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Notation

a radius of the emulsion droplets

b radius of the unit cell

g spherical Hankel function of the first kind

=1

ji spherical Bessel function

k complex wave number in the region
a<r<b

mass

local unit normal vector

hydrostatic pressure in the regiona < r < b
pressure in the regiona < r < b

real constant

radial coordinate in spherical coordinates
position vector

time

physical component of the radial velocity in
theregiona <r < b

1 =

3

<

E TN TOaNTT oS

v physical component of the tangential veloc-
ity in the regiona < r < b

v velocity vector

x element of a Cg space

A,B,C,D time-dependent coefficient of the flow field in

the regiona <r <b

time-dependent coefficient

time-independent part of a rate of strain

tensor

rate of strain tensor

8 x 8 matrix

6 x 6 matrix

surface

6 x 2 matrix

rate of work

Legendre polynomial of the second order

= dP,/d

2 x 6 matrix

2 x 2 matrix

radius of volume V

Reynolds number

real time-independent constant

stress tensor in the regiona < r < b

deviatoric stress tensor in the region

a<r<b

T<rry, T<r8>, T{r¢> stress tensor components in

7005, TLO >, T< P> spherical coordinates in the
region a < r < b
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T, T<r8>, T{r¢> deviatoric stress tensor com-
T 06>, T<{H¢>, T{d¢p) ponents in spherical coordi-
nates in the regiona < r < b

o angle

¥ interfacial tension

] Newtonian viscosity in the region a < r < b

n* dynamic viscosity of the emulsion

nE dimensionless dynamic viscosity of the emul-
sion

151 dimensionless dynamic viscosity of the emul-
sion without inertial effects

nE = 1y — ing, dynamic viscosity of a mass-
dashpot system (fig. 5)

0 angle measured downwards from the z axis
(spherical coordinates)

p) damping constant of a dashpot

Aq dimensionless time constant

0 density in the regiona <r < b

£a dimensionless density of the emulsion

P volume fraction

¢ angle measured around the z-axis (spherical
coordinates)

w - angular frequency

Wy dimensionaless angular frequency

Superscripts

quantity pertinent to region r < a
* quantity pertinent to region r > b or to the
homogeneous volume (fig. 1, )

1. Introduction

Viscocelastic behaviour of dilute emulsions
has been predicted by several authors (1—4).
In their theories they have used the Stokes
equation to solve the hydrodynamic problem,
thus neglecting influence of inertia.

Consider a harmonically oscillating flow in
the neighbourhood of a droplet with radius a.
The flow field is characterized by a rate of
strain tensor D. The ratio between the linear
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inertia term and the viscous term in the Navier-
Stokes equation [1] is on the order of wa?p/n,

[1]

The ratio between the non-linear inertia
term and the viscous term in eq. [1] is on the
order of |D|a?p/n. These ratios can be varied
independently with the aid of w en |D|. For
sufficiently small rates of strain the non-linear
inertia term can be neglected, whereas the linear
inertia term can be important.

In this paper the influence of the linear inertia
term on the dynamic viscosity #* of dilute
emulsions in an oscillating pure straining motion
will be investigated.

In our calculation of #* we used the cell
model of Fréhlich and Sack (5).

p{%+v-l7v}= —Vp + ndv.

2. Definition of the problem

2.1. The cell model (5)

In the application of the cell model of Fréhlich
and Sack (5) to our calculation of the mechanical
properties of an emulsion two spherical volumes,
radius R, are compared. The liquid of one of
these volumes (I, in fig. 1) is conceived as homo-
geneous. It possesses the macroscopic mechan-
ical properties of the emulsion. The other sphere
(I1, in fig. 1) contains three liquids. In the centre
a droplet, radius a, is present. It is surrounded
by a concentric layer of the external phase. The
outer radius of the external phase is taken as
b = & 3. This configuration of the internal
and external phases makes up the unit cell of
the cell model. The cell is surrounded by the
same homogeneous liquid which fills volume 1.

A harmonically oscillating pure straining

The general solution for a harmonically oscil-
lating flow is well-known (6) and can be given
for the three liquids in volume II.

Typical for the cell model considered is that
only that part of the general solution in volume
II for » > b is allowed which gives that the dif-
ference between the velocity (respectively stress)
components on 7 = R of the volumes I and II
divided by the similar components of the homo-
geneous volume I equals o(R™?). The difference
reflects the influence of the cell on the flow field
for » > b in I compared with the undisturbed
field of I. The flow ficld I, restricted by the men-
tioned boundary conditions at r = R, distorts
the spheres at r = a and r = b. The distortion
is taken very small.

Then from the boundary conditions at the
distorted spheres at r = g and r = b the me-
chanical properties of the emulsion can be
calculated. They can be expressed in w, p, #,
7,7, % and @.

2.2. Starting points and assumptions

Oldroyd (1) applied the cell model of Frohlich
and Sack (5) to the calculation of the mechanical
properties of a dilute emulsion without inertia
effects. In the past years the properties derived
appeared, both experimentally and theoretically,
to be valid in the first order of concentration.
Since in this paper we use the same method,
our results will also be valid only in the first
order of concentration. Hence the results are
only relevant for sufficiently diluted emulsions
in which hydrodynamic interaction between
particles is negligible.

The emulsion consists of spherical drops of
a Newtonian fluid immersed in a second New-
tonian fluid. Both fluids are incompressible:

motion is imposed on the liquid in volume I. dive =divey = 0. [2]
I I
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Densities of internal and external phases are
taken to be the same (p = p’ = p*) in order to
avoid translational motion of the centres of
mass of the emulsion droplets relative to the
external phase.

We restrict ourselves to oscillating pure
straining motion. More specifically at » > R we
impose a harmonically oscillating velocity field
v on the emulsion of volume I of the form

v¥(r,t) = D¥ -rexpiot ;

[3]
D} is a time- and position-independent real
symmetric traceless tensor of the second order
and r is the position vector with respect to the
centre of volume I. Complex notation is used
throughout the calculations.

The order of magnitude of the velocity com-
ponents in volume II can be estimated with the
aid of eq.[3] because the velocity at » = R in
volume II approaches [3] for r = R — co. The
magnitude of DF is limited in our problem due
to several assumptions. Velocities and pressures
inside (r < a) and outside (a < r < b) the droplet
are calculated with the Navier-Stokes equation
[1], in which the non-linear inertia term is
neglected. This is justified if |D¥|a?p/n < 1. In
a harmonically oscillating flow field the Navier-
Stokes equation then reduces to

[4]
The droplets in the emulsion are deformed by
the flow. We confine the calculations to almost
spherical droplets. It is easy to demonstrate
that one can find sufficiently small values of
| D%} to make the assumption realistic.

Further we assume that for every value of w
under consideration the magnitude of D¥ is so
small that the macroscopically observed me-
chanical response of the emulsion in the velocity
field [3] can be described by the dynamic vis-
cosity #*. Hence the results of the calculations
are only valid for |D¥| values smaller than the
most stringent limit determined by the assump-
tions previously mentioned. For the homo-
geneous fluid the relation between the stress
tensor T* and the rate of strain tensor D* is

iopv = —Vp +ndv.

T* = —p1 + 25* D* [5]
and the deviatoric part of T* is
T* = 24*D*. [6]

Since [5] is a linear relationship, eq.[4] also
holds for the homogeneous fluid if p, v, p, and 5

are replaced by p*, v*, p*, and n*. The stress
tensor compatible to the velocity field [3] can
be calculated with the aid of the relations [4]
(modified) and [5]:

T* = {—Liop(r-Dt- 1)1 + 2n* Dt} expiot .

[7]
The deviatoric part of T* can be written as the
sum of six independent tensors which can be
transformed into each other by rotation and
reflection of the frame of reference. The linearity
of the relations [3], [4], and [5] makes it
possible to solve our problem by imposing one
of the special stress tensors given in ref. (1) on
the emulsion instead of the linear velocity field
[3]- We impose (in Cartesian coordinates) the
tensor field

2T 0 0
(T*)=( 0 —T O expiwt, 8]
60 -0 -T

in which T is a real constant.

This tensor imposed on the fluid is only
compatible with an axisymmetrical flow field
both for the homogencous and for the com-
posite element (see fig. 1). The spherical form
of the droplets promotes the use of spherical
coordinates, which will be used in the next
sections.

3. The stress and velocity field

3.1. Homogeneous volume (fig. 1, 1)

In spherical coordinates the time-independent
deviatoric part of the imposed stress field [8] is

T*{rry) =2TP,(cos), )
T*{06> = T(1 — 2P, (cos 0)),
T*(p¢y = - T, L

T*{rf> = TP;(cosb),
T*Srgy =T%<0¢) = 0. J

The radial velocity u*, the tangential velocity
v*, and the pressure p*, derived from egs.[3],
[6], and [4] and being in agreement with [9],
are

u* = T P,(cos @) r/y*,
v¥ = 1 T P; (cos O)r/n*,

p* =3 Tk**r*P, (cos ) + pi
where k*? = —iwp/n*.

(10]
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In the next sections the angular dependence
of the fields in [9] and [10] will be indicated as
P,-axial symmetry.

3.2. Composite volume (fig. 1, 1I)

The general solution of the velocity and stress
field for the P,-axial symmetry of [9] and [10]
is given by Lamb (6). The formulae fora < r < b
are shown in spherical coordinates in Appendix
1. Similar formulae apply in theregions0 < r < a
and b <r < R with constants having primes
and asterisks respectively, Hence the general
solution for the composite volume contains 15
time-dependent unknowns: A*, A', 4, B¥, B', B,
C*, C', C, D*, D', D, P¥, py, po, and further the
unknown n*.

3.3. Boundary and cell model conditions
for the composite volume

There are boundary conditions which apply
‘at the interface droplet-external phase and at
the interface external phase-homogeneous fluid.
At both interfaces we require continuity of
tangential and normal velocity components.
The requirement of force equilibrium at an
interface element gives conditions for tangential
and normal stress components. The tangential
stress should be continuous at both interfaces.
At the interface droplet-external phase the inter-
facial tension y causes a discontinuity in the
normal stress component, which depends on
the curvature of the drop surface. The Laplace
‘equation gives the relationship between the
hydrostatic pressures p, and p; in the usual
way:

Po = Py — 2v/a. [11]

At the artificial cell boundary on the other hand
we require continuity of the normal stress com-
ponent.

The above-mentioned conditions result in
9 equations. Inside the drop the velocity should
be finite at r = 0. It follows that B' = C’ = (.
At r = R the conditions typical for the cell
model are applicable. According to Frohlich
and Sack (5) the difference between the cor-
responding velocity respectively stress com-
ponents of the homogeneous and composite
volume at r = R divided by the similar com-
ponents of the homogeneous volume at r = R
should be equal to o(R™3). In contrast with the
problem in which the density equals zero, here

two possible sets of the remaining unknowns
instead of one are left:

1. A¥=B* =0, D*=T/y*, pi=0.
2. A* = iB*, C*=0, D* = T/y*,
pE =0.

We can distinguish between these possibilities
by considering the rate of work

P={v- T nd0
oV

done at r = R on the homogeneous and com-
posite element.

We require that the difference between the
rates of work done on the homogeneous and
the composite volume at r = R vanishes for
R — o0, which was also the case, but not explicitly
required, for Oldroyd’s solution without inertia.
This cancels the first possibility.

Before we can give the equations for the
boundary conditions we have to calculate the
discontinuity in the normal stress at the inter-
face droplet-internal phase. The shape of the
drop surface is given by

r=a+ {Aa 'j,(ka)io + D afiw}

- P, (cos o), [12]
= o+ {ABa (kK a) - KK a)fiw
+ 3D'afiw} P, (cos ). [13]

Then the pressure difference — the static pres-
sure being omitted — at r = a becomes:

p—p=2ya" {1 +2(Aa ?j,(k'a) + D)

- P, (cos B)/iw} . [14]
The remaining eight boundary conditions for
the velocity and stress components are, at r = a:

Tar: o {ZA’(a_ij(k’a) —ka 'jy(k a)

k/2a2
D2 —
(-5

+ dy(iwa)” (A a%j,(k'a) + D)

=11{2Axa-%u(ka)-ka-ﬁu(ka»
+ 2B(a_2j~3(ka) + ka'lj_4(ka))

2,3
+ C(—Sa_S + —’-‘“——)

3
+D(2—

k2 Cl2 )
) ,

[15]
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Ta0: o {A’ ((a‘z - %)jz(k’a)

-1 177
+ 4 3k j3(k’a)> + D’}

—n {A ((a - %—)jz(ka)

Lk ja(ka))

a
2
+ B<<a-2 - %)j_g,(ka)
-1

k.
3 J—4(ka))
8

+—3—'C(l—5 +D};

+

a

[16]
u: A'a”tjy(kKa) + D'a
= Aa 'j,(ka) + Ba"'j_s(ka)
+ Ca™* + Da; [17]
o A'Ba™j,(kKa) — Kj3(Ka) + 3D'a
= A(3a™"j(ka) — kjs(ka)
+ B(3a~'j_s(ka) + kj_,(ka)
~2Ca* +3Da; [18]
and at r = b:

T<rr): 11A{2(b_2j2(kb) — kb~ 1j,(kb))

+ 2B(b2j_4(kb) + kb 1j_, (kb))

21—3
+C(8b’5+ kg >

o)

= g* A} {(Zb‘zhz+ (k*b)

— 2k*b~ ' h3 (k*b))

k*zbz )
)}
Trdy: g {A <<b‘2 — —]f6i>j2(kb)

D)

N B((w _ %)j_3(kb)

+ D* (2 - [19]

+

b 'k .
- J—4(kb)>
+ —§~Cb'5 + D}
k2
o (A:f ((b - —6—) b (B
L b 3" h;(k*b)) + D*};[ZO]
w. Ab~1j,(kb) + Bb~1j_,(kb)
+ Cb™* + Db
= AFb VR (k*B) + D*b;  [21]
v: A(3b-1j2(kb) — kjsy (kb))
+ B(3b_lj_3(kb) + kj_,(kb))
—2Cbhb™* + 3Db
= A,’f(3b_1h;(k*b) — k*h;(k*b))
4+ 3D ; [22]

h; and hi represent spherical Hankel func-
tions defined by

hy (2) = j_5(2) + ij,(2),
h; (2) = —j-s@ + ij3(2).

4. Determination of n*

An implicit expression for #* can be found by
applying a condition so that the set of eight
boundary conditions [15]—[22] yields a non-
zero solution for the unknowns

A, D', A, B, C, D, A%, and D*. [23]

This conditions is that the determinant of the
coefficients of the unknowns of the set equals
zero. The derived implicit expression for #*
has no analytical solution. Therefore we have
computed #* numerically. It is convenient to
use dimensionless quantities in the numerical
calculation. We made all quantities dimension-
less with a, 1, and y. The dimensionless character
of a quantity is indicated by an index d. Some
important quantities are: w; = wanfy, p; =
pay/n® my = n'/n, ni = n*/n.

Let us now reformulate our problem. If the
unknowns of [23] are represented by an element
x e Cg and the coefficients of the unknowns of
the set of eqgs. [15]—[22] by an 8 x 8 matrix M,
the boundary conditions in 3.3 can be given as

M-x=0. [24]
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The implicit expression for 7% is given by
det M = 0. We transform M with row and
column manipulation into M in such a way that
for p, — 0 the coefficient matrix of Oldroyd’s
boundary conditions (1) is obtained and M.,
Mg, My, and Mg, are the only #3- dependent
elements withinsthis limit. Now we split M
into four submatrices O(6 x 6), P(6 x 2), Q(2 x 6),
and R(2>\2) The matrix R is given by M,,,
Mg, Mg, and Mgg; the other ones are defined
by

. o:p
(M) = () [25]
Q'R »
Linear algebraic operations give:
det(QO™'P + R)=0. [26]

The determinant in [26] is that of a 2x2
matrix. It gives a simple quadratic expression
in »¥ for Oldroyd’s case.

If p, # 0O, spherical Hankel functions depend-
ing on n} enter the elements of P and R as
additional terms. Now an iterative procedure
is used for obtaining #¥.

A start value of n% is put into the Hankel
functions. The quadratic expression in 3 (eq.
[26]) is solved. The value of n} thus obtained
is now put into the Hankel functions. Again
the quadratic expression in #¥ is solved and a
better value of x¥ than the previous ones is
obtained, etc. This iteration converges very
quickly. For low frequencies we use Oldroyd’s
values of 7} as start values. For higher frequen-
cies we use the #} from a calculation at a lower
frequency as a start value. However, the itera-
tion result is not even dependent on large
changes in the start value.

- For large arguments of the Bessel and Hankel
functions the numerical results were not con-
sistent compared with results for smaller values
of the arguments. This problem is related to
the limited computing accuracy, which could
be demonstrated by comparison of results ob-
tained from computers using a different pre-
cision (DEC10 and CDC computer). Unfortu-
nately this problem limits the ranges of para-
meter values for which calculation is possible.

5. Discussibli of the results

In figure 2 the linearity of ¥ as a function
of @ is"shown for several values of the para-
meters pg, @, and #;. No significant deviations

1 — — T T +

3 3 ’
e Pd =10, g =10 h
= | 10, ag =10° ]
= | e Pd =10, Wy =
*‘:T_’ B 1
- | J
| RtV |
=l 1
L
(i =
18] ]
=2
10 N .
N ' ' N ]
C L, ]
"E_‘:" : Tlld =10 __—\ T
i Mgl o .
o V<2 N
= Mg =t0 .
—_— | ‘2 =~
O  Mg=t0 1
< ~
>3
161 L 1 1 L 1
-5 -4 -3 -2 -1
LOG §

Fig.2. The calculated correction (¥ = 1,,)/P as a
function of @ for various values of the parameters
Pa Dgs and 171/1

from linearity were found for concentrations
up to about 5-1073. For this @ range the
dependence of (5§ — 1)/® of w,; is shown for
several n; and p, values in figure 3 and figure 4.
We verified that for small values of w, or p,
our results approach the solution of the problem
without inertia forces as given by Oldroyd (1)
{w,p4 € 1 in the Bessel and Hankel functions):
ng, — 1

> [27]

_ 542+ Sy — it — ng)(16 + 19n5)w,)
40(1 + ) + i3 + 2n)(16 + 19w,

The viscoelastic behaviour of eq. [27] of a dilute
emulsion (without inertia forces) shows appre-
ciable changes in (n¥ — 1)/® for w, values which
are approximately equal to the inverse of the
characteristic time

(16 + 199)(3 + 211d)
40(1 d—{- 1) [28]

These phenomena occur when the interfacial
tension forces are on the same order of magni-

da =
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Pd 10210310 102162L1621o 10
Nd }16} 1 1104116711 { 5110 10|
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0 e 6

-IMAG [n5/3]

-3t
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LOG Wd

Fig. 3. The real and imaginary parts of (yf — 1)/® as a function of w, for various values of the parameter p,
and #;. The dashed line coincides with the analytical solution given by Hinch for p, = 1072

A
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L

]
w
I
N
t
(=14

LOG wd

Fig. 4. The real and imaginary parts of (yf — 1)/@ as a function of w, for such p, values that interfacial tension,
shear and inertia forces are on the same order of magnitude

tude as the shear forces at the interface internal- Introducing of inertia forces makes the pic-
external phase. ture more complicated. We can expect appre-

In figure 3 interfacial tension forces are ciable influence of inertia forces when the
dominant for w; < 47 ' and shear forces are argument of the spherical Bessel and Hankel
dominant for w,; > A;' apart from inertia functions is on the order of unity or more, for
forces. example w,p, = 1. In order to demonstrate the
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effect of inertia on 5% separately from the well-
known effects at w; = A; ' we have chosen two
pa values which satisfy the conditions p; <€ A,
and p,; > A,

For intermediate p, values inertia effects
interfere with the normal viscoelastic effects.
The qualitative character changes strongly with
relatively small changes in the parameter values.
For reasons of clarity such effects are not in-
cluded in figure 3, but they are shown separately
in figure 4. In figure 3 for p, = 10° only increas-
ing and decreasing paths of the curves of the
real and imaginary part of (¥ — 1)/® can be
calculated. For % = 10~ 2 the behaviour caused
by inertia can be characterized as an increase
of the real part of (¥ — 1)/® with a point of
inflection and an increase of the imaginary part
of (n} — 1)/@ with a maximum. In both cases
the imaginary part is positive. The behaviour
is strongly dependent on #,. As expected,
(i — 1)/@ = (n§;, — 1)/ if ny =1 and p; < 4,

In the limit for #; » o our results approach
those of the exact expression for solid spheres

(17)%):
nE —1 _ 15+ 15ik — 6k* — ik®
@ 6(1 + ik)

This function depends on k* = —iwyp, As an
example it is plotted for p, = 1072 as a function
of w, and compared with our result for 7, = 10*.
The agreement is very satisfactory.

The complex behaviour of # for intermediate
values of p, between 1072 and 10° is shown in
figure 4. The influence of inertia is intermediate
that for low and high p, values. The influence
of normal viscoelastic effects is easily recognized.
The strong dependence of #; which is present
in figure 3 is also present here. Compared with
figure 3 the large minima of the imaginary part
of n%/® are unexpected. They can be regarded
as a typical effect of the interference of the
interfacial tension, shear and inertia forces
when they are on the same order of magnitude.

The calculated changes in n§ caused by inertia
forces are not a common feature of linear visco-
elasticity. The interpretation in terms of a
mechanical model with springs and dashpots
alone is impossible.

[29]

*) Thanks are due to Dr. J. Hinch, who provided us
with the relevant part of his thesis after the presentation
of the preliminary results of our work on Euromech
Colloquium 104, Leuven 4 —7 September 1978.

However, introduction of mass elements in
such models can easily produce a positive
value for the imaginary part of ¥ and an in-
crease in the real part of #¥. An example with
two dashpots and one mass element is given
in figure 5. The mechanical behaviour of this
model can be characterized by a dynamic
“viscosity” n§(w) = np(w) — ing(w). The real
and imaginary parts as a function of w demon-
strate a similar path as the curves on the right-
hand side in figure 3. For solid spheres the
solution is more difficult to interpret. For
example, the real part of #} in eq.[29] is pro-
portional to ]/5 for @ — oo. Interpretation

T T T T T T T T T T T

1.0
1,]|
0
os| A
m
A
of
oL
n=0.1}-
Mo_o2|
03+ 1 4 g 1 1 f L | I B
-1 o] 1
LOGW

Fig. 5. Dynamical behaviour of the indicated mass-
dashpot system for damping constant 4 = 1 and mass
m=1

with a finite number of discrete mass, spring,
or dashpot elements is impossible. It can be
interpreted in terms of a mechanical model
which involves a continuous element charac-
terized by mass and dissipation per unit length.
The real part of the impedance of such a me-
chanical transmission line is proportional to
]/5 for high frequencies. .

We can conclude that the influence of inertia
on #} in an oscillating pure straining motion
can be appreciable. Strictly speaking, our results
are only valid for oscillating pure straining
motion, but they suggests, however, that inertia
effects on 5% of dispersions for oscillating shear
flow as well are not always negligible.

Appendix 1
u={Ar Yj(kr) + Br tj_,(kr) + Cr * + D} Py,
v =5 {ABr 2y (kr) — kj;(kr)
+ BGro Y, (k) + kj_, (ki) — 2Cr~*
+3Dr} Py,
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p=n{—%3Ck*r™ 3+ £ Dk**} P, + p,,
T4y =1 {ZA(r"ij(kr) — kr iy (kr))
+ 2B(r_2j_3(kr) —+ kr_lj_4(kr))
+ c(—s;*s kzr_3>
kz 2
S
oy = n{A <( : )mm) " 13<kr>>
+B(< )J N LYy 4<kr)>

+?c;-5 +D}P2’,

T<O0> = 2n{(1 — 3cos? 0) (Ar~2j,(kr)
+ Br2j_,(kr) + D) — $(1 — 2cos? 6)
 (ArTtkjs(kr) — Bkr™tj_4(kr)
~ 3B —Tcos?B)Cr~%} — p,

T<$p¢y = 2n{A(=5r72j,(kr) + F kr™js(kr) cos® 0)
+ CGeos?0 —3)r % + B(—=3r7%j_5(kn)
—5kr7tj_4(kr)cos*8) —5D} —p

The functions j,, ji, j_3, and j_, represent spherical
Bessel functions, and k* = —iwp/y.
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Summary

The dynamic viscosity of a dilute emulsion is cal-
culated for a pure straining motion. The emulsion
consists of almost spherical drops of a Newtonian
fluid immersed in another Newtonian fluid. The oscil-
lating velocity field of the flow is derived from the
Navier-Stokes equation, in which the linear inertia
term is included, whereas the non-linear one is
neglected. The dynamic viscosity is determined with

the aid of a cell model. The results are calculated
numerically and typical results are presented graph-
ically. The influence of inertia on the dynamic viscosity
appears to be appreciable. Special cases presented in
the literature, frequency or demsity zero and rigid
spheres, are confirmed.

Zusammenfassung

Die dynamische Viskositit einer verdiinnten Emul-
sion wird fiir eine reine Dehnstrémung berechnet. Die
Emulsion besteht aus nahezu sphirischen Tropfen einer
newtonschen Fliissigkeit, die in einer anderen newton-
schen Fliissigkeit verteilt sind. Das oszillierende Ge-
schwindigkeitsfeld der Strémung wird mit Hilfe der
Navier-Stokesschen Gleichung abgeleitet, wobei das
lineare Trigheitsglied mitgenommen, die nicht-linearen
Tragheitsglieder aber vernachldssigt werden. Die dy-
namische Viskositit wird mit Hilfe eines Zellen-
modells ermittelt. Die Ergebnisse werden numerisch
berechnet, und typische Ergebnisse werden graphisch
dargestellt. Der EinfluB der Trigheit auf die dynamische
Viskositit erweist sich als betrichtlich. Die Ergebnisse
von in der Literatur schon behandelten Spezialfillen,
bei denen die Frequenz oder die Dichte null gesetzt
bzw. die Kugeln als starr angenommen worden waren,
werden von uns bestitigt.
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