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radius of the emulsion droplets 
radius of the unit cell 
spherical Hankel function of the first kind 

spherical Bessel function 
complex ware number in the region 
a < r < b  
mass 
local unit normal vector 
hydrostatic pressure in the region a < r < b 
pressure in the region a < r < b 
real constant 
radial coordinate in spherical coordinates 
position vector 
time 
physical component of the radial velocity in 
the region a < r < b 
physical component of the tangential veloc- 
ity in the region a < r < b 
velocity vector 
element of a C s space 
time-dependent coefficient of the flow field in 
the region a < r < b 
time-dependent coefficient 
time-independent part of a rate of strain 
tensor 
t'äte of strain tensor 
8 × 8 matrix 
6 × 6 matrix 
surface 
6 x 2 matrix 
rate of work 
Legendre polynomial of the second order 
= dP2/dO 
2 × 6 matrix 
2 x 2 matrix 
radius of volume V 
Reynolds number 
real time-independent constant 
stress tensor in the region a < r < b 
deviatoric stress tensor in the region 
a < r < b  

~<rr), ~<rO>, T<r~b> stress tensor components in 
T(O0), T<OB), T<qSB> spherical coordinates in the 

r e g i o n a < r  < b  
577 
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T(rr) ,  T(rO), T(rO) deviatoric stress tensor com- 
T (00), T<O~), T (Oß)  ponents in spherical coordi- 

nates in the region a < r < b 
« angle 
y interfacial tension 
~I Newtonian viscosity in the region a < r < b 
~7" dynamic viscosity of the emulsion 
t/* dimensionless dynamic viscosity of the emul- 

sion 
q*l dimensionless dynamic viscosity of the emul- 

sion without inertiäl effects 
t/~ = ~16 -i116, dynamic viscosity of a mass- 

dashpot system (fig. 5) 
0 angle measured downwards from the z axis 

(spherical coordinates) 
2 damping constant of a dashpot 
)od dimensionless time constant 
p density in the region a < r < b 
Pd dimensionless density of the emulsion 

volume fraction 
Ó angle measured around the z-axis (spherical 

coordinates) 
co angular frequency 
co d dimensionaless angular frequency 

SIADCFscripts 

quantity pertinent to region r < a 
* quantity pertinent to region r > b or to the 

homogeneons volume (fig. 1, I) 

1. Introduction 

Viscoelastic behaviour  of dilute emuls ions  
has been predicted by several au thors  ( 1 - 4 ) .  
In  their theories they have used the Stokes 
equa t ion  to solve the hydrodynamic  problem,  
thus neglecting influence of inertia. 

Consider  a harmonica l ly  oscillating flow in 
the ne ighbourhood  of a droplet  with radius a. 
The flow field is characterized by a rate of 
s train tensor  D. The rat io between the l inear  
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inertia term and the viscous term in the Navier- 
Stokes equation [1] is on the order of coaZp/rh 

P -õ-i- + v. Vv = - V p  + ~Av. [1] 

The ratio between the non-linear inertia 
term and the viscous term in eq. [1] is on the 
order of IDla2p/rl. These ratlos ean be varied 
independently with the aid of o9 en IDI. For  
sufficiently small rates of strain the non-linear 
inertia term can be neglected, whereas the linear 
inertia term can be irnportant. 

In this paper the influence of the linear inertia 
term on the dynamic viscosity ~* of dilute 
emulsions in an oscillating pure straining motion 
will be investigated. 

In out calculation of q* we used the cell 
model of Fröhlich and Sack (5). 

2. Def in i t ion  of  the problem 

2.I. The cell model (5) 

In the application of the cell model of Fröhlich 
and Sack (5) to our calculation of the mechanical 
properties of an emulsion two spherical volumes, 
radius R, are compared. The liquid of orte of 
these volumes (I, in fig. 1) is conceived as homo- 
geneous. It possesses the macroscopic mechan- 
ical properties of the emulsion. The other sphere 
(II, in fig. 1) contains three liquids. In the centre 
a droplet, radius a, is present. It is surrounded 
by a concentric layer of the external phase. The 
outer radius of the external phase is taken as 
b ---- 4~-1/3 a. This configuration of the internal 
and external phases makes up the unit cell of 
the cell model. The cell is surrounded by the 
same homogeneous liquid which fills volume I. 

A harmonically oscillating pure straining 
motion is imposed on the liquid in volume I. 

The general solution for a harmonically oscil- 
lating flow is well-known (6) and can be given 
for the three liquids in volume II. 

Typical for the cell model considered is that 
only that part of the general solution in volume 
II for r > b is allowed which gives that the dif- 
ference between the velocity (respectively stress) 
components on r = R of the volumes I and II 
divided by the similar components of the homo- 
geneous volume I equals o(R-3). The difference 
reflects the influence of the cell on the flow field 
for r > b in II compared with the undisturbed 
field of I. The flow field II, restricted by the men- 
tioned b0undary conditions at r = R, distorts 
the spheres at r -- a and r = b. The distortion 
is taken very small. 

Then from the boundary conditions at the 
distorted spheres at r = a and r = b the me- 
chanical properties of the emulsion can be 
calculated. They can be expressed in co, p, q, 
q', y, «, and ~. 

2.2. Starting points and assumptions 

Oldroyd (1) applied the cell model of Fröhlich 
and Sack (5) to the calculation of the mechanical 
properties of a dilute emulsion without inertia 
effects. In the past years the properties derived 
appeared, both experimentally and theoretically, 
to be valid in the first order of concentration. 
Since in this paper we use the same method, 
our results will also be valid only in the first 
order of concentration. Hence the results are 
only relevant for sufficiently diluted emulsions 
in which hydrodynamic interaction between 
particles is negligible. 

The emulsion consists of spherical drops of 
a Newtonian fluid immersed in a second New- 
tonian fluid. Both fluids are incompressible: 

div v = div v' = 0. [2] 

I 11" 
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Fig. 1. The volumes for the homo- 
geneous (I) and composite (II) 
fluid 
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Densities of internal and external phases are 
taken to be the same (p = p' = p*) in order to 
avoid translational motion of the centres of 
mass of the emulsion droplets relative to the 
external phase. 

We restrict ourselves to oscillating pure 
straining motion. More specifically at r _> R we 
impose a harmonically oscillating velocity field 
v on the emulsion of volume I of the form 

v*(r,t) = D* . r exp icot " [3] 

D a is a time- and position-independent real 
symmetric traceless tensor of the second order 
and r is the position vector with respect to the 
centre of volume I. Complex notation is used 
throughout the calculations. 

The order of magnitude of the velocity com- 
ponents in volurne II can be estimated with the 
aid of eq. [3] because the velocity at r = R in 
volume II approaches [3] for r = R -+ oo. The 
magnitude of D* is limited in our problem due 
to several assumptions. Velocities and pressures 
inside (r < a) and outside (a < r < b) the droplet 
are calculated with the Navier-Stokes equation 
1-]], in which the non-linear inertia term is 
neglected. This is justified if ID*[a2p/~ ~ ]. In 
a harmonically oscillating flow field the Navier- 
Stokes equation then reduces to 

i~opv = - V p  + q A v .  [4] 

The droplets in the emulsion are deformed by 
the flow. We confine the calculations to almost 
spherical droplets. It is easy to demonstrate 
that one can find sufficiently small values of 
IDOl to make the assumption realistic. 

Further we assume that for every value of (n 
under consideration the magnitude of D* is so 
small that the macroscopically observed me- 
chanical response of the emulsion in the velocity 
field 1-3] can be described by the dynamic vis- 
cosity q*. Hence the results of the calculations 
are only valid for IDOl values smaller than the 
most stringent limit determined by the assump- 
tions previously mentioned. For the homo- 
geneous fluid the relation between the stress 
tensor T* and the rate of strain tensor D* is 

T* = - p l  + 2t/*D* [5] 

and the deviatoric part of T* is 

T* = 2t/*D* . [6] 

Since 1-5] is a linear relationship, eq. [4] also 
holds for the homogeneous fluid if p, v, p, and q 

are replaced by p*, v*, p.*, and t/*. The stress 
tensor compatible to the velocity field [3] can 
be calculated with the aid of the relations 1-4] 
(modified) and [5]: 

T* = { - ½  icop(r.  D * .  r) l + 2q*D~} expicot .  

1-7] 
The deviatoric part of T* can be written as the 
sum of six independent tensors which can be 
transformed into each other by rotation and 
reflection of the frame of reference. The linearity 
of the relations [3], [4], and [5] makes it 
possible to solve out problem by imposing one 
of the special stress tensors given in rel. (1) on 
the emulsion instead of the linear velocity field 
[3]. We impose (in Cartesian coordinates) the 
tensor field (2~ 0 !) 
(T*) = - T  exp icot, 1-8] 

- - O  - -  

in which T is a real constant. 
This tensor imposed on the fluid is only 

compatible with an axisymmetrical flow field 
both for the homogeneous and for the com- 
posite element (see fig. 1). The spherical form 
of  the droplets promotes the use of spherical 
coordinates, which will be used in the next 
sections. 

3. The stress and velocity field 

3.1. Homogeneous volume (fig. l, I) 

In spherical coordinates the time-independent 
deviatoric part of the imposed stress field [8] is 

T* ( r r )  = 2 T P  2(cos0) ,  

T * ( 0 0 )  = T(1 - 2P  z(cos 0)), 

T*(qSqS) = - T ,  I-9] 

T* (rO)  = T P~ (cos0), 

T * ( r ~ )  = T * ( 0 ~ >  = 0 .  

The radial velocity u*, the tangential velocity 
v*, and the pressure p*, derived from eqs. [3-1, 
[6], and 1-4] and being in  agreement with [9], 
are 

u* = TP~ ( cos  O)r/&, 
v* = 1 T p a (cos O) rfll* , 

1-101 
p* = ½ Tk*Œr2p 2 (cos 0) + p* 
where k .2 = -io)pfl1*. 
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In the next sections the angular dependence 
of the fields in [9] and [10] will be indicated as 
Pz-axial symmetry. 

3.2. Composite volume (fig. 1, II) 

The general solution of the velocity and stress 
field for the Pz-axial symmetry of [9] and [10] 
is given by Lamb (6). The formulae for a < r < b 
are shown in spherical coordinates in Appendix 
1. Similar formulae apply in the regions 0 < r < a 
and b < r < R with constants having primes 
and asterisks respectively. Hence the general 
solution for the composite volume contains 15 
time-dependent unknowns: A*, A', A, B*, B', B, 
C*, C', C, D*, D', D, P~', pó, Po, and further the 
unknown II*. 

3.3. Boundary and cell model conditions 
for the composite volume 

There are boundary conditions which appty 
at the interface droplet-external phase and at 
the interface external phase-homogeneous fluid. 
At both interfaces we require continuity of 
"tangential and normal velocity components. 
The requirement of force equilibrium at an 
interface element gives conditions for tangential 
and normal stress components. The tangential 
stress should be continuous at both interfaces. 
At the interface droplet-external phase the inter- 
facial tension ~ causes a discontinuity in the 
normal stress component, which depends on 
the curvature of the drop surface. The Laplace 
-equation gives the relationship between the 
hydrostatic pressures Po and pö in the usual 
way: 

Po = P; - 27/a. [11] 

At the artificial cell boundary on the other hand 
we require continuity of the normal stress com- 
ponent. 

The above-mentioned conditions result in 
9 equations. Inside the drop the velocity should 
be finite at r = 0. It follows that B' = C' = O. 
At r = R the conditions typical for the cell 
model are applicable. According to Fröhlich 
and Sack (5) the difference between the cor- 
responding velocity respectively stress com- 
ponents of the homogeneous and composite 
volume at r = R divided by the similar com- 
ponents of the homogeneous volume at r = R 
should be equal to o(R-3). In contrast with the 
problem in which the density equals zero, here 

two possible sets of the remaining unknowns 
instead of one are left: 

1. A* = B* = 0 ,  D* = T/tl*, p* = 0 .  
2. A* = iß* ,  C* = O, D* = T/tl*, 

p~ = o .  

We can distinguish between these possibilities 
by considering the rate of work 

P =  ~ v . T . n d O  
ov 

done at r = R on the homogeneous and com- 
posite element. 

We require that the difference between the 
rates of work done on the homogeneous and 
the composite volume at r = R vanishes for 
R ~ o% which was also the case, but not explicitly 
required, for Oldroyd's solution without inertia. 
This cancels the first possibility. 

Before we can give the equations for the 
boundary conditions we have to calculate the 
discontinuity in the normal stress at the inter- 
face droplet-internal phase. The shape of the 
drop surface is given by 

r = a + {A'a-lj2(k'a)/ico + D'a/ico} 

• P2 (cos Œ), [ 1 2 ]  

0 = ~ + ~ {A'(3a-xj2(k'a) - k'j3(k'a))/io 

+ 3D'a/ie)} Pf (cos ~). [13] 

Then the pressure difference - the static pres- 
sure being omitted - at r = a becomes: 

p' - p = 27a -1 {1 + 2(A'a-2j2(k'a) + D') 

• P2 (cos O)/io}. [143 

The remaining eight boundary conditions for 
the velocity and stress components are, at r = a: 

B ( r r ) :  tl' t2A'(a-2j2(k '  a) - k' a-lj3(k'a)) 
k 

+ D '  2 2 

+ 47( ioa) - l (A 'a-Zj2(Ua ) + D') 

= t7 f2A(a-2j2(ka)  - ka- l j3(ka))  

+ 2B(a-2j_3(ka) + ka-lj_4(ka)) 

+ C - 8 a  -» + 

+ D  2 2 " 
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~<r0>:,,'{A((a2 k;2)j2,k'a, 
a - l k ,  ", 

+ - - - ~ j 3 ( k ' a ) )  + D'} 

a-  1 k )'~) 
3 J-4(ka 

8 C - } +-~- a 5 + D  " [16] 

u: A' a-l j2(k'  a) + D' a 

= Aa- t j2(ka)  + Ba-Xj_3(ka) 

q- C a  - 4  q- Da ; [17] 

v: A'(3a-l jz(k 'a)  - k'j3(k'a)) + 3D'a 

= A(3a-l j2(ka)  - kj3(ka)) 

+ B(3a-l j_3(ka)  + kj_4(ka)) 

- 2Ca -4 + 3Da ; [18] 

and at r = b: 

B(rr ) :  tlA f2(b-Zj2(kb) - kb-aj3(kb)) 

+ 2B(b-2j_3(kb) + kb-~j_4(kb)) ( k2b-3) 
+ C  8b-S + ~  

+ D  2 2 

= tl*A~ {(2b-2hf(k*b)  

- 2k*b-~hf(k*b))  

+ D* 2 2 " ; [19] 

~<r0> ~{A((b 2 _  k26 ) jz(kb) 

+ b-~3kJ3(kb) ) 

+ B b -2 ~- J -3 (kb)  

b - l k  ) 
3 J-4(kb) 

+--~Cb -s + D 

b - l k*  h f ( k * b ) ) +  D * } [ 2 0 ]  +--5-- 
u: Ab- l j z (kb)  + Bb- l j_3(kb)  

+ Cb -4 + Db 

= A~b-lh+(k*b) + D ' b ;  [21] 

v: A(3b-l j2(kb)  - kj3(kb)) 

+ B(3b-~j_»(kb) + kj_4(kb)) 

- 2Cb -4 + 3Db 

= A~(3b-~hf(k*b)  - k*h~(k*b)) 

+ 3D'b"  [22] 

h~- and h~ represent spherical Hankel func- 
tions defined by 

hf  (z) = j_3(z) + ij2(z), 

h~ (z) = - j_4(z)  + ij»(z). 

4. Determinat ion  o f  I1 * 

An implicit expression for tl* can be found by 
applying a condition so that the set of eight 
boundary conditions [15 ] - [22 ]  yields a non- 
zero solution for the unknowns 

A', D', A, B, C, D, A~', and D*. [23] 

This conditions is that the determinant of the 
coefficients of the unknowns of the set equals 
zero. The derived implicit expression for tl* 
has no analytical solution. Therefore we have 
computed tl* numerically. It is convenient to 
use dimensionless quantities in the numerical 
calculation. We made all quantities dimension- 
less with a, tl, and 7. The dimensionless character 
of a quantity is indicated by an index d. Some 
important quantities are: a)ä = coatl/7, pä = 
Pa~/ t l  2, tlä = tl'/tl, tl* = tl*/tl. 

Let us now reformulate our problem. If the 
unknowns of [23] are represented by an element 
x e Ca and the coefficients of the unknowns of 
the set of eqs. [ 1 5 ] -  [22] by an 8 x 8 matrix M, 
the boundary conditions in 3.3 can be given as 

M . x  = 0. [24] 
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The implicit exprèssion for q* is given by 
d e t M  = 0. We transform M with row and 
column manipulation into ~ / i n  such a way that 
for Pa-* 0 the coefficient matrix of Oldroyd's 
boundary conditions (1) is obtained and ~/77, 
]~//7S, ]~S7' and ~/ss are the only q~-dependent 
elements within,this limit. Now we split M 
into four submatrices 0(6  x 6), P(6 x 2), Q(2 x 6), 
and R(2 x 2). The matrix R is given by J~/77, 
~~/Ts, ~/sv, and ~/ss; the other ones are defined 
by 

(_O[P~ [25] 
. . . .  i - - "  ° (M) \Q~R/ 

Linear algebraic operations give: 

det (QO-XP + R) = 0. [26] 

The determinant in [26] is that of a 2 × 2  
matrix. It gives a simple quadratic expression 
in ~* for Oldroyd's case. 

If Pa ~ O, spherical Hankel functions depend- 
ing on q* enter the elements of P and R as 
additional terms. Now an iterative procedure 
is used for obtaining ~/*. 

A start value of ~~ is put into the Hankel 
functions. The quadratic expression in ~/* (eq. 
[26]) is solved. The value of q~ thus obtained 
is now put into the Hankel functions. Again 
the quadratic expression in q~' is solved and a 
better value of ~/~' than the previous ones is 
obtained, etc. This iteration converges very 
quickly. For low frequencies we use Oldroyd's 
values of q* as start values. For higher frequen- 
cies we use the q* from a calculation at a lower 
frequency as a start value. However, the itera- 
tion result is not eren dependent on large 
changes in the start value. 

For large arguments of the Bessel and Hankel 
functions the numerical results were not con- 
sistent compared with results for smaller values 
of the arguments. This problem is related to 
t h e  limited computing accuracy, which could 
be demonstrated by comparison of results ob- 
tained from computers using a different pre- 
cision (DEC10 and CDC computer). Unfortu- 
nately this problem limits the ranges Of para- 
meter values for which calculation is possible. 

5. DiscussiÒn of the results 

In figure 2 the iinearity of ~/~' as a function 
of • i s shown for several values of the para- 
meters Pd, me, and ~/~. No significant deviations 
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Fig. 2. The calculated correction (~/* = ~101)/~ as a 
function of ~b for various values of the parameters 
Ps, c°a, and 11~ 

from linearity were found for concentrations 
up to about 5 .10 -3 . For this ~ range the 
dependence of 07* - 1)/(b of ma is shown for 
several ~/5 and pä values in figure 3 and figure 4. 
We verified that for small values of co e or Pe 
our results approach the solution of the problem 
without inertia forces as given by Oldroyd (1) 
(o9äpä ¢ 1 in the Bessel and Hankel functions): 

'7~1 - i [27] 
4~ 

5(4(2 + 5,15) - i(1 - ~/~)(16 + 19,15)~%) 
40(1 + JTä) + i(3 + 2r/~,)(16 + 19~7~)~oa 

The viscoelastic behaviour of eq. [27] of a dilute 
emulsion (without inertia forces) shows appre- 
ciable changes in (~1~ - 1)/45 for coä values which 
are approximately equal to the inverse of the 
characteristic time 

2a = (16 + 19~/ä)(3 + 2t75 ) [28] 
40(1 + 'lä) 

These phenomena occur when the interfacial 
tension forces are on the same order of magni- 
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Fig. 4. The real and imaginary parts of (~/* - 1)/~ as a function of co a for such Pd values that interfacial tension, 
shear and inertia forces are on the same order of magnitude 

tude  as the shear  forces at  the interface in terna l -  
external  phase.  

In  figure 3 interfacia l  tens ion  forces are  
d o m i n a n t  for c% ~ 2j -1 and  shear  forces are  
d o m i n a n t  for co« » 2 2 1  a p a r t  f rom iner t ia  
forces. 

I n t roduc ing  of  iner t ia  forces makes  the pic- 
ture  more  compl ica ted .  We can expect  appre -  
c iable  influence of  iner t ia  forces when the 
a r g u m e n t  of  the  spher ica l  Bessel and  H a n k e l  
funct ions is on  the order  of  uni ty  or  more ,  for 
example  ~%Pd -> 1. In  o rde r  to d e m o n s t r a t e  the 
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effect of inertia on t/~ separately from the well- 
known effects at co d = 2ä 1 we have chosen two 
Pc values which satisfy the conditions Pc ~ 2d 
and Pc ~> ~ ' d "  

For intermediate Pc values inertia effects 
interfere with the normal viscoelastic effects. 
The qualitative character changes strongly with 
relatively small changes in the parameter values. 
For reasons of clarity such effects are not in- 
cluded in figure 3, but they are shown separately 
in figure 4. In figure 3 for Pd = 10 3 only increas- 
ing and decreasing paths of the curves of the 
real and imaginary part of 01ä - 1)/¢ can be 
calculated. For  ~/* = 10-2 the behaviour caused 
by inertia can be characterized as an increase 
of the real part of (~/* - 1)/¢ with a point of 
inflection and an inerease of the imaginary part 
of (~/~ - 1)/¢ with a maximum. In both eases 
the imaginary part is positive. The behaviour 
is strongly dependent on ~/ä. As expected, 
(t/~' - 1)/¢ = (~/~1 - 1)/¢ if t/5 = 1 and P2 ~ ~d" 

In the limit for ~/ä --* oo our results approach 
those of the exact expression for solid spheres 
(17)*): 

'I~ - i = 15 + 15ik - 6k z - i k  3 [29] 
¢ 6(1 + ik) 

This function depends o n  k z = -icoap c. As an 
example it is plotted for Pc = 10-2 as a function 
of co c and compared with our result for t/ä = 10  4. 

The agreement is very satisfactory. 
The complex behaviour of t/~' for intermediate 

values of Pc between 10 -2 and 103 is shown in 
figure 4. The influenee of inertia is intermediate 
that for low and high Pc values. The influence 
of normal viscoelastic effects is easily reeognized. 
The strong dependence of r/5 which is present 
in figure 3 is also present here. Compared with 
figure 3 the large minima of the imaginary tSart 
of 0*/¢ are unexpected. They can be regarded 
as a typical effeet of the interference of the 
interfacial tension, shear and inertia forees 
when they are on the same order of magnitude. 

The calculated changes in t/~ caused by inertia 
forces are not a eommon feature of linear visco- 
elasticity. The interpretation in terms of a 
mechanical model with springs and dashpots 
alone is impossible. 

*) Thanks  are due to Dr. J. Hinch, who provided us 
with the relevant par t  of his thesis after the presentat ion 
of the preliminary results of our work on Euromech 
Col loquium 104, Leuven 4 - 7  September 1978. 

However, introduction of mass elements in 
such models can easily produce a positive 
value for the imaginary part of t/~ and an in- 
crease in the real part of 0*. An example with 
two dashpots and one mass element is given 
in figure 5. The mechanical behaviour of this 
model can be characterized by a dynamic 
"viscosity" t/~(~0)= qó(o ) ) -  iq~(co). The real 
and imaginary parts as a function of co demon- 
strate a similar path as the curves on the right- 
hand side in figure 3. For  solid spheres the 
solution is more difficult to interpret. For 
example, the real part of t/* in eq. [29] is pro- 
portional to ~/~ for ~--* oo. Interpretation 

I i I 1.0 

0.5 

I 
% 

I 

m 

2 

I]o -0.2 

- - ' 0 . 3  , I t , i I , I , I , I s 

-1 0 1 2 

LOG co 

Fig. 5. Dynamical behaviour of the indicated mass- 
dashpot system for dampiiag constant 2 = 1 and mass 
m = l  

with a finite number of discrete mass, spring, 
or dashpot elements is impossible. It can be 
interpreted in terms of a mechanical model 
which involves a continuous element charac- 
terized by mass and dissipation per unit length. 
The real part of the impedance of such a me- 
chanical transmission line is proportional to 
B for high frequencies. 

We can conclude that the influence of inertiä 
on t/~ in an oscillating pure straining motion 
can be appreciable. Strictly speaking, our results 
are only valid for oscillating pure straining 
motion, but they suggests, however, that inertia 
effects on t/* of dispersions for oscillating shear 
flow as well are not always negligible. 

Appendix 1 
U = {At  l j2(kr  ) q- Br- l j _3 (k r )  + Cr -4 + Dr} P2, 

v = ~ {A(3r -  l j2(kr ) - kj3(kr)) 

+ B(3r-~j_3(kr)  + kj_4(kr)) - 2 C r - 4  

+ BDr}e;, 
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p = ,~ { - ~  ck2 ,  "-3 + ~Dk2~ 2} P2 + po, 

T (rr)  = ~1 f 2A( r- 2j2(kr) - kr -  lj3(kr)) 
% 

+ 2B(r-2j_3(kr) + kr-Xj_¢(kr)) 

k2r -3 + C(-Sr-~ +---i-- ) 

+ D ( 2 - k ; r 2 ) } P  2 - p o ,  

k2 r - l k  

k z r - l k  . 

__8 Cr_ 5 + D} P2 
+ 3 

7~(00) = 2q {(1 - ~ cos 20) (Ar- 2j2(kr ) 

+ Br-2j  3(kr) + D) -½(1 -2c0s20)  

• ( A r - l k j 3 ( k r ) -  B k r - l j  4(kr)) 

- ½(3 - 7cos 20)Cr -s} - p, 

'iP(~b~b) = 2,7 {A ( -½r-Zj2(kr)  + ½ kr lj3(kr ) cos 2 0) 

+ C ( S c o s 2 0 - ½ ) r  s + B ( _ ½ r - 2 j _ 3 ( k r )  

- ½kr-lj_4(kr)COS 2 0 )  - -  ½D} -- p, 

The functions J2, J» J-3, and J-4 represent spherical 
Bessel functions, and k 2 = -i(op/~ 7. 
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Summary 

The dynamic viscosity of a dilute emulsion is cal- 
culated for a pure straining motion. The emulsion 
consists of almost spherical drops of a Newtonian 
fluid immersed in another Newtonian fluid. The oscil- 
lating velocity "field of the flow is derived from the 
Navier-Stokes equation, in which the linear inertia 
term is included, whereas the non-linear one is 
neglected. The dynamic viseosity is determined with 

the aid of a cell model. The results are calculated 
numerically and typical results are presented graph- 
ically. The influence of inertia on the dynamic viscosity 
appears to be appreciable. Special cases presented in 
the literature, frequency or density zero and rigid 
spheres, are confirmed. 

Zusammenfassung 

Die dynamische Viskosität einer verdünnten Emul- 
sion wird für eine reine Dehnströmung berechnet. Die 
Emulsion besteht aus nahezu sphärischen Tropfen einer 
newtonschen Flüssigkeit, die in einer anderen newton- 
schen Flüssigkeit verteilt sind. Das osziflierende Ge- 
schwindigkeitsfeld der Strömung wird mit Hilfe der 
Navier-Stokesschen Gleichung abgeleitet, wobei das 
lineare Trägheitsglied mitgenommen, die nicht-linearen 
Trägheitsglieder aber vernachlässigt werden. Die dy- 
namische Viskosität wird mit Hilfe eines Zellen- 
modells ermittelt. Die Ergebnisse werden numerisch 
berechnet, und typische Ergebnisse werden graphisch 
dargestellt. Der Einfluß der Trägheit auf die dynamische 
Viskosität erweist sich als beträchtlich. Die Ergebnisse 
von in der Literatur schon behandelten Spezialf'ällen, 
bei denen die Frequenz oder die Dichte null gesetzt 
bzw. die Kugeln als starr angenommen worden waren, 
werden von uns bestätigt• 
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