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Asbtract 

The structure of shock waves in liquids containing gas bubbles is investigated 
theoretically. The mechanisms taken into account are the steepening of com- 
pression waves in the mixture by convection and the effects due to the 
motion of the bubbles with respect to the surrounding fluid. This relative 
motion, radial and translational, gives rise to dissipation and to dispersion 
caused by the inertia of the radial flow associated with an expanding or com- 
pressed bubble. For not too thick shocks the dissipation by radial motion 
around the bubbles dominates over the dissipation by relative translational 
motion, in mixtures with low gas content. The overall thickness of the shock 
appears to be determined by the dispersion effect. Dissipation, however, is 
necessary to permit a steady shock wave. I t  is shown that,  anMogous to 
undular bores, a stationary wave train may exist behind the shock wave. 

§ 1. Introduction 

A mixture of liquid and small gas bubbles is a fluid which derives 
density mainly from the liquid content and compressibility from 
the gas content. For many purposes the dynamics of such a fluid 
can be described by considering this as an homogeneous one with 
an appropriate equation of state. Results from the dynamics of 
single phase gases can be applied then which suggests, among 
other phenomena, the existence of shock waves in these mixtures. 
Indeed, shock waves have been observed experimentally by various 
investigators. Campbell and Pitcher [1] reported measurements and 
photographs of shock waves in bubble-liquid mixtures and also 
established Hugoniot relations, i.e. relations that express conser- 
vation of mass and momentum across the shock. In ordinary gas- 
dynamics also energy is conserved across the shock. With shock 
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waves in liquid-bubble mixtures the changes are almost exactly 
isothermal and then the conservation of mass and momentum is 
sufficient to express quantities behind the shock in terms of quanti- 
ties in front of the shock. 

In [11 the pressure ratio P2/Pl across the shock, the subscripts 1 
and 2 referring to the regions in front of and behind the shock, is 
(by means of the Hugoniot relations) found to be related to the 
Mach number M1 by  

P~ -- My. (1.1) 
Pl 

By the Mach number the ratio speed of shock/speed of sound is 
indicated. The experimental results show good agreement with this 
relation. Jus t  as in ordinary gasdynamics nothing can be said about 
the mechanism of the shock wave so far. It  is the purpose of this 
paper to at tempt an analysis of what happens in the shock wave 
and to predict the thickness of the shock wave. In ordinary gases 
the thickness of shock waves is of the order of the mean molecular 
free path, since this is the scale on which steepening of a com- 
pression wave by  convection may be balanced by  viscous diffusion. 
For a full account of this see Lighthill [2]. For a mixture of liquid 
and bubbles it is evident that  length scales associated with the 
presence of the bubbles will determine the shock thickness. The 
homogeneous flow theory ignores the bubble character of the gas 
content and therefore cannot give insight in the structure of the 
shock wave. The motion of the bubbles with respect to the sur- 
rounding fluid gives rise to interesting mechanical effects. We will 
first discuss these effects briefly and subsequently investigate their 
importance for the generation of shock waves. 

§ 2. Effects  due to radial  mot ion  

When a bubble of radius R is immersed in an incompressible fluid 
with density pf and viscosity #, the radial motion in the fluid due 
to spherical expansion of the bubble can be described by  the ve- 
locity potential 

R 2 dR 
- -  r 2 d t  ' ( 2 . 1 )  

where r is the distance from the center. 
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The velocity vr = a6/ar equals dR/dr at r = R and vanishes at 
infinity. Since JT")'V r ~ -  0 Bernoulli's theorem is applicable. For the 
pressure pg of the gas inside the bubble this yields, if we require 
the continuity of stresses at the bubble fluid interface, 

{ d~R 3 ( d R  ~ 4~ dR (2.2/ 
Pg -- Poo = Of R dr--- ~- -k ~ - \ ~ - ]  j + R dt 

In this expression p~ is the pressure far from the bubble. According 
to (2.2) a difference in pressure between the gas in the bubble and 
the fluid at some distance is due to the inertia of the fluid (the first 
two terms on the right hand side of (2.2)) and viscous stress (the 
last term). In a dilute suspension of bubbles in water, say, we may 
replace Poo by  the average pressure in the mixture at the location 
of the bubble. The effect of the inertia terms on tile propagation 
of pressure waves through a bubble-liquid mixture has been in- 
vestigated in some detail in [3]. It  is shown there that  the inertia 
effect results, incorporated in the dynamics of the mixture, in 
equations similar to the Boussinesq equations and (for waves in one 
direction only) the Korteweg-de Vries equation for long water waves. 
The only type of uniform waves that  satisfy the Korteweg-de Vries 
equation are the so called conoidal waves. There is no solution of 
the type of a shock wave, i.e. a transition from one constant level 
to a different one. The addition of the viscous term in the r.h.s. 
makes, as we shall show, a transition of this kind possible. 

§ 3. Relative translational motion 

The importance of dissipation associated with translational motion 
of the bubble with respect to the fluid was, for pressure waves in a 
mixture, emphasized by  Batchelor [4]. For moderately high Rey- 
nolds numbers the relative motion of a bubble can be determined 
from the irrotational inviscid flow around the bubble. This is a 
good approximation because the gas in the bubble is free to move 
about and therefore there is no constraint on the tangential ve- 
locity of the fluid at the bubble surface. Hence there is no velocity 
boundary layer. The dissipation takes place in the irrotational flow 
outside the bubble and can easily be calculated. Equating ttie dissi- 
pation rate to a frictional force times the relative velocity gives 
(Levich [5]) for the frictional force 

F ---- 12z~#R(v -- u), (3.1) 
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where v is the velocity of the bubble and u of the surrounding fluid. 
Eq. (3.1) holds when effects of surface active agents, which may lead 
to behaviour of the gas bubble as a solid, can be left out of account. 
According to [5J, p. 448, there is support for this in the case of a 
bubble-liquid mixture. When (3.1) is adopted as resistance law the 
relative velocity v -- u for given u can be calculated. Neglecting 
the mass of the bubble we have, V being the volume of the bubble, 

1 V d 
-aT (v - u) + 1 2 = R #  ( v  - -  u )  = - -  V - -  

dp 
d x  ' 

where dp/dx  is the pressure gradient in the fluid. With a small 
volumetric gas content the equation of motion for the fluid is 

which gives 

du dp 
Pf dt d x '  

d 24~Rv du 
dt (v - -  u) + ~ (v --  u) = 2 d-T 

The kinematic viscosity #/p is denoted by v. For given du/d¢ it 
follows that 

t 

v - - u = 2  ~ e x p  - - ~ ( t - - ~ )  dr. (3.2) 

- - c o  

In a shock wave the velocity u is related (see section 4) to the 
volumetric gas content fl and the shock velocity U by  

u = u(/3 - / 3 1 ) ,  

where fll is the gas content far in front of the shock. For/3 ~ 1, 
u is small with respect to U and we may write U d/dx  for d/dt, 
resulting in 

x 

v --  u = 2 exp UR 2 (x -- ~) d~. (3.3) 
- - o o  

Batchelor [41 shows that for a pressure wave of frequency D, ve- 
locity of propagation a, with bubbles of radius R and volumetric 
gas content/3, the ratio of the dissipation due to radial and trans- 
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lational bubble motion is of order f22R2/f12a2 or R2/f212, where l is 
the wave length. 

Even for small f, I0 -2 say, this is not a large quantity for most 
sound waves. For shock waves it may be shown that the ratio of 
dissipation due to radial motion and to translational motion is of 
order R2/f~d ~', where d is the shock thickness. This can be con- 
firmed by calculation of the dissipation with help of the expression 
for the viscous stress in (2.2) and the frictional resistance in (3.2) 
but also follows from replacing the wave length by shock thickness 

in Batchelor's result. The effect of radial motion is dominant for 
d ~ R/ft. A lower bound for the shock thickness can be estimated 
in the following way. During the passage of a shock wave a bubble 
is reduced from radius R to a smaller radius. The time necessary for 
such a change is of order co~1, where cob is the resonance bubble 
frequency given by 

cob =~ \ P~ / 

On the other hand the time of passage of a shock with thickness d 
is of order d/c, where c is the sound velocity in the mixture given 
(see e.g. [3]) by  

C 9 ,  P (3.5) 
pf(1 - f) f 

Requiring that d/c is at least equal to COB 1 leads to 

R 
a > 2~. (3.6) 

U 
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Fig. I. Shock w~ve in bubble-liquid nlix±ure, %ravelling wi%h speed U from 

x --~ oo (side 2) to m = --oo (side I). 
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This estimate of the shock thickness suggests that  for /3 ~ 1, to 
which we shall restrict ourselves, the condition d ~ R//3 will be 
satisfied, in which case dissipation by  radial motion dominates over 
dissipation by translational motion. We shall therefore in the follow- 
ing neglect in an early stage the effect of translational motion and 
after results for the shock thickness have been obtained inspect 
whether indeed this neglect can be justified. 

§ 4. Equa t ions  for a s t a t i ona ry  shock  wave 

We consider the situation sketched in Fig. 1. A shock wave passes 
with velocity U from right to left through a bubble-liquid mixture. 
The conditions far in front of the shock are denoted with 1, far 
behind with 2. The local density p is defined by 

p ---- pf(1 --/3), (4.1) 

when we neglect the density of the gas. 
As before pf is the density of the fluid, regarded as incompressible, 

and/3 is the volumetric gas content, related with the number density 
n of the bubbles and their radius R by  

/3 =   nR3. (4°2) 

The mixture in front of the shock is at rest. We denote the local 
velocity in the mixture with u and the pressure (as before) with p. 
This pressure is the  average pressure in a small volume element. 
In the homogeneous fluid approach p equals the pressure pg in the 
bubbles. As soon as the bubble character of the gas content is al- 
lowed for (see section 2) pg differs from p. Mass conservation re- 
quires 

pf(m --/3)(u + U) = pf(1 --/31) U, 

which for fl ~ 1 reduces to 

u = v(/3 - / 3 1 ) .  (4.3) 

This shows that u is small with respect to U, so that  for the practi- 
cally important eases of small/3 (usually in experiments/3 does not 
exceed a few percent) some simplifications may be carried through. 
One of these is that  we may consider the number density n as a 
constant. Since the mass of each bubble remains constant, there is 
conservation of the number of bubbles passing through a unit 
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surface normal to the flow. When v denotes the velocity of the 
bubble, 

(v + U) n = constant. 

Because v is of the same order of magnitude as u and u is small 
with respect to U, n is approximately constant, 

n = constant. (4.4) 

Next we formulate the conservation of momentum in a frame 
moving with the shock. Here we consider the momentum of the 
mixture p t ( 1 -  fl)(u-t-U) 2 and the Kelvin impulse (Lamb [6], 
§ 119) associated with the motion of the bubbles with respect to 
the fluid. For one bubble in a fluid the Kelvin impulse equals the 
product of the virtual or added mass times the relative velocity. 
The rate of change of the Kelvin impulse equals the external force 
on the bubble. In the mixture the number of bubbles passing through 
unit surface normal to the flow direction is n(U + v), which is 
approximately nU because v ~ U. The virtual mass is ½ofV. Taking 
into account both the momentum of the fluid and the Kelvin impulse 
we obtain 

d 
dx {Of(1 -- fl)(U + u) 2 + ~r~nUR~or(v -- u) + p} = 0. (4.5) 

For fl ~ 1 this reduces with help of (3.3) and (4.3) to 

P = Pl  + 2" 
x 

{ ( ~ 1 -  f i ) - - f i r  d(fi-/51)d$ exp{ UR 218v (x -- $)}d$}. (4.6) 

- - o o  

The relation (3.3) holds for constant R and cannot be used in (4.5), 
strictly speaking. However, taking R constant will introduce a 
small error only, since normally the change in R over the shock 
wave is small. An equation for fl is obtained by expressing p in 
terms of the pressure pg in the gas and the rate of change of the 
bubble radius by means of (2.2). Since it is known that  bubbles in 
an oscillating pressure field behave isothermally in a wide range of 
frequencies (see [7]) we take 

pg = - - - ,  (4.7) 
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which expresses isothermal changes provided (4.4) holds. By using 
(4.2) and (4.4) and by approximating as before d/dt by U d/dx the 

4 - dfl/dx. viscous term in (2.2) becomes 3## U 
For clarity we first disregard the inertia terms in (2.2) and write 

using (4.7) 
Pl#l 4 #U dfl 

fi 3 fi dx 

Inserting this in (4.6) yields 

P1#1 4 flU d# 
# 3 # dx 

X 

= p l + p f U 2 { ( # l _ # ) _ #  f d(#--St # 1 ) e x p { - - ~ ( ~ ) } d ~ ,  
- - o o  

where (4.8) 
18v 

= UR (4.9) 

Using the expression (3.5) for the velocity of sound this can be 
written as 

C~(#l--fi){ "#1# U2"} "@c~ 

X 

q- U2# d(# #1) exp --¢ d ~ -  (4.10) 
d~ R 3 # dx 

- - o o  

Taking in (4.6) x-+  co give s the relation between conditions far 
upstream and downstream from the shock. Using (3.5) it then 
follows that 

& U 2 

& 4 ' 

a relation also found by Campbell and Pitcher [ 1]. Introducing this 
into (4.10) gives 

4 v d# 
(#~-#)(#-#~)- 3 u d~- + 

x d 
+ d ~ exp (4. 
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Upon partial integration of the last term we finally obtain 

4 v dfl 
(fl  - f l ) ( f l  - f l 2 )  - 3 u + fl (fi - fl ) + 

-]--~- (fl--fll)  exp --~ ~ d~. (4.12) 

- - c o  

This equation enables us to estimate the influence of the relative 
translational motion. For fl ~ flz, the term fl2(fl _ ill), associated 
with the spreading of momentum due to relative translational 
motion, is small with respect to the left hand side of (4.12) and 
can therefore b e  neglected. The last term on the right hand side 
of (4.12) is with a shock thickness d (which is an unknown quanti ty  
as yet) of the order of magnitude ~fiad/R, whereas the viscous term 
arising from the radial motion is of order vfl/Ud. Using (4.9) for 
shows that the ratio of the effects of radial and translational 
motion is of order R2/fl2d2, confirming the estimate made in sec- 
tion 3. We shall assume that for shock waves in mixtures of small 
fl this quant i ty  is large enough to permit the neglect of the terms 
associated with the translational motion and inspect afterwards the 
validity of this. Before including the inertia effects of the radial 
motion in the analysis we consider (4.12) with the last two terms 
on the right hand side discarded, 

4 v dfl 
(fl, - f l ) ( f l  - f12) = u d .  (4 .13)  

Apart from the restriction fl < 1 this equation would exactly de- 
scribe the shock structure when this is determined by  viscous dif- 
fusion due to radial motion of the fluid in the vicinity of the 
bubbles. Equation (4.13) can be solved exactly. The solution for fl 
tending to fll for x --> --oo and to f12 for x -+ + 0 0  is 

fl _ _  fll -~ f12 fll -- f12 tanh P2 x . (4.14) 
2 2 8v 

The argument of the tanh in (4.14) can be written in various ways. 
Here we have chosen quantities that  are measured during experi- 
ments. Campbell and Pitcher El] give a photograph and a pressure 
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recording of a shock under the conditions: Pllp2 ---- ~,/31 = 5 × 10 -2. 
They do not report the value of Pl. However, since the shock was 
created by first evacuating the space above a mixture and subse- 
quently admitting atmospheric pressure, we may assume that  p~ = 
= 105 N/m~. The fluid used in [1] was an aqueous solution of 
glycerine with density 1.145 × 103 kg/m a. To obtain the value of 
the kinematic viscosity v, not reported by Campbell and Pitcher, 
we first note that  since a 100% solution of glycerine has density 
1.266 kg/m a the concentration used in E11 was apparently 

0.145 
0.266 -- 55°/°" 

Measurement of viscosity as a function of concentration at 20°C 
gave, for 55% concentration, v = 1.2 × 10-5 m2/s. Unfortunately, 
in [1] the temperature was not reported, so some uncertainty re- 
mains. Taking the mentioned values for the pertinent quantities 
we obtain from (3.5) Cl = 17m/s and from (1.1) U----41 m/s. 
Further we define the thickness of the shock as twice the value of x 
for which the tanh in (4.14) assumes the value 0.99. The argument 
of the tanh is about 3 in that  case. The thickness of the shock wave 
calculated in this way from (4.14) turns out to be 1.1 x 10 -4 m. 
The bubble size in the experiments in [1] is 10 -4 m. Judged from 
the photograph in [11 the shock wave covers some bubble diameters 
and therefore our calculated value is too smaU. Comparison with 
the lower limit for the shock thickness obtained in (3.6) shows that  
the mechanism incorporated in (4.13) leads to too small values for 
the shock thickness The estimate of (3.6) R/#~ amounts to a thick- 
ness of about 2 bubble diameters for the bubble diameter of 10 -~ m 
a n d # = 5  X 10 .2 . 

§ 5. Shock wave wi th  ine r t i a  effects a r o u n d  bubbles  

We proceed now to incorporate the inertia terms of (2.2) in the 
analysis. These terms are highly nonlinear and this makes any 
progress difficult. Linearization however will be permitted for weak 
shocks and also for the outskirts of stronger shocks since there the 
local value of/5 differs only to a small amount from the asymptotic 
values #1 and flu. The linearized form of the term p~R d2R/dt 2 is 
(p~R2U2/3#) d2fi/dx 2, where the values of R and # with respect to 
which linearization is carried out are indicated with a bar. The term 
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pf(dR/dt)2 is neglected in a linear approximation. The other terms 
being as before, the form of (2.2) appropriate for our purpose is 

Plfll pfR2U2 d2fl 4 #U dfl 
P = ---fi-- -- 3fi 'dx - - -T  -- 3 - "  fi dx"  (5.1) 

Inserting this into (4.6) and neglecting the effect of relative trans- 
lational motion gives after manipulations analogous to those leading 
from (4.6) to (4.12), 

/ ~  d2fl 4 v dfl 
(ill - -  f l ) ( f l 2  - -  f l )  - -  3 dx e 4- 3 U dx " (5.2) 

Compared with (4.12), including inertia effects leads to the ad- 
ditional term /~2/3 d2fl/dx e. It  must be borne in mind, however, 
that (5.2) involves a linear approximation, whereas (4.12) is only 
subject to the condition fl ~ 1. If we leave out the viscous term in 
(5.2) and differentiate with respect to x we obtain 

/~2 d3fl + (ill + fie) dfl d 
3 dx ~ d-x- -- d---x-(½fie) = O. (5.3) 

This equation has a form to which the Korteweg-de Vries equation, 
discussed in [3] in the context of pressure waves in a bubble-liquid 
mixture, reduces when solutions representing stationary waves are 
assumed. It  is known that  this equation has no shock wave type 
solution. Neglecting in (5.2) the inertia term (first term on right 
hand side) results as we have shown in section 4 in a transition of 
the required kind, though with too small a shock thickness. Equation 
(5.2) combines the effects of inertia and viscosity in the structure of 
the shock [11]. In the central part defl/dx e is negligibly small and 
there the viscosity term will be dominant. Away from the center the 
influence of the inertia, or dispersion term (because of its importance 
for dispersion of pressure waves) will be important. Since (5.2) allows 
no exact solution we shall estimate the shock thickness from ana- 
lyzing the outskirts of the wave. The referee of the present paper 
proposed to find the shock thickness by estimating the maximum 
value of dfl/dx from a graphical solution of (5.2) in the fl, dfl/dx 
plane, by means of the method of isoclines. However it turns out 
that  this gives not a good approximation to the shock thickness, 
because only over a very short part of the interval fll -- fls, dfl/dx 
is near Jdfl/dxl~ax. 
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First we consider the low pressure region where fl is near ill. 
Introducing 

y = / h  

and linearizing the convection term on the left hand side of (5.2) 
with respect to y we obtain 

R~ d2y 4 v dy 
3 dx ~ q - 3 - U  dx (ill--fig) Y : 0 .  (5.4) 

This equation describes the balance of dispersion, viscous diffusion, 
and convection at the low pressure side of the shock. The solution 
which tends to zero for x --> - -co  is 

[ 2, UR  r /  2,, \2 (5.5) 

For the experiment of Campbell and Pitcher [11 2 v / U R ~  = 0(10 2) 
and {3(fll -- fi2)lR~} ½ = O(10a). This means that in this particular 
experiment the slope of the front part of the wave is determined 
mainly by  the balance of convection and dispersion. Just  as in the 
case ol bores some viscous dissipation is needed to permit the ex- 
istence of a stationary shock, because without dissipation no shock 
exists (5.3). The width of this part of the shock is of order R1/  
(ill - -  f12) ~, which amounts to 10-3 m or about 10 bubble radii. I t  
follows further from (5.4) that  for very weak shocks for which 

R < 

viscosity dominates the slope of the front part. In that case we 
find by  expansion of the square root in (5.4) 

3Ux( /h  - 
y ~ exp 4v ' (5.6) 

corresponding to the result earlier obtained in analyzing the shock 
without dispersion effects (4.13). So we obtain the interesting result 
that, unless the shock is very weak, its front is determined by  the 
balance between convection and dispersion. Next we investigate 
the high pressure side were fl is near f12. Introducing 
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we obtain here, analogous to (5.4), 

R~ d235 4v d35 
3 dx2 q- 3U dx + (/31 132) y -- 0. (5.7) 

The solution of (5.7) which tends to zero for x -+ co is 

exp 

This expression shows some interesting features of the high pressure 
part  of the shock wave. 

For  v/UR2 >~ (~1 -- fl~)~ (5.8) reduces to 

3Ux(~ ~) 
9 N exp -- 

4v 

The behaviour is like (5.6/ and the corresponding shock thickness 
is as calculated in section 4. However when 

2v 
- -  < { 3 ( i l l  - -  f i 2 ) }  ~, UR2 

the expression between { } in (5.8) is negative and in consequence 
of this waves appear at this side of the shock. The wave length is 
given by  

2xR2 4 - -  

{2(~ k uR2 / J 
The damping of the waves is expressed by  the factor exp{--2~x/UR ~}. 
Apparent ly  s ta t ionary  waves can exist at the rear part  of the shock. 
For  order of magni tude  purposes we may,  concerning the experi- 
ments  in [1], disregard the difference between R1 and R2, (their 
quotient  is 6~). Then it follows from the values of the various 
quanti t ies given in the discussion on the front part  tha t  waves with 
a length of order 10-a m and damped in a distance 10 -2 m m a y  be 
expected. Indeed, the pressure recording in El] shows this type  of 
undulations.  Of course, on the basis of one recording no definite 
conclusions can be drawn. The waves described here bear a strong 
resemblance with the waves in the undular  bore. Also for the 
undular  bore to exist as a s ta t ionary  wave, some dissipation is 
necessary. The dissipation mechanism, tha t  is to say the way in 
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which viscosity affects the structure, may be quite different in 
both cases. For the shock wave a possible structure has been worked 
out in the present investigation where emphasis is laid on the 
viscous stress associated with the relative radial motion of the 
bubbles. Most existing theories Chester E8~, Peregrine [91, Meyer 
[101 for the undular bore, deal in the analytic part with dispersion 
only, with the exception of Chesters' model for the undular bore 
in which the viscous shear stress in the nonuniform flow between 
bot tom and free surface provides the means for a transition be- 
tween two different levels. 

§ 6. Discussion 

The picture of a shock wave in a bubble-liquid mixture evolving 
from the foregoing analysis is, that, provided v U / R  ~ (ill -- f12) ~, 
the rise in pressure takes mainly place over a distance of order 
R/( /31- /32)  ~, while waves with wavelength given by (5.9) exist 
at the back of the shock. We found earlier that  the effect of trans- 
lational relative motion is negligible for d ~ R/ft. From the result 
d ~ R/(fll  - -  fi2) '} it follows that for/3 ~ 1 this condition is satisfied 
except for very weak shocks. Waves in a bubble-liquid mixture are 
highly dispersive. For wave number k and frequency co the dis- 
persion relation is (see e.g. [31 or [41) 

50 2 C 2 

k 2 k2C 2 , (6.1) 

the bubble frequency COB being given by (3.4). The phase velocity 
oo/k is larger than the group velocity da~/dk. The stationary waves 
behind the shock have a phase velocity U and since energy propa- 
gates with the group velocity energy is radiated away from the 
shock, similar to the radiation of energy associated with the wave 
train behind the undular bore. From (6.1) it follows that 

m 
k =  { ( c 1 - -  

\ ~ B /  ) 

This shows that no wave propagation is possible for o~ > COB. When 
oo approaches ~oB the bubbles will perform oscillations with frequen- 
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cy coB. No waves occur, the bubbles are convected with the fluid. 
This will happen for strong shock waves as may be shown as follows. 
Associated with the wavelength (5.9) is a frequency 2~U/2 .  In- 
serting 2 from (5.9) and using (3.5) and the shock relation U2/c~ = 

---- P~/Pl  we may write this as 

1 
c o : - -  

R2 3p2(1Pf-- ~-~1[ ½" (6.2) 

Upon comparison with cob for the high pressure side (deduced from 
(3.4)), 

cob = R - - 7 ( ~ 2  ) ½, (6.3) 

we conclude that for weak shocks co is always fairly below coB. For 
very strong shocks, fi2/fil ~ O, co approaches coB and then no wave 
propagation is possible. Under those circumstances the storage of 
energy in the resonance oscillations may play an important role in 
the shock mechanism. Here an interesting difference with the undular 
bore arises, where breaking occurs as the bore gets strong and no 
energy can be radiated away in waves. The aspects of resonance 
oscillations in relation with shocks will be discussed elsewhere. Of 
course, for strong shocks, more violent mechanisms as the breaking 
up of bubbles in several parts may also be of importance. In con- 
clusion we expect the present theory to hold for weak and moder- 
ately strong shocks. 

A future paper will treat experiments on this type of shock waves. 
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