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@‘(y=O,t) =/@‘(m=O,t), i=1,2,3 (21) 

When the ternary phase diagram is considered, eqn. (21) implies that at any 
time the boundary compositions in the film and in the coagulation bath are 
situated on the binodal and are connected by a tie line. The boundary condi- 
tions (21) make it necessary to calculate the tie lines using expressions for pi 
as a function of composition. It will be shown that $4’) ( y = 0,t) can be neglected 
if @AC’ does not exceed a certain limiting value. 

The other conditions at the boundary of the two phases are 

J?(Y=O,)l= --J?(m=O,t), i=1,2 (22) 

At m = M the boundary conditions are given by 

&+ g,=o, i=1,2 (23) 

The coagulation bath is considered to be infinitely thick. 
Our calculations are only valid as long as the diffusion gradients in the film 

and in the bath are not disturbed by demixing processes or by convection. 

nat-112 Dependent solutions 

In this section it will be shown that the solution of the equations describing 
the diffusion in the polymer film is a function of rnt-li2 and that the interfacial 
boundary compositions are constant during a certain period after immersion 
of the polymer film. 

To start assume that the interfacial boundary compositions are constant as 
long as the polymer film can be treated as infinitely thick and the convection 
in the coagulation bath can be neglected. It will be shown that these assump- 
tions yield the one and only solution of the equations, obeying the boundary 
conditions. 

The introduction of a new variable Z= mt-1’2 enables transformation of eqn. 
(16) into 

(24) 

Regarding the boundary and initial conditions it follows that the composition 
in the polymer solution is a function of 1, if the above-mentioned assumptions 
hold. Under the same circumstances it can be shown that 
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M 

J1”< m=O,t) =; H h(W) _ &(mO) 
o $3(W) b(m,O) 1 dm 

=f t-WC. 
I> i= 1,2 

(25) 

the constant Ci being given by 

ci = t- 112 Ji @itrnYt) _$iCm,O) 

o !&3(m,t) b(mO) I dm 

The rate of movement of the boundary (19a) is given by 

ax(t) 
-= -J$(m=O,t) -J$(m=O,t) = -; t-l/ycl +c,) 

St 
(26) 

Rewriting the diffusion equation for the coagulation bath by introducing the 
new variable 1’ =yt -li2 yields: 

(27) 

It follows that the composition in the coagulation bath is a function of I’ as 
long as the assumption holds that no convection takes place and the boundary 
composition is constant. This implies that 

Y 

ax(t) 
J!‘(Y=O,t) =:t 1 @i(Y,t) -#i(Y,O)dy+~ dt @iCtzo) 

0 

=i t-1/2Ci, i=1,2 

(28) 

where Cl is given by 

Y 

C’=t-1’2 ~i(y,t)-_~(y,O)dy-(CC,+C2)A(t=O), I 
s 
0 

and Y is a position in the coagulation bath on a constant distance from the 
interfacial boundary, where the original composition remains unchanged. If 
the solvent concentration in the coagulation bath is not too high it is always 
possible to find a pair of constant boundary compositions obeying condition 
(21) which yield such Ci and C;values that boundary condition ( 22) is obeyed. 

Thus, it has been shown that the assumption mentioned at the beginning of 
this section yields a solution of the diffusion equations that obeys the boundary 
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conditions mentioned in the previous section. Because these boundary condi- 
tions restrict the number of solutions of the diffusion equations to only one 
solution, it can be concluded that this unique solution yields constant inter- 
facial boundary compositions under the special circumstances mentioned in 
the assumption. Besides it has been shown that the composition in the film is 
a function of rnt-l’* as long as the composition at m=M remains unchanged 
and no convection takes place in the coagulation bath. These conclusions sim- 
plify the solution of our diffusion problem considerably.* 

Ternary phenomenological coefficients L, simplified to functions of binary 
frictional coefficients Rij 

For the solution of eqn. (16) expressions are needed for the phenomenolog- 
ical coefficients Lij. As has been pointed out before, some assumptions will be 
adopted which relate the hardly measurable ternary coefficients L, to their 
values in the three limiting binary composition ranges. These binary Lijvalues 
are related to binary diffusion or sedimentation coefficients, which can be 
obtained easily. 

For the derivation of expressions for L, as a function of these binary coeffi- 
cients it is helpful to introduce frictional coefficients Rij which are defined by 
the Stefan-Maxwell flux equations [ 16,171: 

%=mjil RijCj(Ui-Oj), i= 1,2,3 (29) 

V;: and Oj are the average velocities of components i and j with respect to the 
cell-fixed frame of reference. Unlike Lij the frictional coefficients R, do not 
depend on the choice of frame of reference. 

Dunlop [ 161 showed that eqn. (29) can be reduced to the following form: 

(36) 

We assume that RI2 = Rzl [ 16,171. Because 6~i/63C is the driving force per kil- 
ogram i, R,cj ( Ui - Uj) is the frictional force acting between component i and j 
per kilogram i. 

*The square-root relationship would not have been found when relaxation-type diffusion equa- 
tions were used. However, relaxation times associated with structural changes in rubbery polymers 
are too short to cause diffusion anomalies [ 151. For the compositions present in the freshly 
immersed casting solution it is very reasonable to assume that the glass temperature has not yet 
been reached. 
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In references [ 16,171 moles are used where we use kilograms. This means 
that their Ryvalues differ a factor Mix MAX 10P6from the Riivalues as defined 
above. ( Mi=molecular weight of component i [ g-mol-‘1 .) 

First, the relation between the Lij and the Rij values will be derived. Rear- 
rangement of eqn. (30) yields the following expression: 

ci(u._-u;J)_i WEi 
1 

j=1 Cl! 6X’ 

i=1,2 (32) 

~=c3(c2&,&3 +c,&,R,, +c3&3&3) 

When we compare eqn. ( 32) with eqns. (1) to ( 3) : 

dru. 
Ci(Ui-_u3) =- 2 Lij ~, i=1,2 

j=l 

it is clear that the relation between the phenomenological and the frictional 
coefficients is given by 

Lij=pij/O!, i=1,2, j=1,2 (33) 

This result is in agreement with the expression derived by Spiegler [ 181. 
In the three limiting binary composition ranges eqn. (30) yields the follow- 

ing relations for hi + $j = 1: 

sPi ~=-~jR,(@j)(tii-O__), i=l,j=2 or 3; i=2, j=l or 3. (34) 

In the next section it will be shown how the binary frictional coefficients in 
eqn. (34) are related to binary diffusion or sedimentation coefficients. How- 
ever, the ternary frictional coefficients will first be expressed as a function of 
the binary coefficients Rij( @j). This can be done by adopting a few assumptions 
concerning the concentration dependence of the ternary frictional coefficients. 

For RI2 (&,&) the assumption is adopted that this coefficient is a function 
of the ratio $J ( #1 + #2). We assume that the presence of the polymer influ- 
ences the frictional force per cubic meter acting between components 1 and 2. 
However, the magnitude of the frictional force per kilogram 1 remains propor- 
tional to c2 at constant ratio &/ ( @1 + qiJ and varying &: 

R,,($,,$,) =R,,(&)(@,=O) (35) 
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Fig. 3. Lines connecting compositions with equal ternary frictional coefficients R, according to 
eqns. (35) and (36). 

where @;=$1/th+@2). 
Because of the reciprocal relation ( 31) , 

R21($19$2) =R12($1/#%) (35a) 

For the concentration dependence of RI3 and Rs3 a different assumption is 
adopted in that these frictional coefficients are assumed to depend on the pol- 
ymer volume fraction only. The polymer is considered to act as a porous plug 
whose permeability for component 1 or 2 is not influenced by the presence of 
the other low molecular weight component; thus, assuming that the permea- 
bility of the plug is only influenced by the polymer volume fraction. 

Ri3(~i,~3)=Ri3(~3)(~i+~~=l) (36) 

In Fig. 3 assumptions (35) and (36) are visualized in a ternary diagram. 

Binary frictional coefficients R,(#j) as a function of binary diffusion or 
sedimentation coefficients 

In this section the binary coefficients R,, occurring in mass transport equa- 
tion (16) via eqns. (33)) (35) and (36)) are expressed as a function of param- 
eters which can be determined experimentally. 

The binary frictional coefficient Rij can be related to the binary phenome- 
nological coefficient (L,)j defined as follows: 

(37) 

Combination of eqns. (37) and (34) yields the following relation: 

Rij(~i+~j=l)=~j~i/~i~j(Li)j (38) 
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In Appendix B the following relation between the binary diffusion coefficient 
D and ( Lj)j is derived: 

Substitution of this expression in eqn. (38) yields the following expression for 
the binary frictional coefficient: 

In Part II of this paper this expression will be used for the calculation of the 
binary coefficient R12. 

The binary coefficient (Li)j can also be expressed as a function of the sedi- 
mentation coefficient sj. This relation is derived for the coefficients (L, ) 3 and 
s3 in Appendix C: 

1 
(L2)3=~&&-1) xs3($33) (40) 

When substituted in eqn. ( 38)) this expression yields the following expression 
for the binary coefficient Rz3: 

R (@ =o)'42~3w2-1)x 1 
23 1 

$3 s3(@3) 
(41) 

Thus the binary coefficient Rz3 can be obtained by measuring the sedimenta- 
tion coefficient of the polymer in the solvent as a function of the concentration. 
In Part II of this paper results for the system CA-acetone will be presented. 

It is very difficult to determine RI3 by means of diffusion or sedimentation 
measurements because the polymer can be dissolved in the nonsolvent only 
within a very small concentration range. Even if we could determine RI3 it is 
doubtful whether this quantity would describe the friction between nonsolvent 
and polymer correctly in the presence of an excess amount of solvent. It will 
appear that mainly in this composition range the ternary diffusion process in 
a membrane-forming system takes place. Thus R,, has to be estimated. RI3 ( g3) 
will be estimated by relating this coefficient to Rz3 ( 43). For a proper estima- 
tion of RI3 ( $3) it is helpful to derive a relation between RI3 and Rz3 in the 
hypothetical case that, for a binary polymer solution with a certain volume 
fraction of polymer, the resistance force per cubic meter exerted by the polymer 
on the solvent is equal whether using solvent 2 or ‘solvent’ 1 (the nonsolvent). 
The binary flux equations are then given by (see eqn. 37) : 

Jf=-q(Li)3X i=1,2 (42) 
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where pi denotes the chemical potential per kilogram of i and (l/vi) ( d,uu,/Sx) 
the driving force per cubic meter. It can be concluded that in our hypothetical 
case 

G:(L),= %%)3 

From eqns. ( 38) and (43 ) it follows that 

(43) 

- 

RI3 = 9 Rz3 (44) 
2 

In reality the resistance forces exerted by the polymer on the solvent and the 
nonsolvent will differ, especially because the sizes of the two low-molecular 
weight components differ. Therefore we will use the following expression for 
RI3 in our model calculations: 

(45) 

where C may either be constant, or depending on &. 

Conclusions 

A set of general diffusion equations (eqn. 16) and boundary conditions have 
been derived for the mass transport in a ternary polymer solution after immer- 
sion into a coagulation bath and prior to possible demixing processes. 

In addition, expressions for the binary diffusion in the coagulation bath, 
relative to the moving boundary between the polymer film and the coagulation 
bath, have been derived (eqns. 19 and 19a). 

As long as the composition at the bottom of the polymer solution remains 
unchanged, the composition changes in the polymer solution are a function of 
& -l/2 only. This means that during this period, all compositions existing in 
the polymer solution can be described by a constant composition trajectory. 

The relation between the ternary phenomenological coefficients L, and the 
ternary frictional coefficients R, is given by eqn. ( 33). We have simplified the 
ternary frictional coefficients to functions of binary frictional coefficients, eqns. 
(35) and (36). The frictional coefficient describing the interaction between 
solvent and nonsolvent is related to the binary diffusion coefficient, eqn. ( 39). 
The frictional coefficient describing the interaction between solvent and pol- 
ymer is related to the sedimentation coefficient, eqn. (41). The frictional coef- 
ficient describing the interaction between nonsolvent and polymer must be 
estimated. 

In Part II of this paper the composition profiles will be calculated in a cel- 
lulose acetate-acetone solution after immersion into water. Experimental, 
concentration-dependent sedimentation and diffusion coefficients will be used 
in the expressions for R,. In the expressions for the chemical potentials, eqns. 
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(AZ-A4), experimental, concentration-dependent Flory-Huggins parameters 
will be used. 

An experimental method will be presented to verify the results of the cal- 
culations and to estimate the value of R13. 

List of symbols 

ci Concentration of component i ( kg-mp3) 
C Constant defined in eqn. ( 45 ) 

ci Constant defined in eqn. (25) 
c; Constant defined in eqn. (28) 
D Binary mutual diffusion coefficient, defined in volume- or cell-fixed 

frame of reference, eqn. (Bl) 

Xij 
gij 

c_li 

Ji 

Flory-Huggins interaction parameter 
Concentration-dependent Flory-Huggins interaction parameter 
Flux of component i relative to the polymer-fixed frame of reference 
Flux of component i relative to the volume- or cell-fixed frame of 
reference 

Flux of component i relative to the mass-fixed frame of reference 
Volume flux of component i (m-set-’ ) 
Mass flux of component i (kg-m-‘-set-‘) 
Ternary phenomenological coefficient, defined in polymer-fixed frame 
of reference, eqns. (l-3 ) 

(Li)j Binary phenomenological coefficient, defined in componentj-fixed frame 

1 
1’ 
m 

M 
Mi 
& 

R 

Rij 

r 
s 

si 

of reference, eqn. (37) 
Binary phenomenological coefficient, defined in volume- or cell-fixed 
frame of reference, eqn. (Bl ) 
mt -l/2 

Yt 
- l/2 

Position coordinate of the polymer-fixed reference frame, defined in eqn. 
(9) (m) 
Total volume of polymer per unit area of polymer film (m ) 
Molecular weight of component i (g-mol-I) 
Binary phenomenological coefficient, defined in mass-fixed frame of 
reference, eqn. ( C2 ) 
Gas constant (J-K-’ kmol-‘) 
Frictional coefficient describing the interaction between the compo- 
nents i and j (defined in eqn. 29) 

%W v3’3M3 

%‘,Mll v2M2 

Sedimentation coefficient of component i 
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X 
Y 
Pu+ 
Pi 
P 

@i 

Average velocity of component i relative to the volume- or cell-fixed 
frame of reference 
Partial specific volume of component i ( m3-kg-l) 
Cartesian spatial position coordinate perpendicular to the membrane 
surface ( m ) 
Position of the interface between the film and the coagulation bath (m) 
Position coordinate relative to X(t) (m) 
Chemical potential of component i (J-kmol-‘) 
Chemical potential of component i (J-kg-‘) 
Solution density =Zici (kg rnp3 ) 
Volume fraction of component i 
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Appendix A 

Equilibrium thermodynamics for a three-component system 
For the expression of the Gibbs free energy of mixing we use the 

Flory-Huggins theory for polymer solutions [ 191, extended to systems with 
three components by Tompa [ 201 

AG 
2=nl In & +nz In $2 +n3 ln fi3 +g12(uz)nl& 
RT 

+x13nl@3 +&Owk (Al) 

where ni is the number of moles of i and xl3 is the nonsolvent-polymer inter- 
action parameter; g12 is the solvent-nonsolvent interaction parameter, which 
is assumed to be a function of u2, with u2 = c&/ ( G2 + &) ; g,, is the sol- 
vent-polymer interaction parameter which is assumed to be a function of 

u2=@2/(@2+@3). 

In eqn. (Al) the - strictly speaking - ternary nonideality parameters 
gi ($&) are related to their more easily measurable values in the three limiting 
binary composition ranges. For practical reasons g,, ( $1,#3) is even assumed 
to be constant and equal to x13, measured at the saturation composition of the 
nonsolvent-swollen polymer. 

In fact eqn. (Al ) is valid only in the case of vanishing concentration gra- 
dients. By using eqn. (Al) the influence on the local free energy of the steep 
concentration gradients at the boundary between the polymer solution and the 
coagulation bath is neglected. This means that, for extremely short time inter- 
vals immediately after immersion of the polymer solution, the diffusion model 
gives an approximation of real diffusion behavior. 

From eqn. (Al) the following equations for the chemical potentials of the 
components in the mixture are derived: 

bURT=ln c& -s@2 -rb + (l+g12@2 +x13$3)U 

-~1)-sg23~2~3-~2u2(1-u2) e (A21 
2 



sAP,+IRT=s In #2 -& -r$3 + (s+g12q$ +sg23~3)(1-~2) 

dgl2 dg23 

-x13Q11@3+Q)1~2(1-&?) ~+s@3u2(l-u,) r (A3) 
2 2 

-@3) -g,,@,~, -~~zU2(1-U2) F (A4) 
2 

The chemical potentials are expressed per kilomole of segments of component 
1; s and r are the ratios of the molar volumina: 

s= Vl~,/V,~,, r= ~lM,/~sM3 

The expressions ( A2 ) and (A3) are used in the diffusion equations for the 
polymer solution. For the boundary condition all three expressions for the 
chemical potentials have to be evaluated. The conditions for liquid-liquid equi- 
librium (at the boundary) are: 

d& ( diluted phase ) = A@ ( concentrated phase ) (i= 1,2,3) (AS) 

Altena et al. [ 111 described how the binodal and the tie lines, connecting the 
coexisting phases in a ternary diagram can be calculated. 

Appendix B 

The relation between the binary coefficients (Li)j and D 
The binary diffusion coefficient D is measured relative to the cell-fixed frame 

of reference, which is equal to the volume-fixed frame of reference in the case 
of constant partial volumes Vi [ 131. 

The relation between D and Zi is given by 

tB1) 

where &is the phenomenological coefficient defined in the volume-fixed frame 
of reference. 

From eqn. (Bl ) it can be derived that 

tB2) 

The relation between the coefficient (Li)j, defined in the component j-fixed 
frame of reference, and D is derived as follows: 
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(I331 

From eqns. (B2 ) and (B3) it follows that 

(B4) 

Appendix C 

The relation between the binary coefficient ( L2) 3 and the sedimentation 
coefficient s3 

s3 is related to a phenomenological coefficient Q, defined below [ 211: 

s3=QP+ (1+c3/ca)(1-pV3) (Cl) 

where s3 = &/g, with US the average velocity of component 3 relative to the cell- 
fixed frame of reference, and g the centrifugal field strength; p=c2 + c3, the 
solution density. 

In the absence of a centrifugal field Q is defined as follows [ 211: 

&= -Q(l+cs/cg) 2 ((3) 

where *a is the mass flux of component 3 relative to the mass-fixed frame of 
reference. 

Conversion of Q from the mass-fixed frame of reference to the polymer-fixed 
frame of reference yields the following relation between Q and ( L2) 3: 

(L ) =PC2(1-%lC2) 
2 3 

4 
Q 

When we substitute this relation in expression (Cl) we obtain 

(J52)3 = p 

2 
($ 

2 
43(93) (C3) 


