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Abstract

The paper addresses the elastic response of sandwich panels to local static and dynamic loading. The bottom face is assumed to

be clamped, so that the overall bending is eliminated. The governing equations are derived using the static Lam�ee equations for the
core and the thin plate Kirchoff–Love dynamic theory for the faces. The plane and axisymmetric formulations are considered. The

closed-form solutions are obtained using Fourier–Laplace (Hankel–Laplace) integral transformations for the cases of forced ex-

citation and impact by a rigid body. The solutions allow to predict the stress–strain state of the structure. The analytical solutions

demonstrate a good agreement with experimental data and finite element analysis.
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Keywords: Sandwich plate; Concentrated forced excitation; Impact; Local stress
1. Introduction

One of the inherent properties of sandwich structures

is low transversal stiffness, causing local bending under

concentrated loads. As a result, these structures are
susceptible to local damages due to handling, interaction

with attached structures or impact. Usually, the local

failure starts in the core and results in core crushing,

face–core debonding and (or) residual dent formation

and, therefore, in substantial reduction of the structural

strength [1]. Thus, it is of a practical importance to

predict the elastic stress–strain response of sandwich

structures subject to localized loads.
Besides experimental and finite element analysis, e.g.

[1–4], there are two approaches to analytical modelling

of sandwich structure local behaviour. These ap-

proaches are based on different descriptions of core

deformation.

The simplified approach is based on the assumption

that the plate is resting on a continuously distributed set

of independent springs, the stiffness of which defines the
Winkler foundation modulus and results in dependence

of the interface stress only on the deflection at the same

point. The main problem of this approach concerns

determination of the modulus using characteristics of
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the sandwich layers. A complete correspondence be-

tween the Winkler type foundation and a elastic layer

can be found only for a thin core; in this case the

modulus can be obtained solely. For the case of a thick

core determination of the modulus can be fulfilled by
various means (for instance, to ensure coincidence of

deflection, bending moments or interface stress under a

concentrated force in exact and simplified formulations).

These two limit cases (very thin and very thick core) are

used for solving numerous static problems in [3–7].

Dynamic analysis for the given modulus is performed in

[8,9]. In many cases the Winkler model or the more

advanced Winkler–Pasternak model [3,4,10] provides
satisfactory agreement with experimental results, but it

is not universal for a general case of the sandwich con-

stitution.

The more precise approach is based on the elastic

continuum model that results in interconnectivity of

strain–stress state at all points of an interface. Applying

the linear theory of elasticity, static behaviour of a plate

resting on the elastic core layer under arbitrary load was
analyzed in [11–13], simplified solutions are given in [14],

implementation to the problems of stability is discussed

in [15]. All these results are generalizations of the well-

known solutions for a semi-infinite medium that models

a thick core [16,17]. Dynamic analysis of the single

elastic layer (Lamb�s problem) was performed in [18,19].

Stationary oscillations of a face sheet resting on an

elastic layer are considered in [8,20].
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Fig. 1. Impact set-up for plane formulation (top) and physical model

(bottom).
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In the present paper, the elastic continuum model is

successfully used for the analysis of non-stationary os-

cillations of a locally loaded sandwich panels of arbi-

trary thickness. The case of static loading is considered
as a supplement for the analysis of dynamic loading.

The closed-form solutions are obtained for the particu-

lar cases of static and dynamic forced excitation and

impact by a rigid body. A comparison of the analytical

results with numerical solutions and experimental data

demonstrates a good agreement.

1.1. Notations

Subscript ‘‘f’’ belongs to the face, ‘‘c’’ - - - to the

core, ‘‘if ’’ - - - to the face–core interface. Superscripts

‘‘F’’, ‘‘H’’ and ‘‘L’’ belong to the Fourier, Hankel and

Laplace transforms, respectively, ‘‘pl’’ - - - to the plane

formulation and ‘‘ax’’ - - - to the axisymmetrical for-

mulation. Subscript ‘‘0’’ means that a function is ex-
amined at the co-ordinate origin.
c c
2. Analytical modelling

A three-layered sandwich panel is studied under a

point or line load. No overall bending is considered. The

panel consists of two thin and stiff face sheets with

thickness hf and relatively thick and light-weight core
with thickness hc. The densities of the face and the core

are qf and qc, respectively.

The local bending of the top face is considered in the

plane (plane stress and plane strain) and axisymmetric

formulations. The face is modelled as in-plane isotropic,

infinite plate with bending stiffness Df bonded to the

core layer (Fig. 1). The plate is assumed to be thin and

non-stretchable. Thus, no difference is assumed between
displacements of the midplane and the interface and no

influence of the shear stresses on bending of the plate.

Under these assumptions, the thin plate Kirchoff–Love

dynamic theory is used for the face bending under ex-

ternal excitation P ðtÞ and normal core reaction rif , see

Fig. 1. For the plane formulation, the governing equa-

tion for the face deflection wf is

Df

o4wfðx; tÞ
ox4

þ qfhf
o2wfðx; tÞ

ot2
¼ dðxÞ

2b
PðtÞ � rifðx; tÞ; ð1Þ

where d is the delta-function, b is the width of the beam,

and for the axisymmetric formulation is

DfDDwfðr; tÞ þ qfhf
o2wfðr; tÞ

ot2
¼ dðrÞ

2pr
P ðtÞ � rifðr; tÞ;

D ¼ o2

or2
þ o

ror
:

ð2Þ
Since qc is small, the core inertia is neglected and the

core behaviour is described by the static Lam�ee equations
for isotropic elastic continuum. The Lam�ee equations are
solved by means of Fourier or Hankel integral trans-

formation technique. For symmetric functions (e.g. de-

flection and normal interfacial stress), the cosine Fourier

transformation is used in the plane formulation

wF
f ðxÞ ¼

Z 1

0

wfðxÞ cosðxxÞdx;

wfðxÞ ¼
2

p

Z 1

0

wF
f ðxÞ cosðxxÞdx

and zero-order Hankel transformation is used in the

axisymmetric problem

wH
f ðxÞ ¼

Z 1

0

wfðrÞJ0ðxrÞrdr;

wfðrÞ ¼
Z 1

0

wH
f ðxÞJ0ðxrÞxdx:

Analogously, the sine Fourier or first-order Hankel

transformation is used for the other functions (rotation,

shear stress etc.). The integral transformation technique

is discussed in detail in [13,18,19].
The transformations for the Lam�ee equations are

performed under the boundary conditions of zero lon-

gitudinal and transverse displacements of the bottom

face, as well as zero longitudinal displacement and the

given deflection wf of the upper face. The transformed

Lam�ee equations produce the following relation between

the images of the face deflection and normal stress at the

interface [13]

rFðHÞ
if ðx; tÞ ¼ E1xF ðxhcÞwFðHÞ

f ðx; tÞ; ð3Þ
where

F ðxhcÞ ¼
coshðxhcÞ sinhðxhcÞ þ wxhc

sinh2ðxh Þ � ðwxh Þ2
:
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Here, the reduced parameters of the core stiffness E1 and

w are introduced through Young�s modulus, Ec, and the

Poisson�s ratio, mc, of the core as

E1 ¼ 2wEc=ð1þ mcÞ2; w ¼ ð1þ mcÞ=ð3� mcÞ

for the plane stress state or as

E1 ¼ 2wEcð1� mcÞ=ð1þ mcÞ; w ¼ 1=ð3� 4mcÞ

both for the plane strain and axisymmetric states.

In the case of impact, the Hertzian indentation is
neglected. The equation of motion of the impactor of

the mass m at the contact with the face is

m
o2w0ðtÞ
ot2

¼ �P ðtÞ; ð4Þ

where w0ðtÞ is the face deflection under the impactor,
P ðtÞ is the contact force. The effect of the impactor re-

bound from the face sheet is not considered. The imp-

actor is assumed ‘‘to stick’’ to the face sheet once the

contact had onset.
3. Quasi-static solutions

3.1. Response to prescribed loading

Applying the cosine Fourier transformation to Eq.

(1) and Hankel transformation to Eq. (2) with the as-

sumption of quasi-static response ðqf ¼ 0Þ, the equa-

tions are reduced to

Dfx
4wF

f ðx; tÞ þ rF
ifðx; tÞ ¼ PðtÞ=2b;

Dfx
4wH

f ðx; tÞ þ rH
if ðx; tÞ ¼ P ðtÞ=2p:

ð5Þ

The closed-form solutions for the originals of the face

deflection and normal interfacial stress are obtained by

substituting Eq. (3) into Eq. (5) and applying the inverse

Fourier or Hankel transformation

wpl
f ðn; tÞ ¼

P ðtÞ
pE1b

Z 1

0

cosðn �xxÞd �xx
�xxlðn �xxÞ ;

rpl
if ðn; tÞ ¼

P ðtÞ
pxnb

Z 1

0

cosðn �xxÞd �xx
kðn �xxÞ ;

ð6Þ

wax
f ðn; tÞ ¼

P ðtÞ
2pE1xn

Z 1

0

J0ðn �xxÞd �xx
lðn �xxÞ ;

rax
if ðn; tÞ ¼

PðtÞ
2px2n

Z 1

0

�xxJ0ðn �xxÞd �xx
kðn �xxÞ ;

ð7Þ

where

lðn �xxÞ ¼ �xx3 þ F ð �xx=eÞ; kðn �xxÞ ¼ lðn �xxÞ
F ð �xx=eÞ

and J0 is the zero-order Bessel function. The dimen-

sionless variables �xx ¼ xxn, n ¼ x=xn ðn ¼ r=xnÞ and
�xx=e ¼ xhc are introduced using the characteristic length

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Df=E1

3
p

and non-dimensional parameter e ¼ xn=hc.
The parameter e characterizes the relationship be-

tween the bending stiffness of the face and the core layer;
e is small for the majority of real sandwich structures.

The function F ð �xx=eÞ equals to unity at e ! 0 that allows

to derive the improper integrals analytically, e.g.

rpl
if ð0; tÞ!

e!0 2P

3
ffiffiffi
3

p
xnb

; rax
if ð0; tÞ!

e!0 P

3
ffiffiffi
3

p
x2n
: ð8Þ

In a general case, the functions can be expanded in as-

ymptotic series of e, e.g.

wpl
f ð0; tÞ ¼

P ðtÞ
pE1b

ln
1

e

� ��
þ n1 þ e3n2 þOðe6Þ

�
; ð9Þ

wax
f ð0; tÞ ¼

P ðtÞ
2pE1xn

2p

3
ffiffiffi
3

p
�

� en3 þ e4n4 þOðe7Þ
�
: ð10Þ

Here, the factors ni are functions of Poisson�s ratio of
the core, e.g.

n1 ¼
Z 1

0

ð1� Uð1ÞÞd1
ð1þ 1Þð1þ Uð1ÞÞ ;

n3 ¼
Z 1

0

13Uð1Þd1
1þ Uð1Þ ;

Uð1Þ ¼ 1ðF ð1Þ � 1Þ; 1 ¼ �xx
e

and it is convenient to substitute them by the following

approximations:

n1 ¼ 0:5� 0:6mn; n2 ¼ 0:4þ 0:2mn;

n3 ¼ 0:8þ 0:6mn; n4 ¼ 1:5þ 0:7mn;

where mn ¼ 2m3c=ð1þ mcÞ3 for the plane stress state and

mn ¼ 2m3c for the other cases.

The solution also allows to obtain the bending mo-
ment in the face with the maximum magnitude directly

under the load. In the plane problem, the original and

the image of the bending moment are defined as

Mpl
f ðx; tÞ ¼ �Df

o2wfðx; tÞ
ox2

! MF
f ðx; tÞ ¼ Dfx

2wF
f ðx; tÞ

so that

Mpl
f ðn; tÞ ¼

PðtÞxn
pb

Z 1

0

�xxd �xx
lðn �xxÞ ;

Mpl
f ð0; tÞ!

e!0 2

3
ffiffiffi
3

p xn
b
:

ð11Þ

The solution for the bending moment is also available

for the axisymmetric formulation. In this case, the so-

lution has singularity of the type lnðnÞ due to assump-

tions of the theory of bending of thin plates and,

therefore, the solution is not interesting from the prac-

tical point of view.
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3.2. Response to impact

The deflection at n ¼ 0 can be represented as

w0ðtÞ ¼ P ðtÞWw ! wL
0 ðpÞ ¼ PLðpÞWw; ð12Þ

where Ww is obtained from the first formulas of Eqs. (6)

and (7). On the other hand, after the Laplace transfor-

mation Eq. (4) becomes

mp2wL
0 ðpÞ ¼ �PLðpÞ þ mv; ð13Þ

where v is the initial impact velocity. The image of the

face deflection at the point of impact is obtained by the

combination of Eqs. (12) and (13)

wL
0 ðpÞ ¼

v
p2 þ k2

; k2 ¼ 1

mWw

from which the original is produced by the inverse La-

place transformation as

w0ðtÞ ¼
v
k
sinðtkÞ: ð14Þ

The contact force is determined by substitution of Eq.

(14) into Eq. (12) as

P ðtÞ ¼ vmk sinðtkÞ: ð15Þ
4. Dynamic solutions

4.1. Response to prescribed loading

At qf 6¼ 0, the double Fourier–Laplace transforma-

tion of Eq. (1) produces

Dfx
4wFL

f ðx; pÞ þ rF
ifðx; pÞ þ qfhfp

2wFL
f ðx; pÞ

¼ PLðpÞ=2b ð16Þ
and the double Hankel–Laplace transformation of Eq.
(2) gives

Dfx
4wHL

f ðx; pÞ þ rH
if ðx; pÞ þ qfhfp

2wHL
f ðx; pÞ

¼ PLðpÞ=2p: ð17Þ
Taking into account Eq. (3), the image of the face de-

flection is

wFðHÞL
f ðx; pÞ ¼ 1

2u
PLðpÞ

Dfx4 þ E1xF ðxhcÞ þ p2qfhf
; ð18Þ

where u ¼ b or u ¼ p for the plane or axisymmetric

formulations, respectively.

The final solutions are determined by the double in-

verse Fourier–Laplace transform. Among possible

functions P ðtÞ, the fundamental force–time dependence

is an impulse function P ðtÞ ¼ IdðtÞ ðPLðpÞ ¼ IÞ. In this
case, the originals of the face deflection and the inter-

facial stress under the ðn ¼ 0Þ are

wpl
0 ðsÞ ¼

I
pbE1tn

Z 1

0

d �xx
gð �xx; sÞ ;

rpl
0 ðsÞ ¼

I
pbtnxn

Z 1

0

�xxF ð �xx=eÞd �xx
gð �xx; sÞ

ð19Þ
in the plane formulation and

wax
0 ðsÞ ¼

I
2pE1tnxn

Z 1

0

�xxd �xx
gð �xx; sÞ ;

rax
0 ðsÞ ¼

I
2ptnx2n

Z 1

0

�xx2F ð �xx=eÞd �xx
gð �xx; sÞ

ð20Þ

in the axisymmetric formulation. The function gð �xx; sÞ
and dimensionless time s are introduced using the

characteristic time tn,

gð �xx; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx4 þ �xxF ð �xx=eÞ

p
sinðs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx4 þ �xxF ð �xx=eÞ

p
Þ
;

s ¼ t
tn
; tn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qfhfxn
E1

r
:

The structural response to the impulse I ¼ 1 N s is il-

lustrated in Figs. 2 and 3. The response to an arbitrary

function P ðtÞ can be derived using Duhamel�s integral,

i.e. through convolution of this function with Eqs. (19)

or (20), e.g.

wpl
0 ðsÞ ¼

I
pbE1tn

Z s

0

Z 1

0

P ðs� s1Þ
gð �xx; s1Þ

d �xxds1: ð21Þ
4.2. Response to impact

Using dimensionless Laplace transformation variable
�pp ¼ ptn, which corresponds to the dimensionless time s,
the combined solution of Eqs. (18) and (13) produces the

following images of the face deflection, interfacial stress

and contact force at n ¼ 0,

wL
0 ð�ppÞ ¼

vtn
�pp2 þ c2=f1

;

rL
0 ð�ppÞ ¼

1

xn

g1E1vtn
�pp2f1 þ c2

;

PLð�ppÞ ¼ 1

tn

mvc2

�pp2f1 þ c2

ð22Þ

in the plane formulation, and

wL
0 ð�ppÞ ¼

vtn
�pp2 þ c2=f2

;

rL
0 ð�ppÞ ¼

1

xn

g2E1vtn
�pp2f2 þ c2

;

PLð�ppÞ ¼ 1

tn

mvc2

�pp2f2 þ c2

ð23Þ

in the asymmetric formulation, where

c2 ¼ qfhfxnb=m in the plane formulation;
2qfhfx

2
n=m in the axisymmetric formulation:

�

The non-dimensional parameter c relates the face mass

in the deformed zone to the impactor mass m and

characterizes the type of the impact. If this parameter is

small, the influence of the face inertia on the structural

response is negligible, and the response is close to the
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quasi-static case. For large values of c the quasi-static

approach is invalid.

In Eqs. (22) and (23), the following auxiliary func-

tions are introduced:

fjð�ppÞ ¼
1

p

Z 1

0

�xxj�1d �xx
�xx4 þ �xxF ð �xx=eÞ þ �pp2

;

gjð�ppÞ ¼
1

p

Z 1

0

�xxjF ð �xx=eÞd �xx
�xx4 þ �xxF ð �xx=eÞ þ �pp2

;

ð24Þ

where j ¼ 1; 2.
The direct analytical inversion of Eqs. (22) and (23) is

impossible. However, two efficient techniques can be

used for an approximate inversion with an arbitrary

small error. The first technique is based on expansion of

the functions fjð�ppÞ and gjð�ppÞ from Eq. (24) in asymptotic
power series of 1=�pp at large �pp (i.e. at small s). The most

interesting and simple results concern the case when

e ! 0. In this case, the functions (24) can be evaluated

as

gjð�ppÞ ¼ fjþ1ð�ppÞ ¼
1

�ppð3�jÞ=2

X1
i¼1

ð�1Þi�1ajþ1;i�1

�pp3ði�1Þ=2 ; ð25Þ

where

ajþ1;i�1 ¼
Cððiþ jÞ=4ÞCðð3i� jÞ=4Þ

4pCðiþ jÞ

and C is the gamma-function. The transition of Eqs. (22)

and (23) to the originals is also performed using the

series. For instance, substituting Eq. (25) into the image

of the contact force given by Eq. (22) produces
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PLð�ppÞ ¼ mvc2

a1;0�pp1=2 þ
P1

i¼1ð�1Þi a1;i
�ppð3i�1Þ=2 þ c2

ð26Þ

from which follows

PLð�ppÞ ¼ mvc2
X1
i¼1

ciðcÞ�pp�i=2

! P ðsÞ ¼ mvc2

stn

X1
i¼1

ciðcÞ
si=2

Cði=2Þ ; ð27Þ

where ciðcÞ are coefficients of expansion of the fraction

from Eq. (26) in the Maclaurin series of �pp. The face

deflection w0 and interfacial stress r0 are also derived by

expansion in series or as the following convolutions:

w0ðsÞ ¼
t2n
mc2

Z s

0

P ðs� s1Þ/1ðs1Þds1;

r0ðsÞ ¼
E1t2n
mc2xn

Z s

0

P ðs� s1Þ/2ðs1Þds1;
ð28Þ

r0ðsÞ ¼
E1t2n
mc2xn

Z s

0

P ðs� s1Þ/2ðs1Þds1; ð29Þ

where

/jðsÞ ¼ sð2�jÞ=2
X1
i¼1

s3i=2
ð�1Þiaj;i

Cðð3iþ 4� jÞ=2Þ ðj ¼ 1; 2Þ

are originals of the functions fjð�ppÞ from Eq. (25).
The formula (27) for the force has irregularity of

the type 1=
ffiffiffi
s

p
for the plane formulation at s ! 0, while

the deflection and stress are finite. The solutions for the

axisymmetric formulation can be obtained from Eqs.

(27)–(29) by replacements /1 ! /2, /2 ! /3. In this

case, all the variables are finite. The structural response

to the small-mass impact is illustrated in Figs. 4–6.

When calculating Eqs. (27) and (28), the number of
terms in the series was taken 150.

The series in Eq. (27) converge only for small and

moderate values of dimensionless time s. Such intervals

of s include maximums of the variables only for large c.
Thus, the long-duration impacts for small c should be

described by the numerical inversion of the transfor-

mations (22) and (23). For that, using the property of

the Laplace transformation of a product of two func-
tions, the images of the contact force from Eqs. (22) and

(23) can be written asZ s

0

P ðs1Þð/2ðs� s1Þ þ c2ðs� s1ÞÞds1 ¼ kðsÞ;

kðsÞ ¼ smvc2: ð30Þ

The solution of the integral equation (30) is unstable by

the right part and needs a regularizing algorithm. For

that, Eq. (30) has to be rewritten as
Z T

0

Z s

0

P ðs1ÞHðs; s1Þds1
�

� kðsÞ
�2

dsþ aX½P � ! min;

ð31Þ
where T is calculation time, a is a small regularizing

parameter and

Hðs; s1Þ ¼
/2ðs� s1Þ þ c2ðs� s1Þ; 2 s1 < s;
0; 2 s1 > s:

�

The function X½P � is the Tikhonov regulizator of the

second order

X½P � ¼
Z T

0

P 2ðsÞ
 

þ oP ðsÞ
os

� �2
!
ds:

Eq. (31) is well-behaved variational formulation for Eq.

(30), and its solution is stable. Therefore, the required

regularized solution for P ðsÞ minimizing the functional
(31) is the solution of the following equation:Z T

0

Kðs1; sÞP ðsÞdsþ a P ðs1Þ
�

� o2P ðs1Þ
os21

�
¼ F ðs1Þ;

ð32Þ
where

Kðs1; sÞ ¼
Z T

maxðs1;sÞ
Hð~ss; s1ÞHð~ss; sÞd~ss;

F ðs1Þ ¼
Z T

s1

kðsÞHðs; s1Þds:

The Euler integro-differential equation (32) can be easily

solved numerically using the method of finite differences.

The structural response to the large-mass impact is il-

lustrated in Figs. 7–9. When solving discrete analogue of

Eq. (32), the step-interval of the dimensionless time was

taken 0.2.
5. Quasi-static indentation tests

Experimental validation of the analytical model was
carried out for two sandwich configurations. These

configurations were manufactured with GFRP face

sheets and two core materials; Rohacell WF51 and Di-

vinycell H130 rigid closed-cell foams. The mechanical

properties of the face sheets and foam cores were ex-

perimentally measured according to the ASTM meth-

ods. The values of Poisson�s ratio were estimated by the

laminate theory for the faces laminates or taken from
the core manufacturers data sheets [21,22]. The me-

chanical properties of the materials are summarized in

Table 1.

Quasi-static indentation tests were conducted on

sandwich beams and panels. The size of specimens was

280 · 50 mm (beams) or 250 · 180 mm (panels). The

specimens were free supported by a stiff substrate. The
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Table 1

Mechanical properties of the sandwich constituents

Configuration Material Thickness (mm) Young�s modulus (MPa) Poisson�s ratio Density (kg/m3) Yield stress (MPa)

1 WF51 50 85a 0.42a 52 0.9a

GFRP 2.4 16500b 0.25b 1500 –

2 H130 40 135a 0.32a 124 2.3a

GFRP 1.6 15800b 0.25b 1700 –

aOut-plane compression.
b In-plane tension.
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load was applied through a steel cylindrical or spherical

indenter with diameter of 25 mm as shown in Fig. 1. The

tests were conducted in an Instron universal testing
machine under displacement control at loading rate of 2

mm/min.
6. Finite element model of impact loading

The numerical modelling of the elastic response of a

sandwich structure to impact was performed using the

Finite Element (FE) code LS-DYNA�. The analysis has

been performed for the sandwich configuration 1, see
Table 1.

The face sheet was meshed using 4-node shell ele-

ments. In total, 150 and 450 elements were used for

modelling the face sheet in plane and axisymmetric

problems, respectively. The FE mesh was condensed

towards the contact area between the impactor and the

face sheet; the condensation factor was 2. The core was

meshed using 8-node volume elements. Fifteen elements
were used through the thickness of the core. All degrees

of freedom were constrained at the lower boundary of

the core layer.

The impactor was modelled as a rigid body meshed

using 8-node volume elements. All degrees of freedom

for the impactor were constrained, except for translation

in the direction normal to the plate. The contact area

between the impactor and the face sheet was computed
automatically by the FE code.
7. Results and discussion

If it is not indicated specially, the calculations were

performed for the sandwich configuration 1, see Table 1.

Some calculations relate to the case of e ! 0.
Table 2

Transversal stiffness, P=w0 (N/mm)

Configuration Plane problem

Testa Eq. (6) Eq. (9)

1 3.01 3.32 3.59

2 4.36 4.50 4.95

aMean value.
7.1. Case of forced excitation

7.1.1. Static loading

The transversal stiffness of the tested sandwich pan-

els, see Table 1, was analytically estimated using exact

solutions (6) and (7) and approximate solutions (9) and

(10) taking only the first term in series. The results of

calculations are shown in Table 2 in comparison with

the test data.

The results by analytical solutions are found to be

close to the test data. The exact analytical solutions (6)
and (7) produce non-conservative estimates of the con-

tact stiffness by the maximum 20%.
7.1.2. Impulse loading

The response to the impulse, given by Eqs. (19) and

(20), is illustrated in Figs. 2 and 3. The features of Eqs.

(19) and (20) are that the stress in the plane formulation

and the deflection in the axisymmetric formulation are

finite, and the stress in the axisymmetric formulation is

singular at s ¼ 0, see Figs. 2 and 3.

The solutions presented in Figs. 2 and 3 also dem-
onstrate the strong effect of the core thickness on the

oscillation frequencies. Thus, the amplitude and fre-

quency increase with decreasing of the core thickness,

while almost no oscillations are observed for the infinite

core thickness.
7.2. Case of impact loading

Two different impact cases were calculated analyti-

cally and using FE analysis; a large mass/long time

impact and a small mass/short time impact. The quasi-

static solutions were implemented through Eqs. (6), (7),
(14) and (15). The dynamic solutions were obtained

using Eqs. (27)–(29) for small mass/short time impact or
Axisymm. problem

Testa Eq. (7) Eq. (10)

2.25 2.43 1.99

1.89 1.95 1.74
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using Eqs. (28), (29) and (32) for large mass/long time

impact.
7.2.1. Small mass/short time impact case; m ¼ 0:01 kg,

v ¼ 1 m/s

Figs. 4–6 demonstrate the response of the sandwich

structure to the small mass/short time impact. In gen-

eral, the quasi-static solutions produce conservative es-

timation for the face deflection, interfacial stress and

contact force, especially in the plane formulation. This

demonstrates important role of the face inertia under

impact by a small mass.
The maximums of analytical dynamic solutions and

FE analysis are found in good agreement. The dynamic

solutions demonstrates fast dissipation of the impact

energy due to non-stationary oscillations of the face

sheet. In the FE analysis, the oscillations are damped

even faster due to the impactor rebound. In general, the

FE analysis confirms the singular property of Eq. (27)

for the plane formulation where the contact force has
irregularity 1=

ffiffiffi
s

p
at s ! 0.
7.2.2. Large mass/long time impact; m ¼ 1 kg, v ¼ 0:1
m/s

Figs. 7–9 illustrate the response of the sandwich

structure to the large mass/long time impact. The dy-

namic analytical solution for the contact force was not

obtained in the plane formulation due to singularity of
Eq. (32). The quasi-static solutions produce good esti-

mation of the contact force and deflection and are in

good agreement with the FE calculations. Thus, the face

inertia can be neglected when considering the impact by

a large mass.

In the plane formulation, the dynamic solution pro-

duces non-conservative results in comparison with

quasi-static approach and FE analysis. This fact can be
explained by underestimating the transversal stiffness

due to the assumption e ¼ 0 and may be overcome by

accounting for the finite core thickness when expan-

sioning the functions (24) into power series. In the axi-

symmetric formulation, all the solutions are in good

agreement with each other, because the underestimating

of the core stiffness is of the smaller importance.
8. Conclusions

The presented analytical solutions deal with the
elastic response of sandwich beams and panels to local

forced excitation or impact by a rigid body. The solu-

tions concern the plane and axisymmetric formulations.

The main results of this study can be outlined as

• The closed-form solutions were obtained for case of

forced excitation, including the face deflection and in-
terface stress. Explicit formulas were derived for an

impulse loading. The quasi-static solutions were ver-

ified with experiments showing good agreement;

• Problem of non-stationary oscillations excited by im-
pact was solved. It was shown that the quasi-static so-

lutions are sufficient for the case of a large mass/long

time impact, while the face inertia cannot be ne-

glected under a small mass/short time impact. In gen-

eral, the analytical results were obtained in good

agreement with FE analysis;

• The presented solutions can be further used for pre-

diction of failure onset in foam-cored sandwich struc-
tures subject to local loads.
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