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A special class of periodic orbits of parameter dependent families of truncated resonant 
normal forms is constructed. Their existence is shown for arbitrarily large periods. Explicit 
analytical criteria are derived for constructing the complete basin of attraction of an invariant 
circle for normal forms for which the eigenvalue of the linearized mapping is not a multiple 
root of unity. Persistence of these basins is shown for small perturbations of the parameters. 
Hence, the existence of bounded orbits for all times established, generically. 

1. Introduction 

We study smoo th  mappings  of  the complex  plane on to  itself that  posses an 

elliptic fixed point .  The  eigenvalue o f  the l inearized mapp ing  in the fixed point  

lies on the unit circle. T h e y  can be t ransformed,  th rough  a polynomia l  

coord ina te  t ransformat ion ,  to so-called t runca ted  resonan t  normal  forms [1, 2]. 

These  normal  fo rm mappings  posses a symmet ry  in the sense that  they  

c o m m u t e  with a certain class of  rigid rotat ions.  This allows the const ruct ion of  

families of  special per iodic  orbits whose  periods are divisors of  the o rder  of  the 

resonance ,  Q,  i.e. A Q = 1. H e r e  A is the e igenvalue of  the l inearized mapp ing  
in the fixed point .  We show the existence of  these special periodic orbits for  

arbitrarily large per iods,  which amoun t s  to a new version of  the P o i n c a r e -  
Bi rkhof f  t heo rem for  generic mappings.  

If  the eigenvalue is no t  a mult iple roo t  of  1 it can be shown [2, 3] that  the 
normal  form mapping  possesses at t ract ing and repulsing invariant  circles on 
which a rigid ro ta t ion is induced.  Explicit  analytical criteria for  construct ing the 

comple te  basins o f  a t t ract ion or  repuls ion of  these circles are derived.  The  

existence of  b o u n d e d  orbits for all t imes is established even if the e igenvalue is 
a multiple root  of  unity. Hence ,  the basins are ex tended  to so called Q- 
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resonant normal forms, that is to normal forms for mappings where A Q = 1 for 
some integer Q. 

Mappings of the plane onto itself have been widely used for modelling 
complex dynamical behavior in a great variety of physical systems [4]. Since we 
consider the local dynamics of such mappings in a neighborhood of an elliptic 
fixed point, we generally deal with the generic situation around periodic states 
in systems where dissipation is small. As an example, one may think of vortices 
in a "nearly" Newtonian fluid and their persistence under small perturbations 
of the system. 

In section 2, we derive the truncated normal form mapping, and show that it 
commutes with a class of rigid rotations. Based on this we construct families of 
periodic orbits, and show existence of special periodic orbits whose periods are 
divisors of the order of the resonance Q. Then in section 3, we first consider 
truncated normal forms where the eigenvalue is not a multiple root of unity. It 
will be shown that these mappings possess attracting and repulsing invariant 
circles, and explicit anaytical criteria for constructing the complete basin of 
attraction or repulsion are derived. Then, these results are extended to normal 
forms where the eigenvalue is a multiple root of unity showing the existence of 
bounded orbits for all times, generally, for small perturbations. 

2. Invariance of the dynamics and new families of  periodic orbits for truncated 
resonant normal  forms 

We consider families of smooth mappings P~ that depend smoothly on a 
parameter vector ~ E ~k, and for which 0 is an elliptic fixed point. The theory 
of the reduction of a family of mappings to normal form [1-3] furnishes a local 
polynomial coordinate tranformation such that P~, can be written as 

P~,(z) = z[1 + f(lzl2; ~)]  e 2~rig(Izl2;u') + E d,(jz)lzlaJ~ ~° 
3<~IQ+2j<~L+I 

+ ~([z[ 2L+1) (2.1) 

provided the eigenvalue of DP~(0) is such that A Q = 1, for some integer Q, the 
order of the resonance. In this equation L is the order of the truncation and it 
is assumed that Q ~< L. Furthermore,  f and g are polynomials of degree L, with 
coefficients that depend smoothly on/~,  and the djt are smooth functions of/~ 
[2]. The complete mapping will be referred to as the Q-resonant normal form, 
and the terms in the summation of (2.1) as Q-resonant terms. If A is not a 
multiple root of unity for Q ~< L, or if we disregard the Q-resonant terms, (2.1) 
reduces to 

P~,(z) = z[a + f(lz[2; /z)] e 2~ig(lzl2;~) -t- ~ ( [ z [ Z L + I )  . (2.2) 
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This mapping has a trivial dynamics; it maps circles onto circles, and leaves 
circles with radii ~ such that f (  ~; IX) = 0 or - 2 ,  invariant. 

For convenience we will express the normal form mapping in polar coordi- 
nates. This allows to study to some extent the angular and radial part of the 
mapping separately. Denoting the mapping expressed in polar coordinates 
(p, 0) by ~-, and identifying a point z E C by z = pl/2 e2~i0, one readily obtains 

~-~,(p, 0) = (DZ(p, O; Ix)p, 0 + g(p; IX) + E(p, O; Ix)), (2.3) 

where 

[1 +f(p;  Ix)] + J2,(p, 0 ; /x)  
D(p, 0; IX) = cos[2~rE(p, 0; IX)] ' 

E(p, 0; IX) = ~ arctan [1 + f ( p ;  IX)] + S21(p, O; IX 

and 

J21( p, O; IX) = ~ dit(ix)p (tQ+j-1)/2 cos{2~r[lQO + g(p; Ix)]} , 
j,t 

a 2 ( p ,  0; /.~) = Z KjI(~,.£)P ('Q+j-1)/2 sin{2~r[lQO + g ( p ;  Ix)]} . 
j,l 

For the mapping (2.2) this simplifies to 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

~-~,(p, 0) = ([1 + f ( p ;  Ix)]Zp, 0 + g(p; IX)). (2.6) 

Although the expression for 7~, is quite complicated, it possesses a very 
important property; it commutes with the family of rigid rotations R(m/~ ), i.e., 

.c~, oR(m/o)(p, O) = R(m/O) °'r~,(p, 0) ,  (2.7) 

where R(m/Q)(p, O) = (p, 0 + m/Q) ,  m E 7/. In words, the orbit with initial 
point (p, 0 + n/Q) can be obtained from the orbit with initial point (p, 0) by 
shifting all angles by an amount n/Q; the dynamics is invariant under R(,,/o). 
Hence we can state that if F (p l ,  01) is a linearly stable (unstable) periodic orbit 
of period q, and winding number  p/q, then all orbits F(pl, 01 + n/Q),  n = 
1, 2 , . . . ,  Q - 1, are linearly stable (unstable) periodic orbits of the same type, 
with the same eigenvalues for the linearized mapping around them. 

Periodic orbits that share the symmetry of the mapping, i.e. their periods are 
divisors of Q, can be characterized more accurately. Indeed, if the period q is a 
divisor of Q, and if there is a point (Pl,  01) such that D2(pl,  01, IX)= 1, 
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g(Pl; /x) + E(Pl, 01;/x) =p/q ,  then F(pl, 01) is a periodic orbit of period q, 
and winding number p/q, and 

"ITI('Y/(Pl, O1)) = P l ,  
(2.8) 

j Jp 
01)) = 0 + - ,  q 

where ~'t is the projection on the Ith coordinate. So if D 2 = 1 ,  g + E = p/q, the 
symmetry-sharing periodic orbits exist, and have constant radial part and 
constant angle increment p/q. For a subclass of Q-resonant normal forms, the 
condition D z = 1, g + E = p/q can be shown to be necessary and sufficient for 
F(p l ,  01) to be a symmetry-sharing periodic orbit. 

Let us represent the parameter vector /z  by (/z 1,/~2), and suppose that at 
(/Xl, 0) the mapping reduces to (2.6). Then if there is a ~ />0 such that 

[1 + f ( ~ ;  [.%1)] 2 = 1, g(~; ~..~1) = P / q ,  (2.9a) 

a¢g(£; tZl) ~ O, D~Ig (~:; pq) is invertible, (2.9b) 

then there exists an open neighborhood U of ( ~ 1 '  0) such that for all 
( /Z l , /~2)EU,  there exists a pair (Pl,01) such that D2(p1,01; Ix 1, ~ ) = 1 ,  
g(Pl; Ix1) + E(pl, 01;/zl,/~2) = P/q. The argumentation is standard and rests 
on the implicit function theorem. It is similar to that given by Chenciner [2]. 
For symmetry-sharing periodic orbits, the above statement amounts to an 
existence proof for resonant normal forms. Also, from the conservation of the 
Poincar6 index [5] one infers that all symmetry sharing periodic orbits, as long 
as they exist, have the form expressed by (2.8). Apart  from that, we point out 
that the above existence proof is valid for symmetry-sharing periodic orbits of 
arbitrarily large period [6]. 

We have shown that, due to the commutation of the resonant normal form 
mapping with a family of rigid rotations, the existence of one periodic orbit 
implies that a whole family of the same type periodic orbits exists, related to 
the first by a rotation over 2~rn/Q. For symmetry-sharing periodic orbits this 
property could be used to show existence for arbitrarily large periods, and to 
show that those orbits have constant radial part and constant angle increment. 

3. Invariant circles and boundedness of  orbits 

In this section we consider the basic problem of the boundedness of orbits 
for resonant normal forms. It will be shown briefly that (2.6) possesses 
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invariant circles that are, generically, either attracting or repelling. Explicit 
analytical expressions for determining the complete basin of attraction or 
repulsion will be derived, and the existence of attracting invariant circles of 
(2.6) will be related to boundedness of orbits for full Q-resonant normal forms, 
even if the invariant circle has "broken up" due to the variation of the 
parameters. 

We first turn to the normal form of type (2.6). Considering the radial part of 
the mapping one clearly recognizes that if 

f ( ~ ; / x ) = 0  (or - 2 ) ,  sc~>O, (3.1) 

then the mapping possesses an invariant circle with radius V~. On this circle 
the mapping induces a rigid rotation, yielding orbits with winding number 
g(~, /~) .  These invariant circles are, generically, attracting or repulsing, corre- 
sponding to the fact whether or not the radial part of the mapping is a 
contraction on a neighborhood of s ¢. Introducing the short hand notation 

F(p;/x) = [1 + f ( p ;  /x)] 2 (3.2) 

and C¢ = {z E CJ Iz l  2 = we have the following local explicit characteriza- 
tion of attracting or repelling invariant circles: 

(i) if - 2  < ~: OpF(~:; t x) < 0 then Ce is attracting, 

(ii) if - 2 >  ~: OoF(~; IX) or OoF(~; i x ) > 0  then Ce is repelling, 

where OpF is the partial derivative of F with respect to p. 
Based on this local characterization we can construct criteria for determining 

the full basin of attraction or repulsion of the invariant circles. For convenience 
we introduce the following notation: 

A~:(ffl, E2) --- ( p  ~ ~+10 ~ ~ - i~ 1 ~ p < ~ -~- E2}. ( 3 . 3 )  

First we turn to repelling invariant circles. One easily verifies that 
(a) if OpF(~:; tx)>  0, and E 1, E 2 are such that 

F ( p ; / x ) < l  for ~ - - E l < p < s  ~,  

F(p;  tx) > 1 for ~ < p < s ~ + ~ 2 ,  

or  

(b) if - 2 >  ~ OoF(,~; IX), and el, e2 are such that 
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2~ - p 
F ( p ; I x ) > - -  f o r s ~ - E l < p < ~  : ,  

P 

2s~-p 
F(p ;  IX) < - -  for s~ < p < sc + e2, 

P 

then the radial part of 7, is not a contraction on  A~:(E1, E2) , and Ce is a repelling 
invariant circle with basin of repulsion equal to A~(el, E2) and its preimages 
under iterants of r , .  

Likewise, the global analogue of (i) for attracting invariant circles can be 
expressed as follows: 

if - 2 <  ~ OoF(,~; Ix)<0, and el, e 2 are such that 

1 < F ( p ;  Ix) < - -  
2~ - p 

P 

2sC-p  
- -  < F ( p ;  Ix) < 1 

P 

for ~: - el < P < ~ ,  

for ~ < p < s  c + e  2, 

then Ce is an attracting invariant circle with basin of attraction Asc(ffl, e2) and 
its preimages under iterants of ~,. In addition, we notice that if - 2 <  

OoF (£; IX)< - 1  then all orbits in the basin converge asymptotically alternat- 
ing to ~: under ~I (T~( . , .  )) and if - 1  < s c OoF(£; Ix)<0 then all orbits in the 
basin converge asymptotically monotonously to £ under 7rl(r , ( .  , . )). 

The relatively simple dynamics of (2.6) will now be used to relate the 
existence of attracting invariant circles of (2.6) to boundedness of orbits of the 
full Q-resonant normal forms. We will establish this property of generic 
structural stability [1] by using a general boundedness theorem. This theorem 
will first be prepared and then the boundedness of orbits established. 

Let  us introduce the minimal and maximal bounding mappings associated 
with a smooth mapping G" Rn--~ R n by 

RG, min(Ot) = min I I G ( x ) l l  2 , (3.4a) 
xEC a 

RG . . . .  (O~) = max II a ( x )  112 (3.4b) 
x~Ca 

where C a is a sphere in ~n with radius v-ft. G will be called order  preserving if 
for all o//>0, and all x@ GJ(C~), 

R J ,  min(O~) ~ Ilxll = . . . .  (O/). (3.5) 

It is straightforward to show that G is order  preserving if and only if Re,  min, 
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RG . . . .  are increasing. If G is order preserving then the ]th image of C a under 
G is completely enclosed by the spheres with r a d i i  R~,min(O~ ) and R~ . . . .  (a).  
Hence, if RG, mi n has an attracting fixed point ~m~, and Ra  . . . .  an attracting 
fixed point ~max, and if a lies in the basin of ~min and ~max under Re, min and 
Ra . . . .  respectively, then all orbits with initial point x E C~ are bounded and 

~min ~<!im IIGJ(x)ll 2 ~< ~max" (3.6) 

The above theorem is quite powerful since it allows to consider two one- 
dimensional boundedness problems, instead of the full n-dimensional bounded- 
ness problem. 

We will now apply the above theorem to the boundedness of orbits for full 
Q-resonant normal forms which are sufficiently close to (2.6). In general one 
may write, expressing again the parameter vector /z  as ( /x~,/~) ,  

R~,,~2, min(Ot ) = X1(/.61, #t2, o~) F(o t ;  #61)oe , (3.7a) 

R/zl,p. 2 . . . .  (0/) = X2(jt£,, jt£2, 19/) F(ol~; ~l)Of , (3.7b) 

where X1, ,)(2 are smooth functions of [z1, [.£2 and a for (/'~1' /'~2) in a neighbour- 
hood of (0, 0), X1(/zl, 0, a)  = 1 = X2(/Zl, 0, a) .  One then easily verifies that if 
- l < ~ : a p F ( ~ : ; / x l ) < 0  and f ( ~ ; / Z l ) = 0  (or - 2 ) ,  then there exists an open 
neighborhood U of (P-l, 0) and an • > 0 such that for all z E C, with [[zl 2 -  
~[ < •, and all ( / ~ , / x  2) ~ U, the orbits with z as initial point are bounded. The 
proof of this statement reduces to a verification of the fact that R~,l,~2,min and 
R~,I,~, 2 . . . .  are increasing on a neighborhood of ~, and have attracting fixed 
points ~min, ~max respectively. Since the basins of ~min under R~,1,,2 ' min, and of 
~max under R~,I,~, 2 . . . .  are overlapping, and include a neighborhood of s c, 
application of the above boundedness theorem completes the proof. 

Hence we have shown the persistence of the basin of attraction of an 
invariant circle of a normal form of type (2.6), if Q-resonant terms are added. 
This implies boundedness of nearby orbits, even if the invariant circle itself has 
"broken up" under the variation of the parameters, e.g. if a periodic orbit 
were induced by (2.6) on that circle. 

4. Concluding remarks 

We have shown that Q-resonant normal form mappings possess a Q-fold 
symmetry, in the sense that they commute with the rigid rotations R(m/O), 
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where Q is the order  of  the resonance.  This proper ty  allows the construction of 

families of  periodic orbits,  if one is known. Also it gives the option of 
constructing simple symmetry-shar ing periodic orbits, and show the existence 
for arbitrarily large periods. This is of  importance since periodic orbits are very 
useful in investigating the dynamics of nonlinear mappings.  They also furnish 
approximants  of more  complex orbits of  the mapping such as invariant curves 
and attracting objects. 

Fur thermore  we have shown that,  generically, the boundedness  of orbits is 

not affected by small per turbat ions of the mapping parameters ,  provided 
Q-resonant  terms are small. The existence of bounded orbits for all times can 
be of great importance in studying for instance of stabil i ty/long-time behavior  
of solutions of (systems of) ordinary differential equations,  and also in many  
technical applications. 
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