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Summary

Equations and boundary conditions are derived for the isothermal diffusion processes in the
coagulation bath and in the polymer solution after immersion of a cast (ternary) polymer solution
into a (binary) coagulation bath. The mass transfer is expressed in terms of thermodynamic
driving forces and frictional coefficients. The frictional coefficients in the ternary system are
assumed to be interrelated through the Onsager reciprocal relations and to be related to the meas-
urable frictional coefficients defined in the three limiting binary composition ranges. In combi-
nation with knowledge about the demixing processes which can take place in the polymer solution
(liquid-liquid phase separation or solid-like aggregate formation), this model makes it possible
to calculate the polymer concentration profile in the immersed film at the moment of demixing of
the polymer solution as a function of several process parameters. The calculated concentration
profile and its relation to the asymmetric structure of the ultimate membrane are presented in
Part IT*.

Introduction

The preparation of asymmetric polymeric membranes by means of immer-
sion precipitation of a casting solution started with the development of reverse-
osmosis membranes by Loeb and Sourirajan [1] in 1962. Since then different
kinds of asymmetric membranes have been prepared by means of immersion
precipitation. The immersion precipitation process is also used to prepare the
supporting layer of composite membranes.

It is possible to vary the membrane properties to a great extent, from typical
reverse-osmosis behavior to microfiltration behavior, by changing the process
parameters during membrane formation or by adding extra components to the
casting solution or to the coagulation bath.

*J. Membrane Sci., 34 (1987) 67.
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The basic process of immersion precipitation can be carried out with three
components. Solvent and polymer are used to prepare the casting solution and
nonsolvent is used as the coagulation bath.

The formation process of the membrane can be split up into three parts:

1. Composition changes in the polymer solution before immersion into a
coagulation bath, by evaporation;

2. Composition changes in the polymer solution after immersion into a coag-
ulation bath prior to possible demixing processes;

3. Demixing processes which take place when the composition of the polymer
solution becomes metastable.

Binary diffusion during the time in between casting and immersion of the
polymer solution (the evaporation step) has been investigated by a number of
authors [2-5]. In general they conclude that the asymmetric structure in case
of Loeb-Sourirajan-type CA (cellulose acetate) membranes is caused by the
evaporation of acetone, which leads to an increase of the polymer concentra-
tion in the top layer of the polymer solution. We agree that the duration of the
evaporation step influences the membrane structure when volatile solvents are
used. However, when nonvolatile solvents are used or when no evaporation
step is carried out (which is the case for the innerside of a wet-spun hollow-
fiber membrane) asymmetric membranes can also be obtained. This means
that the ternary diffusion process which starts after immersion of the polymer
solution into a nonsolvent bath mainly determines the asymmetric structure
of the membrane.

The mass transfer in the still homogeneous polymer solution, after immer-
sion into a nonsolvent bath, has not been a subject of much investigation until
now. The most far-reaching theoretical investigation has been carried out by
Cohen, Tanny and Prager [6]. They showed that after immersion of the cast-
ing solution in a coagulation bath the polymer concentration at the interface
of the casting solution and the coagulation bath increases strongly. With their
diffusion model they also examined whether the exchange of solvent and non-
solvent could lead to instable compositions in the polymer solution. Only if
this is the case, according to Cohen and coauthors, porous membranes can be
formed as a result of liquid-liquid demixing.

The third important feature of the membrane formation process is the type
of demixing processes that can occur in the immersed polymer solution after
diffusion has led to a metastable composition. These demixing processes create
the pores in the sublayer and determine the structure of the top layer of the
membrane.

Much research has been done into the demixing processes that occur in
Loeb-Sourirajan-type CA membranes. The results of these investigations have
been summarized by Lonsdale { 7]. The general conclusion is that the polymer
precipitates in the nonsolvent and that gelation occurs by coagulation. We
prefer to call this demixing process ‘aggregate formation’. Within our group we
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have found that aggregate formation takes place in several membrane-forming
systems [8,9] and that this can lead to very different structures. This demixing
process can be discriminated from liquid-liquid phase separation. It has been
shown that both demixing processes occur in membrane-forming systems and
that they can be distinguished by examining the kinetics of demixing [9].
Especially at a low degree of supersaturation, aggregate formation is a slow
process compared with liquid-liquid phase separation, probably because some
orientation of the polymer molecules is required for the formation of aggregates.

In order to understand how these demixing processes influence the mem-
brane structure it is necessary to examine experimentally the structure induced
by demixing as a function of composition, and it is necessary to know the com-
position profile in the polymer film as a function of time after immersion of
the film into the coagulation bath prior to the demixing processes. In this paper
it will be shown how the composition change in the film prior to demixing can
be described as a function of several process parameters. The present work has
been inspired by the model of Cohen et al. [6].

The diffusion model: Correspondence to and difference from the model of
Cohen et al.

Following Cohen, Tanny and Prager [6] we will describe the ternary diffu-
sion process in the immersed polymer solution by means of two phenomeno-
logical diffusion equations. Chemical potential gradients are taken as the driving
forces and phenomenological coefficients relate the driving forces to the dif-
fusion fluxes.

We do not use the generalized form of Fick’s law to describe the ternary
diffusion process because ternary diffusion coefficients are not available and
hardly measurable within the composition range of interest. For ternary phe-
nomenological coefficients and thermodynamic nonideality parameters, how-
ever, reasonable assumptions can be adopted which relate these coefficients
(and parameters) to their more easily measurable values in the three limiting
binary composition ranges.

It is assumed that the compositions at both sides of the interface between
the polymer solution and the coagulation bath are always at equilibrium. In
order to simplify the moving boundary problem the diffusion equations are
described using polymer-fixed position coordinates and the phenomenological
coefficients are defined in a polymer-fixed frame of reference. So far we will
copy the model of Cohen et al. To simplify their model Cohen et al. adopted a
few assumptions. It will be briefly discussed why these simplifications were
omitted from our model or why different assumptions were adopted.

Wijmans et al. [10] clearly showed that it is not allowed to use the steady-
state approximation of Cohen et al. to describe the diffusion during membrane
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formation. Therefore, the steady-state assumption will not be adopted; the
exact solution of the diffusion equations will be given.

Furthermore, Cohen et al. neglected the frictional forces acting between sol-
vent and nonsolvent by omitting the cross terms in the diffusion equations.
We will not omit them; it will be shown that their omission can lead to erro-
neous results.

The two above-mentioned simplifications enabled Cohen et al. to calculate
composition paths without knowing the influence of the polymer concentra-
tion on the frictional forces acting between polymer and solvent and between
polymer and nonsolvent. However, in the present model the dependence of
these frictional forces on polymer concentration has to be known.

Cohen et al. used constant thermodynamic interaction parameters in their
expressions for the chemical potentials. From results of Altena and Smolders
[11] it can be concluded that the Flory-Huggins interaction parameter shows
a strong concentration dependence for many solvent-water mixtures, There-
fore, concentration-dependent binary interaction parameters will be used in
the expressions for the chemical potentials.

Cohen et al. assumed that the composition of the coagulant at the boundary
of the casting solution remains equal to the bulk composition of the original
bath. However, even if the coagulation bath is well stirred, there will be a stag-
nant layer in the vicinity of the interface. Here it is assumed that only diffusion
takes place in the coagulation bath. When the coagulation bath is stirred this
assumption is still valid during the very important first seconds after immer-
sion of the polymer solution.

Cohen et al. assumed that liquid-liquid demixing can occur only when an
instable spinodal composition has been reached. In our opinion liquid-liquid
demixing takes place when the binodal has been passed and a metastable com-
position with even a very low degree of supersaturation has been reached.

The phenomenological equations describing the diffusion in the polymer
solution

In this section we will derive the phenomenological equations describing the
diffusion in the polymer solution. It will be shown that the diffusion equations
of Cohen et al. lack a factor (the polymer volume fraction) and that the recent
criticism of McHugh and Yilmaz [12] on the continuity equations used by
Cohen is unfounded.

The components are indexed as follows: nonsolvent (1), solvent (2) and
polymer (3). For a complete list of symbols the reader is referred to the end of
this paper.

De Groot and Mazur [13] derived the following relation between fluxes J¢
and thermodynamic driving forces X;in a ternary system:
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2
j=1
The superscript ‘c’ refers to a mass flux [kg/m?-sec]. Because of the exchange
of solvent and nonsolvent after immersion of the film, the interface between
the polymer solution and the coagulation bath will move. Hartley and Crank
[14] suggest that this moving-boundary problem can be simplified by defining
the fluxes relative to a polymer-fixed frame of reference:

S =ci(0; —D3), (2)

where c; is the concentration of component i [kg/m?®]. For these fluxes the
thermodynamic driving forces in eqn. (1) are given by [13]:

Xj:—é,uj/dx, (3)

where y; is the chemical potential of component j per kilogram j and x is the
Cartesian spatial position coordinate perpendicular to the membrane surface.
We assume that the phenomenological coefficients, L, obey the Onsager recip-
rocal relations [13]:

L12 =L21 (4)

In order to obtain differential equations describing the ternary diffusion pro-
cess the flux equations (1) have to be combined with the continuity equations.

Assuming that the partical specific volume, V;, does not (appreciably) depend
on concentration, it can be derived [ 13, p. 256 ] that the volume-average veloc-
ity relative to the cell is zero:

3
z C; Vilji :O,
i=1

where U; is the velocity of component : relative to the cell (in our case the glass
plate). The assumption that the Vs are constant also implies that the conti-
nuity equations in terms of volume fluxes [ m/sec ] relative to the cell are given
by [13]

dJ¢ 0¢; .
ox - e =12 (5)

where ¢, ( =c¢; V;) is the volume fraction of component i. The tilde ( ~ ) denotes
that J;is a flux relative to the cell
I =p.0,(=¢; V, ;) (6)

The desired differential equations describing the mass transport relative to
the polymer-fixed frame of reference can be obtained from eqns. (1) and (5),
only after rewriting eqn. (5) in terms of fluxes relative to the polymer-fixed
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Fig. 1. Schematic representation of the cast polymer solution layer, the coagulation bath and the
position coordinates used.

frame of reference. This is achieved in the following manner. From eqns. (2)
and (6) it can be derived that J?[ =¢,(0; — ;)] and J? are related as
P =J? —(9:/0:)J8,  i=12 (7)

where J? refers to a volume flux relative to the polymer-fixed frame of refer-
ence. Combination of eqns. (5) and (7) yields

éi]z__ 5(¢i/¢3)_J¢5(¢i/¢3)
ox St 37 5x

As suggested by Hartley and Crank [14] we introduce a new position coordi-
nate, m (see Fig. 1), in order to eliminate J% from eqn. (8):

Ps 1=1,2 (8)

m(xt) = [ gy(edE ®)

om(t=constant) =@,dx(t=constant).

A detailed description will be given of the way in which eqn. (8) is transformed
by the transition from x to m position coordinates. In our opinion, McHugh et
al. [12] perform this transformation in a wrong way, which leads to their erro-
heous continuity equations.

In the following equations the subscripts to the derivatives refer to constant
parameters.

5(¢i/¢3) 5(¢i/¢3) 5(¢i/¢3) dx
¢3( ot >m=¢3( ot )x+¢3( ox )tx(ﬁ?)m (10

7] o
&5 (g’tf)m =J¢ (11)
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oJ? oJ?
(6x) =7 (am) (12)
By substituting eqns. (10), (11) and (12) in eqn. (8) we finally obtain

5J¢ 5(8:/93) ) .
(5m) = (————& m, 1=1,2 (13)

These continuity equations are in agreement with the equations of Wijmans
et al. [10] who examined the mass balance in a ‘polymer-fixed’ volume ele-
ment. They are also in agreement with the equations proposed by Hartley and
Crank [14] to simplify a moving boundary problem.

In order to combine the flux equation (1) with the continuity equation (13)
so as to eliminate the fluxes, first the mass fluxes J§ in eqn. (1) have to be
substituted by volume fluxes J?:

2 /)

Jo=—Y VL;H =12 (14)
f ox

The transition to m position coordinates according to eqn. (9) transforms eqn.

(14) into

2
- %, VigoLs 55"1 i=12 (15)

It may be observed that this transformation leads to the appearance of ¢, in
the flux equations, the term that is missing in the flux equations of Cohen et
al.

Now, the flux equation (15) and the continuity equation (13) can be
combined:

5(¢;/t¢3)_ J {Z VidaLi(91,9» ‘5“1}, i=1,2 (16)

These ternary diffusion equations describe the concentration changes as a
function of time and place in the immersed polymer solution, if the appropriate
boundary and initial conditions are used.

The phenomenological coefficients L;; (defined in the polymer-fixed frame
of reference) are concentration dependent. These ternary coefficients can be
related to binary frictional coefficients which in turn can be related to meas-
urable diffusion and sedimentation coefficients, as will be shown.

The expressions for the chemical potentials as a function of the composition
are given in Appendix A.
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The equations describing the binary diffusion in the coagulation bath

The presence of polymer in the coagulation bath, after immersion of the
polymer solution is neglected, although a very small amount of polymer may
dissolve in the coagulation bath in the presence of an excess amount of solvent
in the coagulation bath.

As a consequence of neglecting the concentration dependence of the partial
specific volumes, the binary diffusion process in the coagulation bath — rela-
tive to the cell (the glass plate) — is described by Fick’s second law:

o¢;_ 9 09;
5t~ ox {DW 5x} (a7)

where D (¢,) is the mutual diffusion coefficient.

In the preceding section it has been shown that through the introduction of
the position coordinate m in the polymer solution, the moving boundary
between the coagulation bath and the solution can be fixed to the position
m=0. By introducing a new position coordinate, v, the diffusion process in the
coagulation bath relative to the moving interfacial boundary will be described,
in order to transform this moving-boundary problem to a fixed-boundary prob-
lem as well (see Fig. 1):

y=—x+X(t) (18)

where X (¢t) is the position of the boundary between the polymer solution and
the coagulation bath, measured in position coordinates x.

The transformation to position coordinates y, according to eqn. (18), con-
verts eqn. (17) into

5o 3 0. 86; SX(t)
5t oy {D(¢f) 5y}_5y ot (19)
X Jt(y=0) +J5(y=0) (192)

These equations will be used to describe the diffusion in the unstirred coag-
ulation bath.

The initial and boundary conditions

At the very moment of immersion of the cast film into the coagulation bath,
the film and the bath are considered to be completely homogeneous. This leads
to the following initial conditions.

y>0: 6{” (3,0) =9 i=1,2

OSmQM: ¢z(S)(m:0)= i(S) l=1:2’3 (20)
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Fig. 2. Schematic representation of the two possible types of concentration profiles in the contact
area between the bath and the solution after immersion of a polymer solution into a coagulation
bath; (a) Concentration profile with an interfacial boundary layer between the two liquid phases.
(b) Concentration profile without an interfacial boundary layer.

The superscripts (¢) and (s) refer to the coagulation bath and the polymer
solution, respectively. M is the total volume of polymer per unit area of casting
solution.

From the moment of contact between the film and the bath, in principle two
different kinds of concentration profiles are possible in the area of contact
between the bath and the film:

(a) Aconcentration profile consisting of an interfacial boundary layer between
two liquid phases and on both sides of this interfacial boundary layer
steep concentration gradients which become smoother in the course of
time.

(b) A concentration profile consisting of one concentration gradient which
becomes smoother in the course of time.

Both types of concentration profiles are shown in Fig. 2.

Whether a real interfacial boundary will be formed (situation a) mainly
depends on the initial solvent concentration in the coagulation bath. When the
solvent concentration in the vicinity of the surface of the polymer solution
remains below a certain limiting value, the local Gibbs free energy can be min-
imized by the formation of an interfacial boundary (i.e. the high local nonsol-
vent concentration prevents the polymer solution to be miscible with the
coagulation bath }. Situation (a) will be assumed to correctly describe the actual
concentration profile during membrane formation. In Part II of this paper a
method of verification of this assumption is described.

It is assumed that the thickness of the interfacial boundary layer is equal to
Zero.

One of the assumptions of irreversible thermodynamics is the existence of a
state of local equilibrium even when no equilibrium exists on a macroscopic
scale. This means that at the boundary of the two phases considered (the coag-
ulation bath and the polymer solution) the following boundary conditions exist:



54

O (y=0,t) =p{> (m=0,t), i=1,2,3 (21)

When the ternary phase diagram is considered, eqn. (21) implies that at any
time the boundary compositions in the film and in the coagulation bath are
situated on the binodal and are connected by a tie line. The boundary condi-
tions (21) make it necessary to calculate the tie lines using expressions for y;
as a function of composition. It will be shown that ¢{°) (y=0,t) can be neglected
if $5°) does not exceed a certain limiting value.

The other conditions at the boundary of the two phases are

At m =M the boundary conditions are given by

39
om

=0, i=1,2 (23)

The coagulation bath is considered to be infinitely thick.
Our calculations are only valid as long as the diffusion gradients in the film
and in the bath are not disturbed by demixing processes or by convection.

mt V2 Dependent solutions

In this section it will be shown that the solution of the equations describing
the diffusion in the polymer film is a function of mt ~/2and that the interfacial
boundary compositions are constant during a certain period after immersion
of the polymer film.

To start assume that the interfacial boundary compositions are constant as
long as the polymer film can be treated as infinitely thick and the convection
in the coagulation bath can be neglected. It will be shown that these assump-
tions yield the one and only solution of the equations, obeying the boundary
conditions.

The introduction of a new variable I =mt~1/2

enables transformation of eqn.

(16) into
6(oi/gs) 20 §& ol .
T— ~131 {j;l VigsL;; (91,02 51 }, 1=1,2 (24)

Regarding the boundary and initial conditions it follows that the composition
in the polymer solution is a function of {, if the above-mentioned assumptions
hold. Under the same circumstances it can be shown that
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J¢(m Ot) {¢l(mt) ¢z(m90) }dm

¢3(mst) ¢3(m’0)

(25)
=é t~12C,, =12
the constant C;being given by
" (m,t ,(m,0
vtz st
The rate of movement of the boundary (19a) is given by
‘”;it) —J{(m=0,t) —J5(m= Ot)_—%t“1/2(Cl+C2) (26)

Rewriting the diffusion equation for the coagulation bath by introducing the

new variable I’ =yt ~ 2 yields:
d¢; 2 d¢; 6 9¢:
ST {(C +C) o Sl 5T [D(f/il) 5!’]} (27)

It follows that the composition in the coagulation bath is a function of I’ as
long as the assumption holds that no convection takes place and the boundary
composition is constant. This implies that

0X (t)

Y
J(y=0,t) 2(5% f 6:(3,8) — 6:(3,0)dy+ 25 4 (1-0)
(28)

—12¢h =12

l\DIb—‘

where C; is given by
Y

Ci=t= [ 6,(0) 03,0 dy— (€, +C2)pu(t=0),
0

and Y is a position in the coagulation bath on a constant distance from the
interfacial boundary, where the original composition remains unchanged. If
the solvent concentration in the coagulation bath is not too high it is always
possible to find a pair of constant boundary compositions obeying condition
(21) which yield such C; and C’;values that boundary condition (22) is obeyed.

Thus, it has been shown that the assumption mentioned at the beginning of
this section yields a solution of the diffusion equations that obeys the boundary
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conditions mentioned in the previous section. Because these boundary condi-
tions restrict the number of solutions of the diffusion equations to only one
solution, it can be concluded that this unique solution yields constant inter-
facial boundary compositions under the special circumstances mentioned in
the assumption. Besides it has been shown that the composition in the film is
a function of mt ~'/? as long as the composition at m=M remains unchanged
and no convection takes place in the coagulation bath. These conclusions sim-
plify the solution of our diffusion problem considerably.*

Ternary phenomenological coefficients L simplified to functions of binary
frictional coefficients R;;

For the solution of eqn. (16) expressions are needed for the phenomenolog-
ical coefficients L,;. As has been pointed out before, some assumptions will be
adopted which relate the hardly measurable ternary coefficients L;; to their
values in the three limiting binary composition ranges. These binary L;; values
are related to binary diffusion or sedimentation coefficients, which can be
obtained easily.

For the derivation of expressions for L;; as a function of these binary coeffi-
cients it is helpful to introduce frictional coefficients R; which are defined by
the Stefan-Maxwell flux equations [16,17]:
op; 3

5x __]gl Rijcj(vi_vj)’ I’=1)2’3 (29)

0; and U; are the average velocities of components i and j with respect to the
cell-fixed frame of reference. Unlike L, the frictional coefficients R, do not
depend on the choice of frame of reference.

Dunlop [16] showed that eqn. (29) can be reduced to the following form:

o

%:—Rmcs(ﬁl—53)—R12c2(61—62) (30)
s o - -

E-— —Rglcl(UQ_Ul)_R23c3(v2—v3) (31)

We assume that Ry, =R, [16,17]. Because du,/dx is the driving force per kil-
ogram i, R;c;(0;—0;) is the frictional force acting between component i and j
per kilogram i.

*The square-root relationship would not have been found when relaxation-type diffusion equa-
tions were used. However, relaxation times associated with structural changes in rubbery polymers
are too short to cause diffusion anomalies [15]. For the compositions present in the freshly
immersed casting solution it is very reasonable to assume that the glass temperature has not yet
been reached.
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In references [16,17] moles are used where we use kilograms. This means
that their R,;values differ a factor M; X M; X 10~¢ from the R;values as defined
above. (M;=molecular weight of component i [g-mol~!].)

First, the relation between the L; and the R, values will be derived. Rear-
rangement of eqn. (30) yields the following expression:

v Bidy
ci(vrva)——j;a 5x’ i=1,2 (32)

where

Bro=Ps=c1c Ry,
Bu=ci{c Ry +c3Ry3)
Boa =ca(caRyp +c3Ry3)

a=cz(caR13Ro3+ ¢ Rig Ry + 3R 3Re3)

When we compare eqn. (32) with eqns. (1) to (3):
2

ou;
(0, —03)=—3 Ly i=12
¢ (U U3) j;l i 5x L
it is clear that the relation between the phenomenological and the frictional
coefficients is given by

L'J:Bl]/aa L:1:2:]:1’2 (33)

This result is in agreement with the expression derived by Spiegler [18].
In the three limiting binary composition ranges eqn. (30) yields the follow-
ing relations for ¢;+ ¢;=1:
oL o . . . .
e —c;R; (9;)(0;—0;), i=1,j=20r3;i=2,j=1or3. (34)
In the next section it will be shown how the binary frictional coefficients in
eqn. (34) are related to binary diffusion or sedimentation coefficients. How-
ever, the ternary frictional coefficients will first be expressed as a function of
the binary coefficients R;;(¢;) . This can be done by adopting a few assumptions
concerning the concentration dependence of the ternary frictional coefficients.
For R, (¢,,0,) the assumption is adopted that this coefficient is a function
of the ratio ¢,/ (¢, +&,). We assume that the presence of the polymer influ-
ences the frictional force per cubic meter acting between components 1 and 2.
However, the magnitude of the frictional force per kilogram 1 remains propor-
tional to ¢, at constant ratio ¢,/ (¢, +¢,) and varying ¢,:

Ri2(61,02) =Ry, (91) (93 =0) (35)
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Fig. 3. Lines connecting compositions with equal ternary frictional coefficients R;; according to
eqns. (35) and (36).

where ¢; =@,/ (¢, + ¢2).

Because of the reciprocal relation (31),

R21(¢1a¢2) =R12(¢1s¢2) (35a)

For the concentration dependence of R,; and Ry, a different assumption is
adopted in that these frictional coefficients are assumed to depend on the pol-
ymer volume fraction only. The polymer is considered to act as a porous plug
whose permeability for component 1 or 2 is not influenced by the presence of
the other low molecular weight component; thus, assuming that the permea-
bility of the plug is only influenced by the polymer volume fraction.

Ris(0:,03) =Ri3(93) (¢ + 93 =1) (36)
In Fig. 3 assumptions (35) and (36) are visualized in a ternary diagram.

Binary frictional coefficients R;;(¢#;) as a function of binary diffusion or
sedimentation coefficients

In this section the binary coefficients R;;, occurring in mass transport equa-
tion (16) viaeqns. (33), (35) and (36), are expressed as a function of param-
eters which can be determined experimentally.

The binary frictional coefficient R;; can be related to the binary phenome-
nological coefficient (L;);defined as follows:

Ol;
ngci(ﬁi‘ﬁj)=_(Li)j§% (37)

Combination of eqns. (37) and (34) yields the following relation:
Rji(¢:+¢;=1)=V;0;/V,0,(L,); (38)
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In Appendix B the following relation between the binary diffusion coefficient
D and (L;),is derived:

ou:
(L), =D/(¢,- 3‘—;—)

Substitution of this expression in eqn. (38) yields the following expression for
the binary frictional coefficient:
V., ou;

Ri(¢;+¢;=1)=—L"x— 39

Lj(¢l+¢j 1) D X5¢l ( )
In Part II of this paper this expression will be used for the calculation of the
binary coefficient R,.

The binary coefficient (L;),can also be expressed as a function of the sedi-
mentation coefficient s;. This relation is derived for the coefficients (L,);and
s;in Appendix C:

(Ly)s= X83(0s) (40)

1
Vo (pVe—1)
When substituted in eqn. (38), this expression yields the following expression
for the binary coefficient Rog:
dy Vs(pVy—1) 1

Ry3(9,=0) s Xs3(¢3) (41)
Thus the binary coefficient K., can be obtained by measuring the sedimenta-
tion coefficient of the polymer in the solvent as a function of the concentration.
In Part II of this paper results for the system CA-acetone will be presented.

It is very difficult to determine R,; by means of diffusion or sedimentation
measurements because the polymer can be dissolved in the nonsolvent only
within a very small concentration range. Even if we could determine R,; it is
doubtful whether this quantity would describe the friction between nonsolvent
and polymer correctly in the presence of an excess amount of solvent. It will
appear that mainly in this composition range the ternary diffusion process in
a membrane-forming system takes place. Thus R,;has tobe estimated. R,5(¢3)
will be estimated by relating this coefficient to R.5(@5). For a proper estima-
tion of Ry3(¢;) it is helpful to derive a relation between R,; and R,; in the
hypothetical case that, for a binary polymer solution with a certain volume
fraction of polymer, the resistance force per cubic meter exerted by the polymer
on the solvent is equal whether using solvent 2 or ‘solvent’ 1 (the nonsolvent).
The binary flux equations are then given by (see eqn. 37):

_ 1 du; )
¢ — _ 72(L. = O _
J? = V?(L,)3><{Vi 5x }, i=1,2 (42)
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where y; denotes the chemical potential per kilogram of i and (1/V;)(du,/dx)
the driving force per cubic meter. It can be concluded that in our hypothetical
case

V?(L1)3=V§(L2)3 (43)
From eqns. (38) and (43) it follows that

V
R13 =‘7—; R23 (44)

In reality the resistance forces exerted by the polymer on the solvent and the
nonsolvent will differ, especially because the sizes of the two low-molecular
weight components differ. Therefore we will use the following expression for
R,;in our model calculations:

R13:CX_‘—7§R231 (45)

where C may either be constant, or depending on ¢s.

Conclusions

A set of general diffusion equations (eqn. 16) and boundary conditions have
been derived for the mass transport in a ternary polymer solution after immer-
sion into a coagulation bath and prior to possible demixing processes.

In addition, expressions for the binary diffusion in the coagulation bath,
relative to the moving boundary between the polymer film and the coagulation
bath, have been derived (egns. 19 and 19a).

As long as the composition at the bottom of the polymer solution remains
unchanged, the composition changes in the polymer solution are a function of
mt ~ /2 only. This means that during this period, all compositions existing in
the polymer solution can be described by a constant composition trajectory.

The relation between the ternary phenomenological coefficients L;; and the
ternary frictional coefficients R,;is given by eqn. (33). We have simplified the
ternary frictional coefficients to functions of binary frictional coefficients, eqns.
(35) and (36). The frictional coefficient describing the interaction between
solvent and nonsolvent is related to the binary diffusion coefficient, eqn. (39).
The frictional coefficient describing the interaction between solvent and pol-
ymer is related to the sedimentation coefficient, eqn. (41). The frictional coef-
ficient describing the interaction between nonsolvent and polymer must be
estimated.

In Part II of this paper the composition profiles will be calculated in a cel-
lulose acetate—acetone solution after immersion into water. Experimental,
concentration-dependent sedimentation and diffusion coefficients will be used
in the expressions for R;;. In the expressions for the chemical potentials, eqns.
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(A2-A4), experimental, concentration-dependent Flory-Huggins parameters
will be used.

An experimental method will be presented to verify the results of the cal-
culations and to estimate the value of R, .

List of symbols

7

‘:'.-':U’:c Qgg 3=

» =

§;

Concentration of component i (kg-m~2)

Constant defined in eqn. (45)

Constant defined in egn. (25)

Constant defined in eqn. (28)

Binary mutual diffusion coefficient, defined in volume- or cell-fixed
frame of reference, eqn. (B1)

Flory-Huggins interaction parameter

Concentration-dependent Flory—Huggins interaction parameter

Flux of component ¢ relative to the polymer-fixed frame of reference
Flux of component i relative to the volume- or cell-fixed frame of
reference

Flux of component : relative to the mass-fixed frame of reference
Volume flux of component i (m-sec™?')

Mass flux of component ¢ (kg-m~2-sec™!)

Ternary phenomenological coefficient, defined in polymer-fixed frame
of reference, eqns. (1-3)

Binary phenomenological coefficient, defined in component j-fixed frame
of reference, eqn. (37)

Binary phenomenological coefficient, defined in volume- or cell-fixed
frame of reference, eqn. (B1)

mt— 1/2

yt~
Position coordinate of the polymer-fixed reference frame, defined in egn.
(9) (m)

Total volume of polymer per unit area of polymer film (m)

Molecular weight of component i (g-mol 1)

Binary phenomenological coefficient, defined in mass-fixed frame of
reference, eqn. (C2)

Gas constant (J-K~'kmol 1)

Frictional coefficient describing the interaction between the compo-
nents i andj (defined in egn. 29)

V.M, / VoM,

ViM,/V,M,

Sedimentation coefficient of component ¢
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Average velocity of component i relative to the volume- or cell-fixed
frame of reference

Partial specific volume of component i (m®-kg—?!)

Cartesian spatial position coordinate perpendicular to the membrane
surface (m)

Position of the interface between the film and the coagulation bath (m)
Position coordinate relative to X (¢t) (m)

Chemical potential of component i (J-kmol~1!)

Chemical potential of component ; (J-kg~!)

Solution density =ZX';c; (kg m—2)

Volume fraction of component ;
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Appendix A

Equilibrium thermodynamics for a three-component system

For the expression of the Gibbs free energy of mixing we use the
Flory-Huggins theory for polymer solutions [19], extended to systems with
three components by Tompa [20]

AG,,
T =™ In ¢, +n, In g, +n;3 In ¢ +812(ux) 1,10

+ X137 P +823(V2) N2 (Al)

where n;is the number of moles of i and y,, is the nonsolvent-polymer inter-
action parameter; g,, is the solvent-nonsolvent interaction parameter, which
is assumed to be a function of u,, with u,=¢,/(@s+@;); go5 is the sol-
vent—polymer interaction parameter which is assumed to be a function of
Vo= @/ (P2t ¢5).

In eqn. (Al) the — strictly speaking — ternary nonideality parameters
&:(9;,¢,) are related to their more easily measurable values in the three limiting
binary composition ranges. For practical reasons g,;(¢,,0;) is even assumed
to be constant and equal to y,3, measured at the saturation composition of the
nonsolvent-swollen polymer.

In fact eqn. (Al) is valid only in the case of vanishing concentration gra-
dients. By using eqn. (A1) the influence on the local free energy of the steep
concentration gradients at the boundary between the polymer solution and the
coagulation bath is neglected. This means that, for extremely short time inter-
vals immediately after immersion of the polymer solution, the diffusion model
gives an approximation of real diffusion behavior.

From eqn. (Al) the following equations for the chemical potentials of the
components in the mixture are derived:

du” /RT=In ¢, — sy —rés + (1+g120: +x1395) (1
dg12

dUQ

—01) —88230203 — Paux (1 —Us) (A2)
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sdus /[RT=sIn ¢y — @) — 7103+ (5 + 81201 +882305) (1 —¢5)

100+ s (1 —t) B2 450, (1—0y) BB (A9)
Us dv,
"AﬂaJr/RT="ln O3 — Py — 8Os+ (r+gossPy + x 1391 ) (1
o) — 8126162 —5ava(1—vs) B (A4)

du,

The chemical potentials are expressed per kilomole of segments of component
1; s and r are the ratios of the molar volumina:

S=V1M1/‘72M2, r=V1M1/V3M3

The expressions (A2) and (A3) are used in the diffusion equations for the
polymer solution. For the boundary condition all three expressions for the
chemical potentials have to be evaluated. The conditions for liquid-liquid equi-
librium (at the boundary) are:

Au;" (diluted phase) = 4" (concentrated phase) (1=1,2,3) (A5)

Altena et al. [11] described how the binodal and the tie lines, connecting the
coexisting phases in a ternary diagram can be calculated.

Appendix B

The relation between the binary coefficients (1;);and D

The binary diffusion coefficient D is measured relative to the cell-fixed frame
of reference, which is equal to the volume-fixed frame of reference in the case
of constant partial volumes V; [13].

The relation between D and L;is given by
de; > Ol

S . (B1)

Jf ZCini: -D

where L, is the phenomenological coefficient defined in the volume-fixed frame
of reference.
From eqn. (B1) it can be derived that

D
ou;/dc;

The relation between the coefficient (L;);, defined in the component j-fixed
frame of reference, and D is derived as follows:

=L, (B2)
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(Li)j ii—c (0;—170;) =_‘ [(1 ®;)0; “J'P]
x
_G 707 _Cili E%
5 [—e)n+J0 == 250 (BY)
From eqns. (B2) and (B3) it follows that
(L, =D/(¢,- = ) (B4)
Appendix C

The relation between the binary coefficient (L, ) ; and the sedimentation
coefficient s
s is related to a phenomenological coefficient @, defined below [21]:

s3=Q"c—‘:“’ (14 ¢5/ea) (1—p¥s) (C1)

where s; =U;/g, with D5 the average velocity of component 3 relative to the cell-
fixed frame of reference, and g the centrifugal field strength; p=c,+cs, the
solution density.

In the absence of a centrifugal field @ is defined as follows [21]:

F=—Qtefe) % (c2)

where J§ is the mass flux of component 3 relative to the mass-fixed frame of
reference.

Conversion of  from the mass-fixed frame of reference to the polymer-fixed
frame of reference yields the following relation between @ and (L, ) ;:

pea(1— C3/Cz)

3

(L2)3"‘ Q

When we substitute this relation in expression (C1) we obtain

(Lg)s= s3(@3) (C3)

1
Vz(PV2 -1)



