengineering strategies to
form aligned 3D microtissues.®®

A similar MTF approach was used to create an aluminum-
based microdevice for high-throughput pharmacological test-
ing of isoproterenol (Fig. 3C).*” This platform provided the
advantage of a semiautomated fabrication method that
could be scaled up and automated for higher throughput
screening of drugs. Moreover, a metallic heating element,
electrodes, and a transparent top were incorporated in the de-
vice for simultaneous temperature control, electrical field
stimulation, and optical contraction analysis, respectively.
The microfluidic device’s high-throughput capacity was lev-
eraged to test the effect of isoproterenol on the contractile
stress of MTFs (Fig. 3D). In this experiment, a series of in-
creasing drug concentrations were tested within the same
microdevice. The MTFs showed an increase in contractility
stress when compared to control. Furthermore, by using this
system, the same level of isoproterenol potency in vitro was
comparable to the reported values for rat hearts.®” This micro-
device enabled the incorporation of an MTF-based heart-on-
a-chip and allowed automatic fluidic control, wash-in and
washout after each drug dosage. In addition, this system
was shown to be suitable for simultaneous analysis of cardiac
tissue contractility during drug compound testing, thus
demonstrating its ability to perform rapid and accurate drug
analysis. Consequently, this microdevice could potentially
improve pharmacological in vitro studies on a higher
throughput manner that is not feasible with in vivo studies.

A cell culture chip to form in vitro cardiac microtissues
through the application of electrical stimulation and topo-
graphical cues was created by Au and colleagues.’® Here, neo-
natal rat CMs were seeded and cultured onto polystyrene cell
culture chips with integrated topographical microgrooves.
CMs showed attachment and alignment along the grooves.
In addition, electrical stimulation of the CMs increased the cel-
lular maturation in terms of sarcomeric protein (such as sarco-
meric alpha-actinin) and gap junction protein expression. This
work highlights the importance of combining several different
factors toward achieving an in vivo-like cellular response.

Another factor important for the fabrication of heart-on-a-
chip device is cardiac tissue perfusion. The complex architec-
ture of myocardial tissue, consisting of cardiac bundles and as-
sociated microvessels, can be more accurately recreated by
fabricating in vitro systems that can recapitulate cardiac tissue
perfusion. Xiao et al.”' designed a more physiologically rele-
vant heart-on-a-chip by creating a perfusable cardiac microtis-
sue with a poly(tetrafluoroethylene) microtubing to induce
CMs to align and elongate along the tubing template. This sys-
tem demonstrated the feasibility of mimicking cardiac tissue
by showing spontaneous beating, expression of sarcomeric
troponin-T, and gap junction markers (connexin-43). In addi-
tion, the functionality of this system as a platform for pharma-
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cological studies was examined by testing the system with
nitric oxide (NO). After exposure to NO for 24 hours, the beat-
ing rate of the CMs was significantly decreased in comparison
with the untreated control. These results indicated that this
platform could serve as suitable biomimetic in vitro system
for both drug development and drug-induced changes in beat-
ing behavior.

Cardiac disease models

Many stem cell-based, tissue-engineered, and organ-on-a-
chip systems for in vitro modeling of cardiac disease have
been developed. Cardiac diseases such as rhythm disor-
ders’*”* and dilated cardiomyopathy’* have been studied
by using induced pluripotent stem cells (iPSCs) in monolayer
disease models. In addition, cardiac conditions, including MI
and re-entry arrhythmia, have been successfully re-created in
2D tissue-engineered heart models.>* Although these models
were able to represent specific phenotypic disease character-
istics, they still lack the incorporation of proper environmen-
tal factors such as 3D cell-ECM and cell—cell interactions.
To overcome this hurdle, several biomaterials have been
mixed with different cell sources (e.g., iPSCs, rat neonatal
ventricular cells) toward the development of 3D structures
of cardiac disease models.>>’>~"7 Recent advances in the
field of microfluidics have allowed researchers to construct
novel heart-on-a-chip systems for disease modeling and
drug testing. Next, we will summarize some of the recent
findings on the development of these microfluidic systems.

Several chronic CVDs, such as hypertension and aortic
valve stenosis, can cause pressure overload in the left ventricle
and lead to cardiac hypertrophy and fibrosis.”® Increased me-
chanical stress during disease is a critical factor that drives the
initiation of hypertrophy, fibrotic remodeling, and heart fail-
ure.””® These dynamic changes are partly attributable to
mechanotransduction, a process in which external mechanical
forces are translated into internal chemical and electrical cel-
lular responses.®’ Therefore, it is important to develop an
in vitro heart-on-a-chip model that can provide insight into
the pathophysiology of this phenomenon. McCain et al.*®
successfully applied an MTF platform toward the creation
of a failing myocardium-on-a-chip.®> Mechanical cyclic
stretch of the MTFs resulted in pathological tissue remodel-
ing, with several genetic indicators of pathological remodel-
ing being upregulated. Furthermore, by the application of
transverse stretch, structural organization of micropatterned
CMs was disrupted, resulting in disorganized CMs similar
to hypertrophic cardiomyopathy (Fig. 4A).**%? Further devel-
opment of similar heart failure on-a-chip models could poten-
tially aid in a better understanding of cardiac remodeling,
while providing valuable tools for pharmaceutical industries.

Ren et al.®® fabricated a heart-on-a-chip to study hypoxia-
induced myocardial injury. By designing a PDMS-based
microfluidic device with four functional units, the interface
of myocardial tissue and microcapillaries was mimicked
in vitro. The four units consisted of a central cell culture cham-
ber and two lateral channels that were separated from each other
by micropillar arrays, representing the interface between the
blood vessel and cardiac tissue (Fig. 4B). To mimic hypoxia-
induced conditions, a specific oxygen consumption blocking
reagent, FCCP (cyanide p-trifluoromethoxyphenylhydrazone),
was introduced into one of the side channels (Fig. 4C).83
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the native interface of myocardial cells and microcapillaries. Reprinted with permission from Ren et al®

(A) The effect of transverse mechamcal stretch showing a disorganized architecture of cardiomyocytes cultured on
# (B) Schematic illustration of a microfluidic heart-on-a-chip model that ressembled

(copyright 2013

American Chemical Society). (C) Representation of fluorescence images of cytoskeletal changes in cardiomyocytes under
hypoxic conditions, which were induced by the 1ntr0duct10n of an oxygen consumption blocker in one of the microfluidic
side channels. Reprinted with permission from Ren at al.** (copyright 2013 American Chemical Society). (D) Schematic rep-
resentation of a bi-compartmental co-culture of valvular endothelial (VEC) and valvular interstitial cells (VIC) (top panel).
VECs were embedded on a thin and porous membrane on top of a VIC-loaded gelatin methacryloyl (GeIMA) (bottom chan-
nel).*® Color images available online at www.liebertpub.com/aivt

valvular tissue and disease.®® Chen et al.3¢ used a multicom-

CMs presented normal attachment, spreading, and prolifer-
ation under normoxic conditions, but underwent morpho-
logical changes such as shrinkage and disassembling of
intracellular actin bundles after induction of hypoxia. Dur-
ing myocardial ischemia (or MI) there is an increased CM
apoptosis, a feature that was accurately recapitulated within
this device.

Various (stem) cell transplantation therapies for cardiac re-
pair after MI have gained considerable attention in the past
several years.** Many groups have explored the potential of
numerous cells types such as embryonic stem cells, cardiac
progenitor cells, skeletal myoblasts, and iPSCs.** To study
the interactions as well as the potential role of skeletal myo-
blasts in the repair of hypoxia-injured CMs, a comparable
microfluidic device was created in a follow-up study by He
et al.® In this system, skeletal myoblasts and rat CMs were
co-cultured in separate chambers that were connected through
permeable microvalves. The results of this study demonstrated
that skeletal myoblasts were capable of repairing the hypoxia-
injured CMs through cell—cell interactions.

Hydrogels and microfluidic systems that are developed to
mimic myocardial tissue could also be leveraged to mimic

partmental approach to design a valvular and vascular com-
partment in a 3D microenvironment, allowing cells to
communicate through paracrine signaling (Fig. 4D). A thin
porous membrane separated the cells and enabled the para-
crine communication between valvular endothelial cells
(VECs) and valvular interstitial cells (VICs). Fibroblast-
like VICs were encapsulated in GelMA hydrogels and
VECs seeded on fibronectin-coated PDMS microchannels.
In addition, VECs could be stimulated physiologically by
the introduction of flow-induced shear stress. Activation of
quiescent VICs into alpha smooth muscle actin («-SMA)-
expressing myofibroblasts are thought to be one of the hall-
marks of valvular pathological remodeling, because of their
increase in ECM synthesis and contractile features.®”*®
Myofibroblasts have the ability to increase calcium deposi-
tion by differentiating into osteoblast-like cells.*® Conse-
quently, myofibroblasts play an 1m£)0rtant role in calcific
aortic disease and valvular fibrosis.”>' A study by Chen et
al. showed that VECs are able to inhibit VIC activation
under both static and dynamic fluid flow, which is in line
with in vivo conditions.®® This biomimetic microfluidic system
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could be used to study biological and pathological VEC-VIC
interaction, as well as drug-associated toxicity. In addition,
this platform may be an appropriate testing model for potential
drug candidates in treatment of aortic valve disease.

Recent developments in stem cell biology have further en-
abled the use of patient-specific iPSC-derived CMs for gener-
ating in vitro models of cardiac disease.”” These advances
may lead to the creation of physiologically and genetically rel-
evant models of cardiac disease for drug discovery and drug
toxicity.”® By using iPSCs, MTF, and microfluidic technolo-
gies, Wang et al.”* successfully engineered the cardiomyopa-
thy of Barth syndrome (BTHS) in an in vitro disease model.”*
iPSCs were generated from patients with BTHS and subse-
quently differentiated into patient-specific iPSC-derived
CMs. In this study, the pathophysiology of BTHS cardio-
myopathy was demonstrated by seeding iPSC-derived CMs
on MTFs. The BTHS-derived cardiac microtissues were
shown to have impaired sarcomeric structures as compared
to control. Additionally, MTFs from BTHS iPSC-CM revealed
a significantly lower contractile performance compared to
controls under the same conditions. Moreover, this “BTHS
cardiomyopathy on-a-chip’’ was used to test potential thera-
peutical options (e.g., pharmacological and genetic modifi-
cations), indicating its suitability for identifying new
therapeutical targets.

All together, these studies point toward a better under-
standing of CM physiology under a range of dynamic condi-
tions. The new in vitro models of heart-on-a-chip present a
strong step toward testing cardiotoxicity in human-relevant
models, but models of disease are still an area filled with
challenges and opportunities. In particular, we propose that
heart disease-on-a-chip models represent a high-value area
for new drug screening platforms.

Vasculature-on-a-Chip Platforms in Drug Discovery
Mimicking vascular environment

It is challenging to mimic the vascular environment of the
human body in vitro. Arteries, arterioles, veins, venules, and
capillaries are all part of the vascular system, but differ in the
structural and cellular compositions. In addition, blood ves-
sels are subject to a range of biophysical stimuli because
of the pulsatile nature of blood flow. ECs lining the lumen
of vessels experience flow-induced pulsatile wall shear stress
and transmural pressure. ECs and vascular smooth muscle
cells (VSMCs) both experience cyclic mechanical stretching,
which causes the vessels to increase in diameter in response
to blood flow. Hemodynamic parameters contribute to the
maintenance of homeostasis in the vessel wall, with several
microfluidic models studying the effects of hemodynamics
in vitro.”*® Because the vascular system is constantly
under these biophysical stimuli (Fig. 1), microfluidic tech-
nologies are an advantageous way to recapitulate these
forces. Recently, several microfluidic-based platforms have
been described for distinct vascular applications,®’ including
the formation of tissue-engineered vascular networks, angio-
genesis, and vascular disease models. The end goal of such
models is to gain mechanistic and contextual insight on the
vascular biology processes, while providing a superior plat-
form for drug discovery and development.

The use of hydrogels in microfluidics is a simple platform
to provide relevant 3D matrixes to vascular cells, while main-
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taining the ability to apply shear stress. Kim et al. used
the flexibility of PDMS to generate a microfluidic device
(Fig. SA) capable of containing fibrin matrices.’® The multi-
channel device enabled the study of vasculogenesis and an-
giogenesis, and the fibrin matrix was able to support cell
growth. Kim and colleagues were able to show the formation
of a perfusable vascular network, and the maintenance of
barrier function. Additionally, the vascular networks under
flow exhibited an increased nitric oxide production com-
pared with static conditions” (Fig. 5B, C). Similar method-
ologies have been used with different hydrogels'®~'%® with
the end goal of creating vascular networks in vitro to study
different aspects of vascular biology. Morgan et al.'®* used
type I collagen gels with embedded cells and hollow chan-
nels that were later seeded with ECs. This simple system al-
lows for the creation and design of defined microvascular
endothelialized geometries that are useful for the study
of permeability and blood—-vasculature interactions in a
tissue-engineered construct.'> In another example, Wang
et al.'® utilized sodium alginate as artificial templates to
cast a hydrogel mixture containing gelatin, agarose, and col-
lagen. The resulting matrices were seeded with HUVECsS,
and displayed good barrier properties and response to flow.
Other fibrin-based approaches have been pursued in combina-
tion with other cell types.'”"' Hasenberg et al.'°" aimed to
incorporate capillary networks in fibrin gels for multi organ-
chip constructs; these vascular networks were stable in
serum-free media, which is an important aspect in designin%
such systems for drug development. Schimek et al.'
designed a similar microfluidic chip, which focused on design-
ing an on-chip peristaltic micropump to provide the vascular
network with pulsatile shear stress.

Others have used different fabrication techniques such
as bioprinting to produce vascular networks.'® In one exam-
ple, Bertassoni et al. utilized bioprinting of template sacrifi-
cial layers to generate vascular networks in hydrogels
(Fig. 5D). Combined with UV-crosslinkable GeIMA hydro-
gels, this bioprinting methodology allows an on-demand
precise control of microarchitectures, yielding potentially
complex structures that can mimic different vascular regions
(Fig. 5E, F) observed in the human body.'® This bioprinting
approach can generate 3D constructs in a fast, controllable,
and inexpensive way, which can be useful for testing drug
compounds in a wide range of vascular flow settings and on
a large scale. These technologies'% aim to create 3D vascular
beds utilizing a wide range of hydrogels. This allows the fine-
tuning of mechanical properties and ECM cues to target the
specific regions of interest in the vascular system. These sys-
tems can have the potential to provide meaningful impact
on drug discovery by mimicking in vitro vascular tissue mi-
croenvironments.

Conversely, some studies have used microfluidics in combi-
nation with ex vivo vascular segments.*”'%” Gunther et al.*’
generated a small but complex microfluidic device that cap-
tured a mouse mesenteric artery segment and held it in
place. Once this segment was fixed, it could be imaged and
exposed to drugs through the lumen or external wall
(Fig. 5G, H). The contraction or dilation of the artery segment
was then imaged upon drug exposure. The exposure to phen-
ylephrine in this system resulted in a segment contraction in
a dose-dependent way (Fig. 5I). Although this represents
a major step forward in microfluidics for vascular drug
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In vitro microfluidic models to study vascular networks and vascular functions. (A) Microfluidic chip for forming

vascular networks and to study angiogenesis. (B, C) Nitric oxide production in static and flow conditions inside the device A
(scale bar =50 um). (D) Bioprinting methodology to produce vascular networks with agarose sacrificial layers. (E) Bioprinted
network (scale bar=3 mm). (F) Bioprinted vascular network with ECs (green, GFP; blue, DAPI; red, CD31; scale bar =250
um). (G) Artery-on-a-chip model where a small mouse artery segment is held in place and perfused through the lumen and
outside walls. (H) Microphotograph of artery-on-a-chip model (red, outer side wall; green, inner side wall). (I) Response of
the artery-on-a-chip to phenylephrine. [(A-C) adapted with permission from Kim et al.”?; (D-F) adapted with permission
from Bertassoni et al.!9; (G-I) adapted with permission from Gunther et al.*’.] Color images available online at www

Jiebertpub.com/aivt

discovery and development, the usage of animal vessels limits
its application and translational relevance to humans.

Vascular disease models

Rosano et al.'® mapped a mouse cremaster muscle and
used it to build a PDMS mold of the vascular network. This
biomimetic vascular model can be analogous to human vascu-
lar structures, possessing different geometries and regions
with different shear stresses. Such models can comprise com-
plex bifurcation and geometric intricacies inherent to vascular
networks that change the way cells interact with drugs. Impor-
tantly, they can potentially be applied to generate individual-
ized vascular networks and simulate scenarios of thrombus or
atherosclerosis formations.

Besides recreating vascular structures in vitro, researchers
have also pursued models to study angiogenesis.'*"''° Galie
et al."'” highlighted the influence of shear stress in angio-
genic sprouting. Both wall shear stress and transmural flow
in the endothelium above a certain threshold (>10 dyn/cmz)
induce endothelial sprouting. Local narrowing of blood ves-

sels induces high shear stress regions, which can trigger fur-
ther sprouting. Such information can be valuable in the
context of pharmacological interventions that promote or in-
hibit angiogenesis. In a cancer setting, vascular microfluidic
tools can help identify molecules inhibiting tumor angiogen-
esis and help elucidate the relationship of tumor extravasa-
tion in the vasculature. In order to better understand the
early phase of metastatic processes, some microfluidic models
have been designed to study the process of tumor extravasa-
tion."""=""* Buchanan et al.''' used co-cultures of MDA-
MB-231 and ECs to study tumor angiogenesis. Interestingly,
high wall shear stress had protective effects, downregulat-
ing several genes important for tumor angiogenesis such as
MMP9, HIF1, and VEGFA. Jeon et al.!'? used a microfluidic
device to develop a 3D model of metastatic breast cancer ex-
travasation in different environments. Using a bone- and
muscle-mimicking environment, extravasation rates were
found significantly increased in the bone-mimicking models.
This microfluidic model elucidated the effects of different mi-
croenvironments and their effect in cancer cell extravasation.
Additionally, the blockage of A3 adenosine receptors in cancer
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FIG. 6. Vascular models to study stenosis and thrombosis in vitro. (A) Microfluidic model of stenosis to study the effect of
drugs on occlusion. (B) Effect of drug epitifibatide concentration on dissolving clots over time. (C) Microfluidic stenosis
model used to test shear-activated microparticle formulation. (D) Photograph of the microfluidic device. (E) Exposure of
clots to free or encapsulated t-PA (shear-activated microparticles). (F-H) Time-dependent thrombolysis of clots upon expo-
sure to encapsulated t-PA. (I) Microfluidic device to study thrombosis in vitro containing a flow region (Q1) and a collagen
region where pressure gradient is varied (AP). (J, K) Thrombus formation on collagen and collagen/TF hydrogels (white

arrow 1ndlcates flow direction). [(A, B) adapted with permission from Li et al.
8. (I-K) adapted with permission from Muthard et al.'

Korin et al.!
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cells resulted in increased extravasation, enabling a deeper
mechanistic insight into cancer extravasation, while also pro-
viding a valuable platform to test new pharmaceutical agents.

Several m1cr0ﬂu1dlc platforms have been used for in vitro
drug screemng * and for the development of drug delivery
systems.>* Microfluidic models can be applied to study
thrombosis,''>!'® occlusion,'!” and stenotic regions.''® Li
et al.'’® des1gned a microfluidic system (Fig. 6A) to study
stenotic regions and thrombus formation under different
shear rates. Low shear rates lead to longer occlusion times.
However, the administration of increasing concentrations
of the antiplatelet eptifibatide (Fig. 6B) in high shear stress

; (C-H) adapted with permission from
%1 Color i 1mages available online at www.liebertpub

did not reduce the occlusion times compared to no drug.
This highlights the need of studying drug effects, in vitro, to-
gether with relevant biophysical stimuli such as shear rates.
Another system that mlmlcs a sten0t1c reglon (Fig. 6C, D)
was used to design a “smart” drug.''® Blood vessels are
often narrowed in thrombotic regions. At this site, wall
shear stress can rapidly increase by two orders of magnitude.
Korin et al."'® engineered microparticles that were respon-
sive to shear stress that would thus breakup into smaller
nanoparticles when exposed to the shear stresses observed
in stenotic regions. By incorporating tissue plasminogen ac-
tivator (tPA) in the nanoparticles, Korin et al. were able to
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show local delivery and rapid thrombolysis (Fig. 6E-G).
This innovative platform illustrates how microfluidic biomi-
metic vascular systems can be used in the context of drug de-
velopment. In this field, researchers have used the physical
properties of the stenotic regions to target drugs, thus avoid-
ing the need for systemic delivery of tPA and the resul-
tant adverse side effects. Other vascular models have been
used to study drug carriers and physical characteris-
tics.>*'19"12% Thrombotic and stenotic models are closely re-
lated; Muthard et al.''® engineered a microfluidic system
(Fig. 6I) to probe the effects of wall shear stress and trans-
thrombus pressure gradients in the thrombogenesis. In this
system, a side flow region was filled with collagen gel
with the pressure across it controlled by computer. The col-
lagen area was exposed to the main fluidic channel and visu-
alized directly on the device. As expected, the perfusion of
whole blood induced thrombus formation at the collagen site
(Fig. 6], K). Interestingly, by varying the pressure gradient
in the trans-thrombus collagen area, the authors observed
a decrease in thrombin with higher pressure-gradients.
This device can act as a useful tool to assess thrombotic
areas and the hemodynamics of pressure gradients in the
vessel wall.

Vascular permeability and dynamic condition models

Studies have also been conducted to evaluate the involve-
ment of ECs in wound healing.'*! In order to better understand
the vascular wound healing processes, Franco et al.'?! fo-
cused on the combined effect of flow and topographical
cues on endothelial migration. A device was fabricated com-
bining 1-um-grated surfaces and a fluid flow parallel to these
gratings. Interestingly, ECs cultured in such surfaces
exhibited a much faster migration velocity compared to flat
surfaces under the same flow rate. The research highlights
the role of surface modifications and topographical micro-

a0
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architectures, particularly ones mimicking the basal matrix,
in wound healing. Therefore, in certain settings, wound heal-
ing might benefit from approaches that change topography, in
addition to pharmacological interventions.

In arecent study by Arends et al.'?* the authors developed a
microfluidic device to probe the diffusive transport of analy-
tes through basal lamina interfaces. By using ECM gels made
from Engelbreth—-Holm—Swarm sarcoma of mice, the authors
were able to study permeability and the accumulation of dif-
ferent molecules at the interface. The accumulation of mo-
lecular at the ECM gel interface was charge-selective, and
the results were corroborated in vivo. The system provided
a platform to screen drugs and evaluated how changes in
properties could affect interactions with the vascular basal
lamina. Several other systems have been developed to
study the permeability changes in the vasculature.'**~'%’
Microfluidic collagen gels were fabricated'*>'*® and seeded
with ECs to study barrier functions and permeability. Chro-
bak et al.'** showed that cells formed a strong barrier in these
gels and responded to inflammatory stimuli by rapidly de-
creasing barrier Permeablhty and increasing leucocyte adhe-
sion. Price et al.”~> demonstrated that low flows were related
to higher permeability, whereas higher flows promoted a
stronger barrier function, while increasing the lifespan of
the endothelial constructs in vitro. This demonstrates the ef-
fects of biophysical parameters such as shear and transmural
pressure in mediating barrier functions. Additionally, Lee
et al.'** designed a simple microfluidic device to generate a
tubular, perfusable microvessel network. Similarly, Chrobak
et al.'** found that microvascular networks were responsive to
inflammatory stimuli such as histamine and TNFo.'** Further-
more, US87MG cancer cells were used to mimic high-
permeability conditions seen in neoplastic settings. A drug
administered in vivo—bevacizumab—was able to reinstate
permeability and improve barrier functions in agreement
with other in vivo data.'** A more complex system
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FIG. 7. Microfluidic model to study vascular permeability. (A) Photograph of microfluidic dual-channel model to study
permeability under shear stress; (B) Schematic of the microfluidic device with the upper channel containing blood endothelial
cells (BECs) and the lower channel containing lymphatic endothelial cells (LECs), separated by a porous membrane. (C)
Immunostaining for LECs marker podoplanin (green) and DAPI (blue). (D) Immunostaining with endothelial-specific marker
claudin-5. (E) Changes in permeability induced by exposure to habu snake venom. Adapted with permission from Sato

et al.

Color images available online at www.liebertpub.com/aivt
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envisioned by Sato et al.'*® focused on barrier function and
the vascular permeability of ECs and lymphatic ECs
(LECs). The microfluidic chip (Fig. 7A) consisted of two
channels separated by a porous membrane (Fig. 7B).
LECs (Fig. 7C) and ECs (Fig. SD) were cultured and main-
tained in different channels. With flows mimicking that of
blood and lymphatic vessels, transport across and from EC
channel to LEC channel was observed. In accordance to the
aforementioned reports, histamine stimulated also the increase
in permeability, and the authors further tested the system with
habu snake venom (Fig. 7E), showing its effect on the barrier
function.'?® With the development of vascular permeability
assays, it is essential to track changes in permeability and
other parameters in real time. Young et al.'?’ developed a
microfluidic system and technique to measure real-time endo-
thelial permeability by using laser-induced fluorescence.
Additional work developed by Li et al.'*® generated a vascular
lumen integrated with a nanowire array that was capable of
measuring nitric oxide produced by ECs. Such systems
could pave the way to the application of different permeability
and barrier function assays within ECs.

In addition to a considerable amount of research on vascu-
lar networks and fluid flow, some studies have incorporated
additional biophysical hemodynamic parameters.'**'*° Shao
et al.'* generated a microfluidic chip that applied pulsatile
and oscillatory shear stress to ECs, and Zheng et al.'*® fo-
cused on the combined effects of shear and stretch. Together,
these works highlight the need to incorporate complex dy-
namic conditions in order to fully mimic the vascular micro-
environment.

There has been an increasing amount of work developed to
recreate vascular networks in vivo. By combining biomateri-
als, microfluidics, and microarchitectures, we expect to be
able to mimic the vascular wall in different settings, model-
ing disease, and ultimately generate better in vitro models for
drug discovery and development.

Conclusions

Mimicking the cardiovascular system is challenging be-
cause of its high-level dynamics such as blood flow, stretch-
ing, and electrical stimulation. Several approaches have
produced a wide range of microfluidic-based organs-on-a-
chip to study different aspects of the cardiovascular system.
Some of these have been used, in an academic context, to test
and design different drugs and formulations. Although they
present a tremendous leap forward for scientific knowledge,
further work is required to translate and apply such technol-
ogies in drug discovery and development in industry.

Toward the translational pathway, a few startup compa-
nies have emerged, having raised significant amounts of
funds and starting collaborations with industry partners.
Here, we highlighted also the importance of regulatory agen-
cies in the process of identifying new models and addressing
concerns of reproducibility and standardization across the
industry.

Although promising, cardiovascular organs-on-a-chip have
not revolutionized the drug discovery process as of yet, and
key challenges still lay ahead. Partnering industry with multi-
disciplinary academic teams can leverage the translational po-
tential and help accelerate the development of technology. In
short, the current progress and opportunities discussed high-
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light that cardiovascular organs-on-a-chip models still hold
great promise for streamlining the drug discovery process.
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